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Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins
leading to progressive thickening of the submesothelial compact zone of the peritoneal
membrane. This process may be caused by a number of insults including pathological
conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery,
hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic
inflammation and injury to the peritoneal membrane, which undergoes progressive
fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in
these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and
other cellular sources that are central in the induction of fibrosis and in the subsequent
functional deterioration of the peritoneal membrane. Myofibroblast generation and activity
is actually integrated in a complex network of extracellular signals generated by the various
cellular types, including leukocytes, stably residing or recirculating along the peritoneal
membrane. Here, the main extracellular factors and the cellular players are described with
emphasis on the cross-talk between immune system and cells of the peritoneal stroma.
The understanding of cellular and molecular mechanisms underlying fibrosis of the
peritoneal membrane has both a basic and a translational relevance, since it may be
useful for setup of therapies aimed at counteracting the deterioration as well as restoring
the homeostasis of the peritoneal membrane.

Keywords: peritoneal fibrosis, mesothelial cells, peritonitis, innate immunity, T cell subpopulations, pro-
inflammatory cytokines
INTRODUCTION

Peritoneum is a serosal membrane forming the lining of the abdominal cavity. Peritoneum is a first
line of defense against microorganisms and tumor cells. Moreover, peritoneum constitutes a
slippery non-adhesive surface allowing frictionless movements of the viscera in the abdominal
cavity. Peritoneum is composed of a continuous monolayer of cells of mesodermal origin, the
mesothelial cells (MCs). MCs cover a submesothelial region made of a thin layer of connective tissue
org March 2021 | Volume 12 | Article 6072041
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composed mainly of bundles of collagen fibers with few
fibroblasts, macrophages (MØs), mast cells, and hematic and
lymphatic vessels (1, 2).

Peritoneal fibrosis is the end point of a progressive alteration
of the peritoneal membrane due to a wide array of inflammatory
and infectious events, many of which are directly related to
clinical practices (3). A main cause of peritoneal fibrosis is, in
fact, peritoneal dialysis (PD). PD is a form of renal replacement
alternative to the hemodialysis, where peritoneal membrane is
used as a dialysis membrane in therapeutic procedures for the
treatment of end-stage renal disease. Currently, peritoneal
dialysis (PD) accounts for around 10% of all forms of renal
replacement therapy worldwide (4). During PD practice, signs of
fibrosis are found in 50 to 80% of patients within one or two
years of PD (3, 5).

Peritoneal fibrosis represents an important cause of PD
discontinuation, together with peritonitis and death due to
cardiovascular complications. PD is also a risk factor for the
onset of encapsulating peritoneal sclerosis (EPS), the most
serious complication of PD, with potentially fatal manifestation
(6). EPS is a syndrome characterized by loss of ultrafiltration
function, anorexia, weight loss, diarrhea, intestinal obstruction,
inflammation, peritoneal thickening, fibrin deposition, sclerosis,
calcification and encapsulation (7). However, peritoneum during
PD practice often presents only limited complications and many
patients develop a simple peritoneal sclerosis (SPS), characterized
by thickening of the peritoneum, calcification, presence of
inflammatory elements, angiogenesis and dilatation of blood and
lymphatic vessels in the absence of systemic disease, and whose
alterations are at least in part reversible after discontinuation of PD.

Besides fibrosis during PD practice, peritoneum is directly
implicated in the genesis of post-surgical intra-abdominal
adhesions (peritoneal adhesions, PAs), which are fibrous bands
tethering organs to one another or to the parietal peritoneal wall,
leading to a significant cause of post-surgical morbidity and posing
a major public health challenge (8). Their primary sequelae include
bowel obstruction, female infertility, ectopic gestation, chronic
abdominal and pelvic pain, poor quality of life, and death. It is
estimated that ~93% of patients undergoing abdominal surgery
develop adhesions and about 20% require re-hospitalization for
adhesion-related complications (9, 10).

Finally, the insurgence of peritoneal fibrosis has a clinical
relevance also for peritoneal metastases. In this context,
metastatic tumors (generally ovary or colon cancers) instruct a
fibrotic response in the peritoneal membrane, generating areas
where tumor spreading and dissemination are facilitated (11–
13). Although fibrosis related to peritoneal tumors is the object of
increasing interest, due to its intrinsic specificities, this review
article will not deal with this topic.

The induction of peritoneal fibrosis is a complex pathological
event where peritoneal cells sense the pro-fibrotic stimuli and
secrete extracellular mediators leading to the recruitment of
circulating leukocytes playing a role in induction and
amplification of the inflammatory response. The generation of
myofibroblasts, cells of heterogenous origin with the ability of
producing and remodeling the extracellular matrix proteins
Frontiers in Immunology | www.frontiersin.org 2
(ECM) is central for fibrosis onset. At the same time, the
nature of the stimuli imparts signals promoting the resolution
of the inflammatory state, with phagocytosis of dead cells and
removal of debris. In this context, an implication of adaptive
immunity has been proven relevant in its cross talk with
peritoneal stroma or innate immunity components.

