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Agricultural land-uses consistently exacerbate
infectious disease risks in Southeast Asia
Hiral A. Shah 1,2, Paul Huxley 1,2, Jocelyn Elmes 1,3 & Kris A. Murray 1,2

Agriculture has been implicated as a potential driver of human infectious diseases. However,

the generality of disease-agriculture relationships has not been systematically assessed,

hindering efforts to incorporate human health considerations into land-use and development

policies. Here we perform a meta-analysis with 34 eligible studies and show that people who

live or work in agricultural land in Southeast Asia are on average 1.74 (CI 1.47–2.07) times as

likely to be infected with a pathogen than those unexposed. Effect sizes are greatest for

exposure to oil palm, rubber, and non-poultry based livestock farming and for hookworm (OR

2.42, CI 1.56–3.75), malaria (OR 2.00, CI 1.46–2.73), scrub typhus (OR 2.37, CI 1.41–3.96)

and spotted fever group diseases (OR 3.91, CI 2.61–5.85). In contrast, no change in infection

risk is detected for faecal-oral route diseases. Although responses vary by land-use and

disease types, results suggest that agricultural land-uses exacerbate many infectious diseases

in Southeast Asia.
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Agricultural land-use and land-use change, including agri-
cultural intensification and the conversion of forests,
wetlands and grasslands into forest monocultures, crops

and pasture, has led to major increases in the production of food,
timber, housing and other commodities1–3. Although delivering
economic and social benefits, these human activities have also
resulted in substantial negative socio-ecological consequences,
such as increased CO2

4,5, air pollutant emissions5, loss of biodi-
versity6–11, modifications in surface fluxes of heat and water
vapour resulting in changing regional weather patterns12–14,
degradation of air and water quality15–17 and a decrease in the
supply of renewable fresh water18.

This trade-off between the considerable costs and benefits at
stake places the agricultural sector at the heart of global sus-
tainability, health and environmental frameworks (e.g., Sustain-
able Development Goals, Paris Agreement, Aichi Biodiversity
Targets), and makes simultaneous achievement of key targets a
formidable challenge19.

While the impacts of agricultural land-use activities is relatively
well characterised in some sectors (e.g., carbon emissions
accounting frameworks20, biodiversity loss11,21,22), less well
established are the potential impacts on human health, where the
majority of existing research signposts towards the health impacts
of occupational pesticide, chemical and heavy metal expo-
sure23,24. In particular, the evidence linking human-induced land-
use changes and infectious disease risk outcomes in humans,
many of which are related to agriculture25–32, has not been sys-
tematically evaluated or quantified.

Numerous case studies support a link between agricultural
land-use or land-use change and infectious disease risks33. For
example, irrigation-based agriculture and rural development can
expand breeding habitats of Culex vectors and has led to Japanese
encephalitis virus establishing a secondary cycle in domestic pig
populations where it amplifies and spills over into human popu-
lations33–36. Deforestation and associated environmental changes
may facilitate the transmission of Plasmodium knowlesi (cause of
zoonotic malaria) to humans in Malaysian Borneo37; expansion
and changes in agricultural practices are associated with the
emergence of Nipah Virus in Malaysia38 and increased Leptospira
infections and fatalities in Thailand have been observed in open
habitats such as rice fields that are prone to flooding39.

In addition, a number of theoretical modelling studies and
meta-analyses suggest potentially generalisable links between
land-use or land-use change and biodiversity loss (a key outcome
of land-use change, albeit not necessarily specific to agricultural
activities31,40), some of which may be linked to increases in dis-
ease risk. For example, Guo et al.41 find a general increase in host
or vector community competence associated with land-use
changes. Rohr et al.41 report that agricultural drivers are asso-
ciated with >25% of emerging infectious diseases and >50% of
emerging zoonotic infectious diseases in humans. Faust et al.31

highlight changing host population densities and edge effects as
mechanisms that could drive disease emergence in converted
landscapes. Civitello et al.43 show that host diversity inhibits
parasite abundance (e.g., infection prevalence for microparasites,
mean parasite load for macro-parasites, density of infected vec-
tors for vector-borne parasites or percent diseased tissue for plant
parasites) and therefore suggest that a generalisable ‘dilution
effect’ may modulate disease risk across a number of disease
systems. However, the extent to which these effects extend to
human infectious diseases remain highly contentious44, and few
studies focus on specific land-use types.

Here, we test for a generalisable or net impact of occupational
or residential exposure to agricultural land-use on the risk of
infectious disease in humans in Southeast Asia (SE Asia) via a
systematic review and meta-analysis approach, following

PRISMA reporting standards for medical and epidemiological
evidence syntheses.

A global review was deemed infeasible due to the vast collec-
tion of citations that would require double review to achieve
PRISMA standards (~50,000 citations). We considered a nar-
rower focus on SE Asia (defined here as the ASEAN region,
including, Vietnam, Cambodia, Laos PDR, Thailand, Myanmar,
Malaysia, Indonesia, Singapore, Philippines, East Timor and
Brunei) as an appropriate model system given its combination of
biologically diverse landscapes8, differing land-uses45 and because
it is considered a zoonotic, parasitic and emerging disease hotspot
area46,47. Specifically, we quantified an overall association
between where people live or work in SE Asia and disease risk,
finding that those in agricultural land are on average almost twice
as likely to be infected with a pathogen than controls (odds ratio
(OR) 1.74, confidence interval (CI) 1.47–2.07, p < 0.001). We also
report consistent associations between forest monoculture agri-
culture (oil palm and rubber) and a number of specific diseases of
differing ecologies and epidemiologies, while accounting for
potential effects of publication bias and both within and between-
study confounding. Although responses clearly vary by land-use
and disease types, generalisable results from this and further
studies will help identify co-management opportunities for health
and the environment.