Therefore, the onset of peritoneal fibrosis is the final result of
a tight network of signals between stromal resident and immune
recirculating leukocytes, whose understanding may lead to a
better medical containment of this deleterious pathologic event.

There is now plenty of information on the role of the non-
immune components of peritoneal membrane (MCs, fibroblasts,
endothelium) and activities of innate and adaptive immunity
have been described by relevant studies (14); the main
underlying intracellular mechanisms have been reviewed
elsewhere (3, 15). The aim of this review article is to create a
comprehensive synthetic description of how different signals
from both stromal cells and immune system components are
integrated and how cellular components are mutually influenced
during the induction of peritoneal fibrosis.
PERITONEAL FIBROSIS: MULTIPLE
INGREDIENTS FOR ONE CAKE

Peritoneal fibrosis onset is the final result of complex interactions
between external stimuli, intrinsic properties of the peritoneal
membrane, and subsequent activities of the local innate-adaptive
immune system. A flowchart describing the stimuli discussed in
this chapter and the main peritoneal stromal responses is shown
in Figure 1.

Infectious Peritonitis
Peritonitis is a main cause of fibrosis induction in peritoneum.
Peritonitis onset is one of the most serious complication of PD: it
induces angiogenesis and fibrosis and is a major cause of
morbidity and mortality in PD patients (16). Repeated
episodes of peritonitis are often a cause of discontinuation of
PD and may precede induction of EPS (17).

Many microorganisms may infect peritoneum; the peritoneal
membrane is contiguous to the intestine which harbor bacteria
than can leak towards the peritoneal cavity. Moreover, medical
actions such as catheter positioning and maintenance, practice of
peritoneal dialysis and abdominal surgery may favor the entry of
microorganisms in the peritoneum space.

The majority of peritonitis episodes in PD can be ascribed to
Gram-positive bacteria of the skin and, to a minor degree, to
Gram-negative bacteria presumably originating from the enteric
flora (18).

Compared to bacteria, there are limited reports on the role of
viruses. The suspect of virus infection occurs when cultures from
peritonitis appear negative, an event occurring around 20% of
the cases: however, virus infection is not diagnosed by standard
tests (19).

Similarly to pericardium, coxackievirus B1 infection has been
reported in peritoneum and it is characterized by the presence of
March 2021 | Volume 12 | Article 607204
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monocytosis in PD effluent (20). Also, less studied are peritonitides
caused by fungal infections. They constitute a serious complication
of PD and account for between 1 and 15% of all PD-associated
peritonitis episodes. Themajority of these FP episodes are caused by
Candida species such as Candida albicans (21, 22).

Mechanism of Inflammatory Response: Exogenous
TLR Ligands
It is believed that the damage to the peritoneal membrane by
infectious agents is mediated mainly by innate pattern recognition
receptors (PRRs) on peritoneum, which include Toll-like
receptors (TLRs), RIG-I-like receptors, NOD-like receptors, and
C-type lectin receptors. The intracellular signaling cascades
triggered by these PRRs lead to transcriptional expression of
inflammatory mediators that coordinate the elimination of
pathogens and infected cells (23).

Pathogens are recognized by PRRs through the interaction
with molecules conserved among microbial species, which are
called pathogen-associated molecular patterns (PAMPs). Besides
PAMPs, PRRs also recognize endogenous molecules released
from damaged cells, termed damage-associated molecular
patterns (DAMPs) (24).

Among PRRs, TLRs play a critical role in innate immune
responses by specifically recognizing molecular patterns from a
wide range of microorganisms, including bacteria, fungi and
viruses. TLRs are responsible for sensing invading pathogens
outside of the cell and in intracellular endosomes and lysosomes
(23). 10 different TLRs in humans and 12 in mice have been so
far identified. Each of them recognizes different molecular
patterns of microorganisms and self-components.
Frontiers in Immunology | www.frontiersin.org 3
Human MCs respond to bacterial ligands through a specific
subset of TLRs (i.e. TLR1, TLR2, TLR3, TLR5 and TLR6).

Gram positive bacteria are recognized by TLR2 and TLR5
(25), both singularly and cross-talking to better counteract
microbial infections (26).

TLR2 recognizes an array of microbial molecules in part by
hetero-dimerization with other TLRs (e.g. TLR1 and TLR6) or
unrelated receptors (e.g. Dectin-1, CD36 and CD14). TLR
activation triggers nuclear factor-kappa B (NF-kB), interferon
regulatory factor (IRF) and mitogen-activated protein kinase
(MAPK) signaling leading to altered gene expression, including
pro-inflammatory cytokine and IFN-inducible genes (27).

TLR5 recognizes flagellin, a flagellum component in many
motile bacteria (28). TLR5 expression onMCs may therefore be a
critical signal of flagellated bacteria’s invasion into the peritoneal
cavity. Translocation of intestinal bacteria is a potential cause of
infection in PD patients, along with access through the
intraperitoneal catheter, and many flagellated bacteria are
Gram-negative species, with a poor outcome in PD associated
peritonitis (25).

Gram-negative bacteria induce responses through TLR4, initially
identified as responsible for the recognition of lipopolysaccharide
(LPS). Differently from murine MCs, human MCs do not directly
respond to TLR4. However, TLR4 is present in MØ stably residing
in the peritoneal membrane and their response may contribute to
inflammation leading to fibrosis.

Recent studies have shown that the modulation of TLR2 and
TLR4 activity through specific antibodies or soluble Toll-like
receptor 2 (sTLR2), a TLR2 inhibitor, is able to cause a
substantial reduction of inflammatory parameters to inhibit
FIGURE 1 | Flowchart indicating the main extracellular stimuli promoting peritoneal fibrosis and subsequent mesothelial cell response.
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fibrosis development in an experimental model of S. epidermidis
infection (29).

A set of TLRs, comprising TLR3, TLR7, TLR8, and TLR9, act in
the intracellular space in order to recognize nucleic acids derived
from viruses and bacteria, as well as endogenous nucleic acids in
pathogenic contexts (23). These TLRs respond by activating the
production of type I IFNs and pro-inflammatory cytokines. Viral
stimuli are recognized by the intracellular TLR3, which is functionally
expressed in MCs (30). While for several exogenous TLRs the
signaling pathway depends on MyD88, known as the inductor of
the early phase response in MØs, TLR3, specifically, acts thought
TRIF that plays an essential role in inducing a NF-kB mediated
fibrosis and a late phase immune response activation (31, 32).

In human MCs, TLR3 is also involved in the regulation of the
final common pathway of inflammation and fibrosis acting on
matrix-remodeling proteins. In particular, TLR3 is correlated in
time- and dose-dependent upregulation of MMP9 and TIMP1 (33).

Mechanisms of Inflammatory Response:
Endogenous TLR Ligands
In addition to PAMPs, TLR mediated response can be stimulated
by endogenous TLR molecules, inducing sterile inflammatory
processes (34, 35). Many endogenous TLRs derive from ECM
components, such as fibronectin or fibrinogen or ECM
interacting proteins such as tenascin-C (36, 37).

Proteins with various functions may serve as endogenous
TLRs such as cardiac myosin, S100 proteins, HGBM1 (38) (39–
41). While the last protein may interact with several TLRs, the
majority of these ligands are direct agonists of TLR2 and TLR4
(42, 43). Interestingly, exposure to PD fluids promotes the
expression of Hsp60, Hsp70 and hyaluronic acid (HA), all
TLR2 and TLR4 ligands, by leukocytes and MCs, thus driving
an inflammatory response in the absence of infectious stimuli
(see below) (44). Accordingly, treatment with soluble TLR2
(sTLR2) reduces pro-inflammatory and fibrotic response in
mice exposed to PD fluids. These discoveries open to future
clinical trials testing the clinical efficacy of these compound in
patients undergoing long term PD (44).

Bioincompatibility of PD Solutions
The partial bioincompatibility of fluids used for the practice of
PD may act as pro-fibrotic stimuli causing progressive
morphological changes and leading to functional alterations
that may cause ultrafiltration failure, discontinuation of PD
and increased risk of developing EPS.

Traditional PD solutions, in fact, are hyperosmotic,
hyperglycemic and acid. These solutions contain sodium,
chloride, calcium, magnesium, lactate and a high concentration
of glucose. Low pH in these solutions counteracts glucose oxidation
that may release in the solution toxic glucose degradation
products (GDPs) during the sterilization process. Moreover,
glucose and reactive carbonyl compounds can form Advanced
Glycation End-products (AGEs), binding to free amino groups on
proteins or lipids (45, 46). The high osmolarity and the high
glucose concentration favor ultrafiltration and toxin elimination by
keeping the electrolyte balance (47).
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All these factors may promote a low-grade inflammatory
status in the peritoneal membrane, characterized by increase of
inflammatory and profibrotic cytokine production such as IL-6,
IL-1b, TGF-b1, VEGF, acceleration in TIMP release, causing a
loss of balance in ECM remodeling and an accumulation of
collagen and fibronectin. The same factors have a cytotoxic effect
on MCs inducing mesothelial denudation of the peritoneal
membrane and a decrease in the intercellular junctional proteins
levels, causing hyperpermeability (48). In vitro evidence has
demonstrated that the so called ‘bioincompatible’ PD fluid may
induce apoptosis of MCs (49).

More recently, in vitro and in vivo studies have demonstrated
that high glucose peritoneal dialysis solutions (HGPDS) may
cause apoptosis and autophagy of MCs. However, further efforts
will be necessary for the full understanding of the role of these
mechanisms in the genesis of fibrosis (50).

This variety of stimuli also promotes a process known as
mesothelial to mesenchymal transition (MMT) (see below)
contributing to matrix deposition, increased stiffness and
fibrosis (51). These cellular and molecular alterations parallel
the induction of numerous morphological changes in the
peritoneal membrane (PM) including increased thickness of
the submesothelial space, vascular changes with subendothelial
hyalinization, luminal narrowing or obliteration, increased
density of blood vessels (52).