Results
Regional analysis. The search strategy returned 15,426 potentially
relevant publications in total, 58 of which met the inclusion cri-
teria for full text analysis (Fig. 1). Of these, 34 mutually exclusive
studies were included in the regional meta-analysis and a total of
37 mutually exclusive studies were included in the multiple sub-
group analyses. Studies spanned five countries (Thailand= 11,
Malaysia= 10, Vietnam= 9, Philippines= 2, Lao PDR= 2), two
designs (cross-sectional= 27, case–control= 7) and were assessed
as being of varying quality using two study quality tools (Office of
Health Assessment and Translation (OHAT)—definitely low risk
of bias= 2, probably low risk of bias= 25, probably high risk of
bias= 10 and National Heart, Lung, and Blood Institute (NHLBI)
—good= 7, fair= 23, poor= 4). A total of 80 effect estimates
were extracted consisting of 26 infectious diseases and 12 different
exposures. All included studies were in English and no studies
were found to be in any other language. Full details of sample
characteristics for each study including analysis groups are pre-
sented in Supplementary Data 1.

Overall, occupational or residential exposure to agricultural
land-use was consistently associated with increased infectious
disease risks, but effects varied widely among studies, differing
disease groups and agricultural types. A regional analysis of 34
mutually exclusive crude odds ratios from 34 studies demon-
strated that people exposed to agricultural land either occupa-
tionally or residentially were at a 74% increased risk of being
infected with a pathogen than those unexposed (OR 1.74, CI
1.45–2.05, p < 0.001, E= 2.01, Fig. 2). Although a larger number
of positive studies were included within our sample data set, as
shown in the funnel plot (Fig. 3), linear regression tests and the
trim and fill analyses (Fig. 2) highlighted no evidence of
publication bias on the overall effect size. High between-study
heterogeneity (I2= 83.8%) was nevertheless observed, indicating
considerable variability in effects among studies.

To assess the impact for within study confounding, a meta-
analysis of 17 mutually exclusive adjusted odds ratios from
17 studies was conducted suggesting that people exposed to
agricultural land either occupationally or residentially were
similarly at significantly increased risk of being infected with a
pathogen than those unexposed (OR 1.46, CI 1.11–1.92, p < 0.001,
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Supplementary Fig. 1). Tests of the potential effect of unmeasured
confounders suggested that an excluded variable(s) would have to
have a minimum odds ratio of 2.03 with both the exposure and
outcome to fully explain away the pooled result (E= 2.03).

Subgroup analyses. To evaluate the impact of between-study
confounding, we examined the influence of a range of additional
study and sample characteristics on effect size and direction,
including study type and methodology, socio-demographic
characteristics (gender, whether children were included in the
sample population, and rural vs. urban), both study quality
assessments and study location. In this test, associations con-
sistent with the overall positive effect were observed irrespective
of study and sample characteristics (Fig. 4), strengthening con-
fidence that the pooled result is robust to a range of measured
and, by extension, unmeasured confounders. In addition, the
significant heterogeneity observed among studies in the regional
pooled analysis (Fig. 2) does not suggest the presence of sys-
tematic bias from unmeasured confounders.

Nevertheless, one effect modifier/confounder variable (study
setting) exhibited a divergence in effect sizes between groups,
suggesting a possible interaction with the main effect of
agricultural exposure. Here, the effect of agricultural exposure
on infection was more than twice as strong in studies in urban
than in rural settings, preserving the possibility that the pooled
effect is vulnerable to the effect of unmeasured confounders, albeit
here insufficient to explain away the pooled result. In addition, a
single subgroup indicated a lack of significant association (studies

based in Lao PDR). However, given the effect sizes and direction
for these groups did not deviate considerably from the pooled
effect, we considered this more likely due to small sample size than
evidence of potential confounding. Finally, low heterogeneity for
some stratum specific covariates alongside consistent effect sizes
indicates that the source of heterogeneity is likely coming from
elsewhere, warranting the use of further subgroup analyses to
scrutinise the pooled result and to test our hypotheses on
differences in effect between agricultural types and disease groups.

Further subgroup analysis was performed using mutually
exclusive estimates based on common exposure types (Figs. 5
and 6) and for specific disease classes (Fig. 7). Consistent
associations between agricultural exposure and infection were
again evident. For the non-specific agricultural group, a similar
effect was observed with all infectious diseases (OR 1.71, CI
1.38–2.13). When stratifying the non-specific agricultural group
by disease class, significant effects were observed for parasitic (OR
1.74, CI 1.41–2.13), vector-borne (OR 1.85, CI 1.18–2.90) and
zoonotic diseases (OR 1.63, CI 1.19–2.24). A marginal non-
significant effect was found for bacterial diseases (OR 1.79, CI
0.97–3.31, I2= 89.4%) (Fig. 5 and Supplementary Table 1).

Among the specific agricultural subgroups, the effect was
higher in populations working or living in or near oil palm and
being infected with vector-borne and zoonotic diseases (leptos-
pirosis and P. knowlesi) compared to those unexposed (OR 3.25,
CI 2.29–4.61). Similarly, exposure to rubber plantations increased
the risk of being infected with all types of pathogens (OR 2.27, CI
1.82–2.82). This effect was also consistent when stratified by
disease class where significant associations were found for
bacterial (OR 2.27, CI 1.79–2.89), parasitic (OR 2.24, CI
1.35–3.74), vector-borne (OR 2.27, CI 1.82–2.82) and zoonotic
(OR 2.31, CI 1.83–2.94) disease class subgroups (Fig. 6 and
Supplementary Table 1).