Clinically, these changes reflect an increase in small solute
transport due to neoangiogenesis that extends the peritoneal
surface area (a blood vessel density related parameter) and
ultrafiltration reduction due to fibrosis and thickness of the
submesothelial zone (53, 54). In certain cases, the simple peritoneal
sclerosis common in peritoneum of PD patients can lead to EPS (7).

In order to mitigate the side effects of traditional PD
solutions, a second generation of so called ‘biocompatible’ PD
fluids has been designed that can be divided in two main groups:
PD solutions with neutral pH, low GDPs and PD solutions where
glucose is replaced with glucose polymers (icodextrin) or amino
acids (55–57). The functionality of PD solutions is debated. It has
been reported that these solutions better preserve the residual
renal function and diuresis with a decrease in peritonitis
frequency (3, 58). In vitro and in vivo effects of traditional
versus biocompatible PD fluids are summarized in Table 1.

However, the effectiveness and the long-term benefits are
currently being analyzed and there is not a definitive consensus
on the benefits of this treatment, especially in the long term
(66–69).

Icodextrin is a glucose polymer with a high molecular weight.
PD solutions based on the use of icodextrin seem to increase
peritoneal ultrafiltration, to reduce glucose absorption and to
improve cardiac parameter (60). The use of a glucose polymer as
an osmotic agent is particularly interesting as a glucose substitute
in diabetic subjects. The reduced carbohydrate load also seems to
provide a long-term metabolic advantage in terms of lipid
control (61). However, icodextrin can interfere with blood
glucose measurement by providing falsely elevated results. It
can also cause hypersensitivity reactions, and it is more expensive
than other PD solutions.
March 2021 | Volume 12 | Article 607204
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Solutions containing amino acids have been produced to
improve the nutritional status of subjects on PD. PD causes a
significant loss of protein in the dialysate, estimated to be 2–4 g
of amino acids per day. Amino acid 1.1% solutions were found to
be effective osmotic agents (62). In some studies, they have
improved the nutritional status of malnourished PD patients
(63). Common side effects include worsening of acidosis and an
increase in blood urea linked to the increase in nitrogenous
waste metabolism.

Glucose has been partially replaced by two osmometabolic
agents, xylitol and L-carnitine. Treatment with this new
formulation resulted a higher cell viability, better preservation of
the integrity of the mesothelial layer, and reduced release of pro-
inflammatory cytokines, as reported in a recent in vitro study (70).

Another field of investigation is the search of immunomodulators
that may be added to mitigate the cellular effect of prolonged PD
treatment. A recent discovery is the immunomodulatory effect of
alanyl-glutamine (AlaGln) supplementation in PD solutions. This
treatment seems to ameliorate peritoneal inflammation status and to
improve healthy peritoneum biomarkers as well as tight junction
organization and functionality (64, 65).

PM Damage by Biomechanical Cues:
Stiffness and Stretching
Besides extracellular biochemical mediators, a vast body of
evidence has demonstrated a role for biomechanical forces in
mediating cell physiopathological responses.

Changes in biomechanical features of the extracellular matrix
(ECM), such as ECM stiffness, can modify cell state and are
Frontiers in Immunology | www.frontiersin.org 5
major promoters of a fibrotic response (71). Beyond ECM
stiffness, the sensing of mechanical stretching is characteristic
of organs and tissues exposed to continuous variations of
dynamic cues, such as respiratory and abdominal movements
or the cyclic blood circulation pulse wave. In cells with epithelial
features, the effects of cellular stretching have been analyzed
especially on tissues composed of monocellular layers, such as
lung epithelial cells and endothelium (72, 73). Biomechanical
forces affect signal transduction (mechanotransduction) with a
consequent impact on cellular behavior (74).

During exposure to PD fluid, the PM experiences continuous
biomechanical cues. PD practice requires the injection of large
PD solution volume (2 l). This causes mechanical stress by
swelling the abdominal cavity, involving mechanical stretching
of MCs. Other mechanical perturbations may arise from the
trauma of the peritoneal membrane after abdominal
laparotomies (75).

MCs upon exposure to cellular stretch in vitro increase the
expression of VEGF and of TGF-b1 (76). It has been recently
demonstrated that exposure of MCs to linear cyclic stretch in vitro
leads to several cellular modifications corresponding to bona fide
MMT induction. The experimental data are summarized in a
model where a cross-talk between biomechanical and biochemical
signals result in the induction of MMT (77).

Biomechanical forces are also involved in the formation of
PAs, with a key contribution by MCs. It is believed that in in vivo
conditions besides the mechanical tension, also hypoxia and
activation of coagulation contribute to the formation of the
fibrotic response leading to PAs formation (78).
TABLE 1 | Table comparing the main characteristics of traditional versus biocompatible PD with emphasis on in vitro/in vivo mechanisms of toxicity.