Significant associations were observed for general livestock
farming (Fig. 6 and Supplementary Table 1) and all diseases (OR
2.54, CI 1.37–4.72), zoonotic (OR 2.46, CI 1.35–4.48), vector-
borne (OR 2.52, CI 1.48–4.28) and bacterial (OR 4.47, CI
1.30–15.39) diseases. A marginal non-significant-positive associa-
tion was also established between livestock farming and viral
diseases (OR 1.55, CI 0.83–2.81). Further subgrouping by
livestock type showed consistent marginal non-significant-
positive effects. Specifically, marginal associations were observed
between porcine animals and all diseases (OR 3.57, CI
0.84–15.23), vector-borne (OR 3.09, CI 0.58–16.46), zoonotic
(OR 3.57, CI 0.84–15.23) and viral (OR 4.31, CI 0.49–37.81)
diseases. Effect sizes found for bovine animals were consistent for
all, vector-borne or zoonotic diseases (OR 2.09, CI 0.80–5.49) and
bacterial diseases (OR 2.40, CI 0.57–10.12). No associations were
found for exposure to poultry and all, vector-borne or zoonotic
diseases (OR 0.91, CI 0.24–3.45). There was no evidence of
publication bias for any other exposure-based subgroups
(Supplementary Table 2).

Exposure to rice paddy farming (Fig. 5) resulted in a non-
significant association for all diseases (OR 1.34, CI 0.81–2.23),
bacterial (OR 1.40, CI 0.71–2.77), zoonotic or vector-borne (OR
1.17, CI 0.62–2.21) disease class subgroups. However, trim and fill
tests (Supplementary Table 2) indicated the presence of
publication bias in which positive associations between agricul-
tural exposure and general infection were under-reported among
studies on rice paddy farming. When accounted for, the effect of
agricultural exposure on infection risk within the rice paddy
farming subgroup became significant (OR 1.81, CI 1.04–3.17, p=
0.037 (Z-test), E= 1.47), suggesting that the overall effect is likely
conservative.

A final subgroup analysis based on specific diseases or disease
complexes again showed consistent associations between
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Fig. 1 PRISMA diagram. A flow chart of the study selection process
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infection and agricultural exposure (Fig. 7 and Supplementary
Table 3), notably for spotted fever group rickettsioses (OR 3.91,
CI 2.61–5.85), hookworm (OR 2.42, CI 1.56–3.75), scrub typhus
(OR 2.37, CI 1.41–3.96), malaria (OR 2.00, CI 1.46–2.73), S.
japonicum (OR 1.71, CI 1.18–2.48) and T. trichuria (OR 1.40, CI
1.27–1.53). In contrast, no significant association was observed
for the A. lumbrocoides, O. viverrini, E. histolytica, G. intestinalis,
Leptospirosis and R. typhi subgroups. Again, there was little
evidence of publication bias or unmeasured confounding for
significant effect sizes, although heterogeneity remained present
in many groups (see Supplementary Tables 1, 2 and 3 for all
estimates).

Discussion
Agricultural land-use or land-use change has been repeatedly linked
to infectious disease risks in humans25,27,28,30,31,37,41,42,48–53; how-
ever, no study has systematically assessed or quantified this asso-
ciation. Based on currently available evidence from 37 eligible
studies drawn from a corpus of over 15,000 peer-reviewed pub-
lications, our results strongly suggest that exposure to agricultural
land-use either occupationally or residentially is consistently asso-
ciated with increased infectious disease risk (average 74% increase),
an effect evident across a wide range of agricultural types and
disease groups. After pooling adjusted risk estimates from 17 eli-
gible studies, a similar significant association was still evident,
suggesting that there was little within study confounding.

Effects were most pronounced for oil palm monoculture (>3
times the risk) and rubber (>2 times the risk) forest monocultures
and a strong association was also found for livestock farming.
Associations for specific diseases or disease complexes were
present for spotted fever group rickettsioses, hookworm, scrub
typhus, malaria, S. japonicum and T. trichuria, but absent for
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Fig. 4 Sensitivity analysis of the regional meta-analysis. A priori subgroups based on study characteristics to test the sensitivity of the regional meta-
analysis. Results suggest that subgroups based on study characteristics do not significantly alter the direction of the association between occupational or
residential exposure to agricultural land-use and infectious disease prevalence. Circle points show the pooled subgroup estimates and error bars are
defined as the 95% confidence interval. Note: n, number of studies included in each pooled estimate. CI, confidence intervals. OHAT, Office of Health
Assessment and Translation. NHLBI, National Heart, Lung and Blood Institute
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other groups (A. lumbrocoides, G. intestinalis, E. histolytica, lep-
tospirosis, opisthorchiasis and R. typhi). No evidence of pub-
lication bias was detected in the regional meta-analysis, but
evidence of bias was present in the rice paddy farming subgroup
analysis, whereby studies documenting positive associations
between agriculture and all types of infection were under-repre-
sented, suggesting the overall effect is conservative. Considerable
heterogeneity among studies and subgroups alongside negative
tests for potential confounding from both measured and
unmeasured effect modifiers further suggest that the results are
robust to a range of possible sources of bias.

Subgroup analysis, in which data were grouped by common
exposures and then stratified by aetiological agent (parasitic, viral,
bacterial), transmission mode (vector-borne, zoonotic) or specific

disease types or disease complexes, nevertheless highlight the
potential complexity and variability of agriculture-infectious
disease associations. The particularly strong effects that were
observed for the two-forest monoculture-based agricultural types
(oil palm and rubber) are key findings. All these crops have been
planted extensively in recent decades and been major con-
tributors to land-use changes in this region. For example, between
2005 and 2010, almost 250,000 hectares of natural vegetation with
tree cover was converted to rubber plantations in SE Asia54,55,
and the loss of primary forests for the cultivation of oil palm in
Indonesia (especially on Sumatra and Borneo islands) quadrupled
between 2000 and 2012 to 800,000 hectares a year56. In 2010, with
an estimated 122 million people working in agriculture in SE
Asia, ~115 million hectares (approx. 28% of the total area) were

Ascaris lumbricoides

Entamoeba histolytica

Giardia intestinalis

Hookworm

D
is

ea
se

0 1 2 3

Odds ratio

4 5 6 7

Leptospirosis

Malaria

Opisthorchis viverrini

Orientia tsutsugamushi

Rickettsia typhi

Schistosoma japonicum

Trichuris trichuria

Spotted fever group

Fig. 7 Disease-based subgroup analysis. Subgroups were created a priori based on diseases that had two or more mutually exclusive estimates. Orientia
tsutsugamushi is also known as Scrub typhus. Rickettsia typhi is otherwise known as murine typhus. Opisthorchis viverrini is also known as Opisthorchiasis.
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harvested for rice, maize, oil palm, natural rubber and coco-
nut57,58. Our results thus have far reaching implications for a
large fraction of SE Asia currently under cultivation or planned
for agricultural conversion; that agricultural land-uses and even
differing agricultural types appear to exacerbate infectious disease
risks more than others raises the possibility that land-use deci-
sions could be tailored to minimise human health impacts.

Mechanisms by which crop monocultures impact the risk of
infectious diseases are difficult to untangle and likely idiosyn-
cratic. Deforestation or different agricultural land-uses may
favour some disease hosts or vectors (influencing e.g., abundance,
distributions or transmission dynamics), while the loss of biodi-
versity has also been linked to increases in disease risk in some
cases48. For example, a decrease in wild mammal species richness
in fragmented habitats was associated with a higher ser-
oprevalence of Chagas disease in small mammal reservoir
hosts27,59. In other cases, different agricultural land-use types
could be frequented by people, modifying contact rates with
animal hosts or vectors, and combinations of these effects are also
probable. Fornace et al.37, for example, show that a higher inci-
dence of P. knowlesi is associated with larger amounts of forest
loss surrounding villages, which may have caused changes in
macaque or mosquito habitats in addition to increased levels of
human activity, thereby increasing the risk of infection in
humans.

Landscape factors such as distribution, density, behaviour and
population dynamics of vectors and their hosts are partially
controlled by landscape features such as vegetation cover, surface
moisture, topography or soil type, which in turn may also
influence the level of transmission of an infection28. Oil palm,
rubber plantation and rice paddy monocultures have reduced
species richness compared with primary and secondary for-
ests60,61, and these monocultures are structurally less complex
than natural forests typically exhibiting a more uniform age
structure, lower or no canopy, sparse undergrowth, less stable and
more extreme microclimates, and greater levels of human dis-
turbance and presence61,62. Evidence suggests that such changes
related to physical characteristics of the landscape or biodiversity
loss itself could favour disease carrying hosts or vectors or
increase the efficacy of disease transmission to remaining hosts
(in this case people). For example, Burkett-Cadena and Vittor63

suggest that an increased mosquito vector abundance was posi-
tively associated with deforestation. Of the mosquito species that
were favoured by deforestation, 56.5% were confirmed vectors of
human pathogens, compared to 27.5% of species that were
negatively impacted by deforestation. Faust et al.31 also suggest
that the greatest risk of spillover events occur at intermediate
levels of habitat loss, whereas the largest, but rarest, epidemics
occur at extremes of land conversion. Our results are thus con-
sistent with these previous empirical64,65 and modelling stu-
dies31,37,49–51, and further support suggestions that deforestation
resulting in crop monocultures is particularly problematic for
elevating infection risks in susceptible nearby populations.

Whereas many previous studies have focussed on land-use
change and deforestation explicitly, our analysis is largely blind to
prior land-cover history. We nevertheless find variation in disease
risk among specific agricultural land-use types, suggesting that an
effect on disease risk likely goes beyond simply a change in land
cover (e.g., from forest to crop monoculture) to include the final
characteristics of modified agricultural landscapes. To further
untangle mechanisms here would require a more detailed data set
on land-cover history (e.g., class transitions), scale and context.

Previous research on the association between livestock farming
and infectious disease risk has been inconsistent39,66–72, whereas
here we find consistent associations between infectious disease
risks and exposure to livestock farming. Our subgroup analysis

for separate livestock categories (Fig. 5) suggests that infection
risk may vary according to exposure to the type of animals
farmed, with pigs and cattle exposure being positively associated
with infection while poultry exposure having no association. Our
results further show consistent positive associations between
livestock farming and differing disease classes, whereby exposure
to livestock can result in two to four times the risk of being
infected with vector-borne, bacterial or zoonotic diseases. We also
find a marginal association with livestock farming and viral dis-
eases, albeit with small sample sizes likely limiting power to
confirm the positive effect. Livestock disease transmission can
occur through multiple routes, including airborne, direct faecal-
oral, animal bites and scratches, contaminated animal products
and consumption of uncooked meat70,73. Alternatively, the
impact of livestock may be to act as amplifier hosts74,75, while
livestock housing studies show that keeping livestock, such as
cattle in the house as opposed to shelters outside the house
contributes to increased disease risk rather than zoo-
prophylaxis76,77. In addition, global changes in climate, agri-
cultural intensification and expansion for livestock, trade, travel
and closer interactions with livestock have facilitated infectious
disease transmission78. Further empirical data from appropriately
powered epidemiological studies are required to confirm our
results and better identify mechanisms.