PD solution Traditional PD fluids Biocompatible PD fluids

PD solution
type

Traditional PD solutions Neutral pH, Low GDPs Icodextrin based Amino acid based

Osmotic
agent

Glucose Glucose Icodextrin Amino acids

pH 5.5 6.8-7.3 5.5 ~6.7

Toxic Agents GDPs, AGEs, ROS, acidic pH, lactate
buffer

Significant reduction of
toxic agents (GDPs,
AGEs, ROS)

Acid pH, lactate buffer, ROS High concentration of amino acids

Mechanisms
of cytotoxicity

TGFb and VEGF,
acceleration of TIMP release,
inflammatory cytokines (IL-6, IL-1b)
production

↓ osmolality Iron accumulation,
↑ maltose and maltotriose serum level

Protein accumulation

in vitro effects MMT induction, ECM deposition,
increased stiffness, fibrosis, MC
apoptosis

Improvement in cellular
functions

pH-dependent apoptosis Increase in nitrogenous waste
metabolism

in vivo effects Peritonitis, vasculopathy,
disruption of renal functions,
anuria, infusion pain,
diabetic glomerulosclerosis

Probable reduction in
ultrafiltration;
↑ urine volume

Hypoglycemia, skin rush Acidosis, uremia

Benefits Ultrafiltration efficiency, Lower costs Preservation of residual
renal functions,
reduction of peritonitis risk

Increased daily ultrafiltration,
reduced glucose adsorption,
increased glycemic control of diabetic
PD patients, improvement of cardiac
parameters

Improved surrogate markers of
nutritional status of malnourished
PD patients

References 45, 46, 48, 53, 54, 59 3, 55–58 3, 55, 56, 58, 60, 61 3, 55, 56, 58, 62–65
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CELLULAR PLAYERS OF PERITONEAL
FIBROSIS

Stromal Components of the PM: MCs,
Endothelial Cells and Stromal Fibroblasts
as a Source of Myofibroblasts
Peritoneal MCs constitute a monolayer of cells with an epithelial-
like cobblestone shape covering in a continuum the peritoneal
cavity. MCs originate from mesoderm during the gastrulation,
and their differentiation is controlled by the transcription factor
WT1, which is commonly used for lineage tracing experiments
(79, 80). Despite their mesodermal origin, MCs show a
cobblestone morphology and actually coexpress in basal
conditions epithelial and mesenchymal markers (51, 59, 81).

MCs express tight and adherent junction related molecules
such as ZO-1, occludin, claudins and E-cadherin, which is
expressed both in plasma membrane and in cytoplasm (82).
Moreover, these cells express epithelial intermediate filament
proteins such as cytokeratins (8–18) that play an important role
in maintaining cellular structural integrity. At the same time,
MCs constitutively express also mesenchymal intermediate
filaments such as vimentin and desmin (51).

The coexistence of both epithelial and mesenchymal markers
may be linked to the characteristic plasticity and to the ability of
these cells to acquire mesenchymal-like features in response to a
variety of pro-inflammatory/profibrotic stimuli. Almost all the
pro-inflammatory factors described in the previous sections may
promote, although with different intensity, induction of MMT in
MCs. This dedifferentiation process culminates with the
acquisition of morphological and functional features making
these cells indistinguishable from myofibroblasts of other
origin (see below) (Table 2).

The secretion of TGF-b by MCs or by other cells such as MØs
is central for a full induction of the MMT program. Once
transdifferentiated, MCs may invade the submesothelial stroma
where they proliferate and produce cytokines and ECM proteins
directly promoting peritoneal fibrosis.

The profibrotic activity of TGF-b1 is counteracted by
members of the BMP family, such as IGFBP4, BMP4 and
BMP7, secreted by the same MCs (83, 84).

Interestingly, transdifferentiated MCs tend to acquire a new
stability. This behaviour is different from that of cells with a
stronger epithelial identity that rapidly recover epithelial features
once the transdifferentiating stimulus has been removed (107). The
maintenance of mesenchymal features in MCs has been linked to
epigenetic changes, and epigenetic modulation may both influence
mesothelial differentiation and promote the recovery of a
“epithelial-like” phenotype from in vivo transdifferentiated cells
(99, 108).

High throughput experiments have demonstrated that
induction of MMT from different stimuli induces the
acquisition of common dedifferentiation features characterized
by the expression of signatures of profibrotic and pro-
inflammatory cytokines such as TGFb, VEGF, and IL-6 (29, 77,
83, 109). In fact, activated MCs are major producers of TGF-b1,
VEGF and IL-6, whose concentrations are elevated especially
Frontiers in Immunology | www.frontiersin.org 6
during peritonitis and have been associated with ultrafiltration
decline and protein loss (18, 110). The secretion of these cytokines
impacts fibrosis, angiogenesis and the inflammatory response.

The ability of MCs to generate myofibroblasts has been a
highly debated topic in the previous years. Lineage tracing
experiments performed to demonstrate the mesothelial origin
of peritoneal myofibroblasts have given contrasting results, with
the more recent studies suggesting the existence of a population
of MCs origin invading the submesothelial space (83, 111, 112).

Moreover, the coexpression of bona fideMMTmarkers such as
aSMA and fsp1 absent in epithelial-like MCs with mesothelial/
epithelial markers has been demonstrated in vivo both in
peritoneum after PD and in peritoneal adhesion (75, 77, 78, 82).

In the peritoneum of mice exposed to PD fluid, the relative
contribution of the myofibroblasts-generating cellular
populations, including resident dermal fibroblasts, endothelial
cells, bone marrow derived cells and MCs, has been quantified
(113). As in other organs, endothelial cells contribute to
peritoneal fibrosis through a process of endothelial to
mesenchymal transition (EndMT) (82, 114). Also, bone
marrow derived progenitors, such as mesenchymal stem cells
and fibrocytes may generate peritoneal myofibroblasts (115).

MCs may in different ways influence the fibrotic process.
Besides being a main source of TGF-b1, activated MCs produce
abundant amounts of fibronectin and collagens, may rearrange
the ECM through the expression of contractile proteins (aSMA)
and produce various metalloproteinases (MMPs), such as MMP2,
MMP9 andMMP14 as well as MMP inhibitors such as TIMP1 and
PAI1 (77, 99, 100). Besides directly impacting the fibrotic process,
the production of inflammatory cytokines and chemokines
stimulates other stromal cells and components of innate and
adaptive immunity (see below). Thus, MCs are candidates for
cellular interventions aimed at restoring the continuity of the
monolayer and to warrant the peritoneal function.
LEUKOCYTE SUBPOPULATIONS
IMPLICATED IN THE FIBROTIC
RESPONSE

Peritoneum as a Lymphatic Organ: The
Role of FALCs
Due to its unique localization in the abdominal cavity and its
huge extension, peritoneum is a favorite site for encountering
with antigens and for the generation of the subsequent immune
response. Recirculating leukocytes patrol the peritoneal cavity in
uninflamed peritoneum in addition to stably resident leukocyte
populations constituted mainly by macrophages and mast cells.

Besides conventional lymph nodes, peritoneum hosts unique
anatomic structures called milky spots or fat-associated
lymphoid clusters (FALCs), which are clusters of leukocytes
localized especially in omentum and endowed with the ability to
collect fluids, particulates, and cells from the peritoneal cavity.
Their frequency and size increase in the omentum of patients
undergoing PD (116, 117). FALCs are mainly composed of MØs,
March 2021 | Volume 12 | Article 607204
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MCs and B1 cells. B1 cells consist in a subset of B cells that can be
distinguished from conventional B (B2) cells by expression of
distinct cell-surface markers and antigen receptors that can bind
common bacterial epitopes. B1 cells have the potential to produce
natural antibodies that provide a first protection to bacterial
infections (118). Intestinal leakage or the intraperitoneal delivery
of microorganisms lead to rapid activation of B1 cells and promote
T cell-independent antibody responses (119).

The chemokine CXCL13, of mesothelial origin, controls the
localization of B1 cells into FALCs (120). Another chemokine,
CCL19, is produced by other structural components of FALCs
called FALCs fibroblast reticular cells (FALCs FRCs) and it is
relevant for monocyte recruitment during inflammation. The
cross-talk between CCL19 producing FALCs FRCs and
inflammatory monocytes promote T cell dependent-B cell
Frontiers in Immunology | www.frontiersin.org 7
immune responses (121) (Figure 2A). Thus, FALCs play a
main role both in the regulation of PMN and mononuclear cell
recruitment in the first phase of inflammation, as well as in the
subsequent induction of the adaptive immunity.
Leukocyte Recruitment During Peritonitis:
From Neutrophils to Mononuclear Cells
Infectious peritonitis offers a favorite experimental model to
study the interactions between immune system and the
peritoneal stroma (122). Infection with Gram positive bacteria
such as Staphylococcal spp. or with cell-free components such as
LPS or zymosan, mimicking Gram negative or fungal infection,
respectively, promotes a first wave of polymorphonuclear
neutrophils recruited by chemoattractants of bacterial origin
TABLE 2 | Epithelial-like and mesenchymal markers of MCs. The main extracellular regulators of MC plasticity, molecular markers and signaling pathways implicated are
shown.

Epithelial-like MCs

Features and Properties Extracellular Mediators Markers Trascription Factors and Signaling Pathways

BMP7 E-Cadherin WT1

BMP4 Claudins SMAD1-5-8

IGFBP4 Occludins p38 MAPK

Cobblestone-like shape HGF ZO-1

Apical-basal polarity Desmoplakin

Monolayer organization Cytokeratins

Tight junctions Calretinin

Adherens junctions Vimentin

Glycocalyx production VEGFR2

Immunomodulatory activity CA125

Caveolin-1

Hyaluronan

References (83, 84) (51, 77, 82, 85–90) (79, 80, 82, 91)

Mesenchymal-like MCs (MMT)

Features and Properties Extracellular Mediators Markers Trascription Factors and Signaling Pathways