Effect variability was also observed among specific disease or
disease complex subgroups. Significant associations ranging
between 1.4 and 2.9 times the risk of infection when exposed to
agricultural land-use were identified for hookworm, malaria,
scrub typhus, S. japonicum, spotted fever group rickettsioses and
Trichuris trichiura. In contrast, no effect was seen for A. lum-
brocoides, E. histolytica, G. intestinalis, O. viverrini, Leptospirosis
and R. typhi. These results again illustrate the potential com-
plexity of agriculture-disease associations, whereby agricultural
land-use could be impacting the transmission cycles of these
disease groups in different ways or otherwise unmeasured effect
modifiers could be at play.

Specific disease traits or epidemiological characteristics likely
explain these differences, at least in part. For example, previous
research suggests that arthropod vectors, such as mosquitoes and
ticks, and helminths may be more vulnerable to environmental
changes, such as agricultural land-uses than other taxa67. Since
we find significant associations only for parasitic or vector-borne
diseases (and no association for directly transmitted zoonotic or
faecal-oral route diseases) our results broadly support this sug-
gestion. Mechanistically, this may be linked to the modification of
environmental niches, changes in the community composition, or
alterations in the behaviour or movement of vector spe-
cies26,27,52,62,79. For example, malaria in the Mekong region has
been associated with dense forest cover and also with cultivated
areas80,81. Forest-fringe and deforested regions can also create
suitable habitats for malaria vectors (e.g., Anopheles minimus)82.
Therefore, the wide mosquito vector diversity and the potential
for mosquito vectors to adapt in deep-forests and forest-fringes,
in addition to the movement of susceptible humans to and from
the forest, provide ideal conditions for sustained and novel
transmission81.

Despite this trend, some diseases for which no effect was
observed were helminths, and in this case variation in effect may
be related to subtler transmission characteristics or other
unmeasured confounders. A. lumbrocoides or O. viverrini, for
example, are transmitted via the faecal-oral route, whereas T.
trichuria, S. japonicum and hookworm are transmitted through
skin penetration. Although both cases and controls will be
infected via the same transmission mechanism, people exposed to
agriculture may be more susceptible to infection with faecal-oral
route transmitted diseases due to the use of night soil (human
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faeces) as fertiliser to improve crop yield. Using night soil as
fertiliser is prevalent in SE Asia, although there are no estimates
on how widespread it may be83–85, making it difficult to include
explicitly as a potential confounding factor. Similarly, variation in
effects between diseases could be a result of differential responses
to public health interventions. For example, the efficacy of pra-
ziquantel mass drug administration is higher for A. lumbrocoides
compared to T. trichuria or hookworm86, but again incorporating
treatment history as a potential effect modifier was not
possible here.

Results show significant associations between exposure to
agriculture and spotted fever group rickettsioses or scrub typhus,
but not R. typhi. This difference could again be linked to trans-
mission characteristics. Although all are vector-borne, both
spotted fever rickettsioses and scrub typhus are tick-borne
typhus-based diseases, while R. typhi is flea borne. This is in
line with current research that suggests ticks are highly suscep-
tible to environmental change87,88. For example, Lyme disease (a
tick-borne disease) has increased with forest fragmentation in
North America89–91. Ostfeld et al.92 also find that tick-borne
infection prevalence was lowest when forest cover within a 1 km
radius was high. We find very little research to suggest environ-
mental change as having large impacts on flea borne diseases87,88.
Previous research does suggest that R. typhi is largely an urban
disease where overcrowding, poor public health and sanitation
measures are considered key risk factors for transmission93.
Specifically, R. typhi typically thrives in markets, grain stores,
breweries and garbage depots where rats serve as the main
reservoir, which may explain the lack of association with agri-
culture reported here93.

Our results also contrast with previous studies in the case of
agriculture and leptospirosis. Whereas we found no overall effect
for leptospirosis, previous studies have yielded mixed results94–96.
Research conducted in Thailand suggests that the sources of
human and rodent infections are different, where humans are
infected in villages in non-forested areas located near rivers while
rats are infected in forest patches situated in the hilly areas39. In
Asia, humans are known to be infected through prolonged con-
tact with water that may be contaminated by infected animal
hosts97,98. Such environmental transmission is directly linked to
frequent occupational exposure to agricultural land-use and
establishing causal pathways between the environment, animal
hosts and human risk is therefore required for such complex eco-
epidemiologies.

Although we find a consistent association between agricultural
land-use and infectious disease risk in humans, there are several
inherent challenges in resolving agriculture-disease associations
and some limitations in this study that could be improved upon
or resolved in future studies.

First, despite the diverse range of generally robust results
reported in this study, our systematic assessment of study quality
does highlight an apparent lack of robust and high-quality studies
that assess the impact of differing agriculture types, the degree of
exposure to agriculture (e.g., more or less) and land-use change
on infectious disease risks in SE Asia. Considering an initial
15,476 articles were generated from a sensitive and specific search
strategy, just 34 (0.2%) met the inclusion and exclusion criteria
and were included in the regional meta-analysis. All retained
articles focus on agriculture as the main land-use types, as
opposed to other conventional land-use practices, such as road
building, dam building, mining and urbanisation. Only a small
number of studies focus on the final human health outcome,
while in contrast many studies focus on infectious diseases in
plants or animals52,99–101. Similar research aiming to evaluate the
impacts of agricultural land-use on biodiversity appears far more
prevalent and incorporates a wider range of land-use

types7,22,102,103. Caution is therefore advised in interpreting our
results so as to avoid generalisations not supported by the data.

In addition, studies in the meta-analysis were all either case
control or cross-sectional studies, which, in the hierarchy of
evidence within the medical sciences, are considered more prone
to bias and confounding than some other study designs (i.e.,
cohort studies or randomised controlled trials)104. Nevertheless,
most of the studies were evaluated to have probably low risk of
bias or be of fair quality, indicating that there is only a small
chance that a fatal flaw would invalidate an individual study’s
findings. Despite this, we identify a general paucity of the highest
quality studies on the human health implications of land-use
decision making and policy, and its impacts on infectious dis-
eases. Further studies that capture bias, confounding and effect
modification would be particularly valuable.

Second, we were not able to determine whether the associa-
tions are significant spatially and temporally or if the associa-
tions are transient. Understanding whether the association
between land-use and infectious disease is consistent both
spatially and temporally is an important avenue for future
research. Specifically, understanding the causal relationships,
leading from distal environmental changes to alterations in
more proximal environmental characteristics and disease
transmission cycles, which eventually lead to a shift in the risk
of infectious diseases at the landscape level53 should be priori-
tised for future research.

Third, although we made extensive efforts to control (through
our inclusion/exclusion criteria and the subgroup analysis) or at
least detect (through tests of heterogeneity, the meta-analysis of
adjusted odds ratios and E-score tests) the potential effect of
confounders and effect modifiers, there are likely to be environ-
mental, social, demographic or even economic factors that could
impact the association between land-use and infectious disease
risks. Participatory epidemiology offers the opportunity to con-
duct bottom up agro-system analytical research on the patterns of
diseases in animal and human populations105–107. Participatory
epidemiological research has previously provided insights into
how social factors (which can be potential confounders or effect
modifiers) can impact ecological processes. For example, the
involvement of women in the care and preparation of poultry
carcasses in Egypt could contribute to higher incidence of highly
pathogenic avian influenza in women106,108. Similarly, under-
standing how local indigenous herder knowledge on the clinical
signs of classical acute and milder rinderpest has previously aided
in the control and eradication of rinderpest106,109. Hence, parti-
cipatory mixed methods research is an ideal platform to assess
effect modification and confounding and their potential impact
on disease-agriculture relationships.

Finally, substantial heterogeneity was also observed in our
regional meta-analyses, where I2 values were >80%. The sub-
stantial heterogeneity may be due to clinical heterogeneity or
statistical heterogeneity. Clinical heterogeneity occurs where the
exposure is modified by factors that vary across studies, the type
of exposure (e.g., different agricultural types—rice vs. rubber) or
study participant characteristics110. Differences between studies
in the definition or the measurement of exposure or outcome,
may all lead to a difference in effects. In contrast, statistical
heterogeneity exists when the true effects being evaluated differ
between studies and may be detectable if the variation between
the results of the studies is above that expected by chance111.
Further subgroup and sensitivity analysis showed that hetero-
geneity decreased to a moderate level (I2 < 60%) only for certain
subgroups111,112. This suggests that some of the observed het-
erogeneity is attributable to epidemiological and environmental
differences within this subgroup111,113. There was little evidence
of significant publication bias in our analyses (except for rice
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paddy farming), and any publication bias that was present had
very little impact on the pooled association.

This meta-analysis provides broad evidence that occupational
or residential exposure to differing types of agriculture can con-
sistently exacerbate infectious disease risks in humans in SE Asia.
These trends suggest that further expansion or intensification of
land-use for agricultural purposes may result in the novel
emergence of pathogens as observed elsewhere (e.g.,
refs. 30,38,50,114,115) or increased transmission of zoonotic, para-
sitic or vector-borne diseases (e.g., refs. 37,51,81). However, the
results presented in this study also provide an opportunity for
land-use decision makers, governments, companies and agri-
culturalists to recognise the impact that agricultural land-use or
land-use change may have on susceptible populations and
proactively identify measures to mitigate these risks.

Given a range of other negative externalities of agriculture
identified in other fields (e.g., carbon emissions, air pollution,
biodiversity loss), the potential for better land-use decisions to
collectively minimise infectious disease impacts alongside these
other impacts is large. Enhancing the sustainability of agriculture
has already been identified as a nexus issue that is central to
meeting a diverse range of development and environmental tar-
gets, such as the SDGs, the Aichi biodiversity targets, and the
Paris agreement19. Key measures are already being proposed to
sustainably meet this multiplicity of demands through policy
changes, such as reducing food wastage throughout the food
supply chain116,117, advocation of reduced emissions and more
sustainable diets118,119, efforts in soil management techniques120,
responsible consumption of animal products120 and biodiversity-
friendly farming practices121. Our study provides critical addi-
tional evidence to propel human health impacts from infectious
diseases into this mix to further advance health targets (e.g.,
SDG3, Target 3.3)122 as a central component of improving the
sustainability of agricultural development more broadly.

Methods
Search strategy and selection process. Following PRISMA protocol and
reporting standards for systematic reviews, we independently and systematically
screened articles in April 2017 using five academic literature databases: Medline,
PubMed, Global Health, Web of Science and EMBASE alongside Google Scholar.