TGFb1 N-Cadherin Snail, Twist

IL-1b Desmin SMAD 2-3

FGF-2 Vimentin GSK-3b

Spindle-like shape EGF Fibronectin Wnt/b-Catenin

Front-back polarity AngII Collagen I/III TAK1/NF-kB

Junctions dissociation AGEs a-SMA ILK

Cadherin switch PDGF FSP-1 PI3-K

Cytoskeleton reorganization HIF-1a MMPs (2-9) ERK 1/2 MAPK

ECM deposition PAI-1 JNK 1/2 MAPK

Basement membrane degradation Podoplanin

Migratory and invasive activity CTGF

Proinflammatory activity

References (92–98) (75, 77, 78, 82, 99–101) (59, 102–106)
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and by chemokines such as CXCL1 and CXCL8 produced mainly
by MCs and omental fibroblasts. Neutrophils can use high
endothelial venules present in FALCs to enter the peritoneal
cavity under the guidance of CXCL1 (120).

Neutrophil influx causes an initial inflammatory response due
to the accumulation of neutrophil-secreted proteases and
reactive oxygen species. Once they entered the peritoneum,
neutrophils undergo NETosis, which consists in the release of
necrotic cell DNA forming a net of aggregated neutrophils able
to trap and sequester microorganisms in FALCs, thus limiting
their spreading (123). Interestingly, HMGB1 produced during
the inflammatory response promotes NETosis and trap
formation through interaction with TLR4 (124) (Figure 2B).

The production of CXCL1 and CXCL8 by the peritoneal
stroma is enhanced by inflammatory cytokines such as IL-1b and
to a lesser extent, TNFa (125). MCs stimulated by LPS or IL-1b
Frontiers in Immunology | www.frontiersin.org 8
also produce a number of cytokines and chemokines including
IL-6, TNFa, CCL2, CCL3, that favor mononuclear cell
recruitment and activation (126). The first wave of neutrophils
is then replaced by a mononuclear infiltrate.

Neutrophils take part in this process secreting a shed form of
IL-6 receptor, IL-6Ra . Through a mechanism called
transignaling, the local increase of IL-6Ra promotes an IL-6-
mediated neutrophil clearance subsequent to mononuclear cell
recruitment (127, 128). Apoptotic neutrophils are phagocytosed
by MØs and to a lesser extent by the same MCs (129). Necrotic
neutrophils and NETs promote the infiltration of mature MØs
recruited also by locally produced chemokines such as CXCL8
and CCL2 (130).

Neutrophil influx and clearance are also regulated by two
other cytokines, IL-17 and IFN-g. IL-17 is secreted mainly by
various leukocyte subpopulations, including neutrophils, Th17
A

B

FIGURE 2 | (A) PMN recruitment through FALCs during peritonitis. In basal conditions, MCs secrete CXCL13, which attracts B1 cells in FALCs and CSF1, a
specific MØ growth factor. Bacterial and fungal infections stimulate the production of CXCL1 and CXCL8, by MCs. Bacterial products, CXCL1 and CXCL8 promote
the recruitment of a first wave of PMNs entering the peritoneal cavity through FALCs. PMNs cause an initial inflammatory response secreting inflammatory cytokines
(IL-1ß, TNF-a). Afterwards, NETosis helps in sequestering microorganisms in FALCs. (B) NETosis clearance and mononuclear cell recruitment during peritonitis.
Bacterial products, as well as IL-1ß, stimulate the production of IL-6, TNF-a, CCL2, CCL3, and CXCL8 by MCs. IL-6Ra shedding by PMNs promotes a peripheral
IL-6 response (transignaling). Cytokines and chemokines released during the inflammatory process favor mononuclear recruitment and differentiation. Mononuclear
phagocytes differentiate in Macrophages (MØs) and dendritic cells (DCs). Among MØs, M1 subtype is endowed with pro-inflammatory and cytotoxic properties,
whereas M2 MØs have an anti-inflammatory activity. Moreover, M2 MØs play a key role in the clearance of neutrophils debris due to scavenger activity.
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and gd T lymphocytes and its expression correlates with the
duration of the PD treatment and with the extent of peritoneal
inflammation and fibrosis (131, 132). IFN-g production by Th1
lymphocytes and NK cells (see below) contributes with IL-6 in
favoring an initial neutrophil recruitment and subsequent
clearance (133).

IL-17 promotes CXCL1 production byMCs through expression
and activation of the transcription factor Sp1, whereas IFN-g
through STAT1 activation limits Sp1 induced CXCL1
production. Breaking of this homeostatic cross regulation may
lead to excessive or ineffective recruitment of neutrophils during
peritonitis with subsequent damages in the PM (131).
Inflammation, Scavenging and Antigen
Presentation: Monocytes/MØs and
Dendritic Cells
Tissue mononuclear phagocytes, comprised mainly of MØs and
dendritic cells (DCs), are key tissue-resident components of the
peritoneal immune system. Their roles include induction of the
inflammatory response, pathogen clearance, tissue repair, and
antigen presentation.