Search strings were created through a PECOS statement using three categories
(exposure, location and outcome) with Boolean operators AND between categories
and OR within categories. Where applicable, MeSH terms for communicable
disease, SE Asia, land-use and agriculture were also used. Differing land-use types
were incorporated into the search strategy to improve the sensitivity of the search.
To improve the specificity of the search strategy, the location category was only
applied for title and abstracts, to capture all publications that had a study context
within SE Asia. No language restrictions were placed within the search strategy. An
example of the search strategy can be found in the Supplementary Note 1.

Articles were initially assessed for relevance first by title, as well as keywords if
these were available, then by abstract and finally by full text. We simultaneously
assessed the suitability of the studies retained after screening for full text analysis
for their potential inclusion in meta-analyses, rejecting studies for which risk or
odds estimates could not be calculated. Disagreements were resolved by consensus,
and where no consensus was achieved a third investigator was consulted. One
reviewer (H.S.) then extracted outcome and exposure data as well as data on
population and study characteristics into a bespoke data extraction framework,
which was then validated by a second reviewer (P.H.)112.

Eligibility. Following PRISMA guidelines and the PICOS framework, we con-
sidered the following factors to determine eligibility criteria: ‘study question’,
‘populations’, ‘exposure’, ‘comparators’ and ‘outcome’. A description of each
follows.

Study Question—Is there an association between occupational or residential
exposure to agricultural land-uses and being infected with a pathogen for adults
aged 18 and above in SE Asia?

Study Design—Empirical observational studies (longitudinal cohorts, case
control or cross-sectional) studies conducted in the Association of Southeast Asian
Nations (ASEAN) region and reported in English were considered eligible. We
anticipated that the extent and effects of language bias may have diminished
recently because of the shift towards publication of studies in English123; however,

we reserved the option to have non-English articles translated to bolster sample
sizes if a reasonable number of non-English studies were found.

Populations—This study drew participants from the general adult population
aged 18 and above in SE Asia. Studies that recruited participants of all ages
(including children) were also included. Studies that focused exclusively on the
child population were excluded.

Exposure—The primary exposure of interest was defined as occupational or
residential exposure to agriculture or agricultural land-use. This was defined as
whether study participants would be working or living in or near agricultural land.
Specifically, agricultural exposure was defined as any person who partakes in the
cultivation of land and breeding of animals and plants to provide food, fibre,
medicinal plants and other products either for domestic, residential, occupational
or economic purposes88.

Comparators—Studies were included if they compared outcomes in the exposed
group with those in a group of unexposed people (people who are not
occupationally or residentially exposed to agriculture or agricultural land-use).

Outcome—Studies were included if one of the primary outcomes include
prevalence, seroprevalence or incidence for all infectious diseases that have a
biologically plausible link to agriculture or agricultural land-use.

Studies that investigated non-communicable disease or infectious diseases of
plants, invertebrates or fish were excluded. We also excluded studies that were not
based on SE Asia, did not include some form of land-use as an exposure or study
focus, were theoretical research papers, reviews, commentaries or letters, or were
not published in English (following determining that few non-English studies
meeting all other criteria were available, see above). Studies that presented odds
ratios based on the co-infection of >1 disease were excluded as co-infection could
increase susceptibility to other infectious diseases124. Studies that assessed the
impact of using human faeces (night soil) as fertiliser in agriculture were also
excluded83–85. This is because using human faeces as fertiliser was not considered a
land-use but rather a confounding behavioural activity. Studies that assessed risk
factors of disease in children were also excluded125,126 as children may be exposed
to agricultural work but may also be more susceptible to certain diseases. An
explicit bulleted inclusion and exclusion criteria can be found in the Supplementary
Note 2.

Study quality. A methodological study quality assessment was conducted using
two quality appraisal tools sourced from the OHAT and the NHLBI Quality
Assessment website.

The first tool was the OHAT Risk of Bias Rating Tool for Human and Animal
Studies, which evaluates the assessment of whether the design and conduct of the
study compromised the credibility of the link between exposure and outcome. The
OHAT for human studies contains 11 risk-of-bias questions that cover six different
domains, including selection, confounding, performance, attrition/exclusion,
detection, and selective reporting bias. Six of the 11 questions are applicable for
cross-sectional and case control studies and are answered using one of four
predefined answer choices (1) definitely low risk of bias; (2) probably low risk of
bias; (3) probably high risk of bias; and (4) definitely high risk of bias. Studies were
excluded from this review if they had an average rating of definitely high risk of
bias and/or if there was substantial evidence that the studies showed threats to
internal validity.

The second set of tools were for Observational Cohort and Cross-Sectional
Studies (QAT—OCCSS), and for case control studies (QAT—CCS). Both tools had
14 and 9 items, respectively, that classified study quality using specific
epidemiological parameters, such as transparency of research question, sources of
potential bias (e.g., selection or measurement), study power, confounding and
other items that inferred internal validity of each study127,128. A greater number of
Yes responses indicated a higher study quality for both study quality tools. Studies
were classed as good if they presented information on all key criteria within the
tools such as: research question, study population, sample size justification,
exposure measurement and outcome measurement. Studies were classed as fair if
they presented some information on the key criteria. Poor studies were classed as
studies that could not satisfy the majority of key criteria.

Data synthesis and statistical analysis. Data were summarised as the number of
individuals with and without infection stratified by whether they were exposed to
agricultural land-use or not. Associations were quantified using the odds ratio (OR)
with a 95% confidence interval. This was extracted where possible from the studies
or self-calculated using relevant data where possible. Where ORs could not be
extracted or calculated due to poor or non-reported data, studies were excluded
from the meta-analysis112.

A regional meta-analysis was conducted with a random effects model110,129 to
calculate a pooled estimate that quantifies the overall impact of how any
occupational or residential exposure to agricultural land-use impacts the odds of
infectious disease prevalence. For this, we selected mutually exclusive studies and
odds estimates to be incorporated into the regional meta-analysis. This was to
avoid any double counting of estimates, which could otherwise bias pooled
estimates. Only one estimate was used per study and other estimates from the same
study population were excluded. This was achieved by systematically selecting risk/
odds estimates based on agriculture as a general occupational exposure. However,
in some cases, studies provided multiple agricultural exposures or multiple disease
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outcomes in the same study (e.g., oil palm, rice, rubber as an exposure type or
hookworm, T. trichuria and A. lumbrocoides infection as the outcome). In these
types of studies, we selected the exposure and outcome that had the largest number
of cases to maximise study power. In some instances, there were multiple
publications by the same author analysing the same study population130–132. In
these cases, only the most recent publication was selected for incorporation into the
overall analysis.

Random effects meta-analyses assume that a distribution of effects exists across
all studies included in the analyses, resulting in heterogeneity among study results.
The use of a random effects model was considered appropriate here because we
assume that the associations between occupational or residential exposure to
agricultural land-use or land-use change and infectious disease risks are likely to be
inconsistent and idiosyncratic, which might otherwise bias the results. Therefore,
we considered a random effects meta-analysis to be a more conservative approach
than fixed effects analysis110,129.

All analyses were conducted in R version 3.2.5133 with the metafor package134.

Heterogeneity and subgroup analysis. We first tested heterogeneity of effect sizes
among studies included in our overall analysis using the I2 statistic and the
Cochranes Q-test. A value of >75% for the I2 statistic is generally considered to
suggest substantial heterogeneity111,113.

We performed a subgroup analysis to determine how robust the regional meta-
analysis result would be to certain study characteristics using the estimates from
the regional meta-analysis. Here we created a priori subgroups on study type,
sampling strategy, study setting, outcome measurement, study quality, study
country and the characteristics of the study population.

Subgroup analyses were conducted on common exposures stratified by
aetiological agent (parasitic, viral, bacterial) and transmission mode (vector-borne,
zoonotic) or specific disease or disease complex subgroups that had more than two
mutually exclusive estimates available. In order to preserve sample sizes and remain
epidemiologically realistic, aetiological agent and transmission mode subgroups
were not constrained to be mutually exclusive (e.g., a disease can be both vector-
borne and zoonotic, such as zoonotic malaria).

Common exposures that had more than two estimates included non-specific
agriculture (defined as a category where a person indicates they work in agriculture
regardless of the type of agriculture), livestock farming, oil palm plantation work,
rice paddy farming and rubber plantation work. Livestock farming was further
stratified into common livestock groups, including porcine, bovine and poultry
related exposure. Common diseases that had more than two risk estimates included
Ascaris lumbrocoides, Entamoeba histolytica, Giardia intestinalis, hookworm,
leptospirosis, malaria, Opisthorchis viverrini, scrub typhus (Orientia
tsutsugamushi), Rickettsia typhi, Schistosoma japonicum, spotted fever group and
Trichuris trichiura.

Confounding. We were unable to adjust our pooled regional meta-analysis esti-
mate for known confounders and effect modifiers due to lack of individual par-
ticipant level data. However, we conducted a meta-analysis of adjusted odds ratios
extracted from each study to assess the potential impact of within study
confounding.

In addition, considering that the association between land-use and infectious
disease may be impacted by many variables that are unmeasured or unreported in
published articles (e.g., temperature, rainfall, climate, soil type, topography, socio-
economic status), we conducted a sensitivity analysis using an E-value to test for
between-study unmeasured confounding. The E-value represents the strength of
association an unmeasured confounder would need to have with both the
treatment and outcome to fully explain away a specific risk factor-outcome
association135. The E-value is calculated using the following equation: E-value=
OR+ sqrt {OR × (OR− 1)}135.

When calculating the E-value, unmeasured confounders are not listed and
tested explicitly. Additionally, the E-value, does not assess measurement or
selection bias. The E-value results also do not guarantee that if a confounder with
parameters of a particular strength exists, then it necessarily explains away the
effect. Rather, it is, only possible to construct scenarios in which it could. Readers
and other researchers may then assess whether any confounding associations of
that magnitude are biologically plausible135.

Publication bias. We assessed publication bias in three ways. First, we plotted
individual study effect sizes against the standard error of each study as a measure of
the study size in funnel plots to visually assess asymmetry136. Second, we tested this
asymmetry using Egger’s linear regression test, in which significant asymmetry
would suggest bias or heterogeneity137. Finally, we used a trim and fill method to
further assess if there was a likelihood of missing studies that might exist and
whether this would impact the pooled estimate. This method imputes hypothetical
negative unpublished studies to mirror the positive studies, and recalculates a
pooled estimate to assess the impact these hypothetical studies have on the pooled
effect size138,139.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all published data collated during the systematic review
supporting the findings of this study are available within the paper and its Supplementary
Information files. The final data set is presented in Supplementary Data 1 and
Supplementary Note 3. This data set presents information extracted by the reviewers and
highlights the estimates used for each analysis. A description of the data set is presented
in Description of Additional Supplementary Files.
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