MØs are the major resident immune population in the PM.
At the same time, monocytes/MØs are the predominant cell
types found in dialysis effluent (134, 135).

Resident MØs form the first line of defense against peritoneal
infection in peritonitis. Once the inflammatory response is
initiated, monocytes follow a first wave of leukocytes
composed mainly by PMN neutrophils.

MØs are generally classified into two functional subtypes.
Classical activeMØs, also calledM1MØs (representative markers:
iNOS and CD80) are defined by their pro-inflammatory and
cytotoxic properties, while M2 MØs (representative markers:
CD163, CD206 and Arg1) are characterized by anti-inflammatory
and scavenging properties (136). However,MØM1 andM2 subtypes
should be considered as the extreme points of a continuum of
different cellular populations acting in in different physio-
pathological contexts (137, 138).

M1 polarization typically involves IFN-g with a TLR agonist,
such as LPS. M1 MØs, through production of IL-1b and TNF-a,
are capable of amplifying the first phase of the inflammatory
process and of recruiting other leukocytes into the peritoneum
via the creation of a gradient of chemotactic cytokines, such as
CXCL8, CCL2 and CCL5. This process is also facilitated by a
cytokine driven up-regulation of adhesion molecule expression
(ICAM-1 and VCAM-1) on the surface of MCs. At the same
time, the generation of M2 MØs, which is sustained by IL-4 and
IL-13, plays a role in the resolution of inflammation through the
production of soluble anti-inflammatory mediators, and the
clearance of debris such as apoptotic or necrotic products, due
to their scavenger activity (137).

In the model of peritonitis induced by zymosan, mimicking
fungal infection, an infiltration of both M1 and M2 MØs occurs.
In this context, MØs are involved in the clearance of debris
resulting from neutrophil apoptosis. Both M1 and M2 MØs
recognize and endocytose dead cellular debris through apoptosis
Frontiers in Immunology | www.frontiersin.org 9
inhibitor of macrophage (AIM, also called CD5L), a member of
the scavenger receptor cysteine-rich superfamily (22) (Figure 3A).

Experimental evidence analysing samples from PD patients
demonstrates that the majority of peritoneal MØs phenotypically
and functionally resemble in vitro polarized M2 MØs (139, 140).

In this context, a dysregulated M2 MØs response may
promote the development of fibrosis and the decrease of
functionality of the PM through the production of a number of
extracellular factors.

The production of TGF-b1 byM2MØsmediates the induction
of MMT in MCs and the proliferation and activation of
submesothelial fibroblasts, a process leading to ECM production,
rearrangement, angiogenesis, and fibrosis. Moreover, MMP9 and
CCL18 secretion is increased in both PD effluents and PM biopsies
of PD patients (139). MMP9 plays a role in the activation of latent
TGF-b1, whereas CCL18 levels have been associated with poor
ultrafiltration capability and with development of EPS (139). M2
MØs may favor a fibrotic response also producing CCL17, which
promotes migration, proliferation and collagen production by
submesothelial fibroblasts (141).

However, besides M2, some evidence points towards an active
role of the M1 subtype in the genesis of peritoneal fibrosis. The
inhibition of the protein kinase C beta pathway promotes
peritoneal damage and fibrosis via M1 MØs polarization in a
murine model of PD (142). Also, in vivo approaches of MØ
chemical deletion followed by reperfusion pointed towards an
active role of the M1 subpopulation in the genesis of fibrosis, as
suggested also by an in vitro study (143, 144).

The presence of MØs in the PM is tightly dependent on a
cross talk with MCs. In basal conditions, MØs require and
interact with MCs present in FALCs and secreting colony
stimulating factor 1 (CSF1), a specific MØ growth factor (145).
In inflammatory conditions and during PD, fractalkine
(CX3CL1), a chemokine secreted by MCs, recruits and
activates MØs expressing CX3CR1 in the peritoneal wall,
promoting the fibrotic process. A positive feedback loop is
induced where direct interaction with CX3CR1-expressing
MØs promotes expression of CX3CL1 and TGF-b1 by MCs. In
turn, TGF-b1 upregulates CX3CR1 expression in MØs (146).

Besides MØs endowed with pro-inflammatory or scavenger
abilities, migrating mononuclear cells may differentiate in DC
subsets, characterized by CD1c positivity and different profiles
with respect to CD14 positive cells. In particular, CD1c positive
cells have upregulated costimulatory molecules, CD80 and
CD86, important for antigen presentation and T-cell
activation, and CCR7, favoring migration to secondary
lymphoid organs such as local lymph nodes where antigen
presentation may occur (134). Interestingly, severe and
recurrent episodes of peritonitis were associated with
significantly higher numbers of peritoneal neutrophils, MØs as
well as higher ratio of MØs to DCs than the successfully treated
ones (134). The functional role of MØs has been analyzed with
pharmacological but not with genetic or immunological
approaches. Chemical depletion of MØs using clodronate
attenuated peritoneal thickening and suppressed TGF-b1,
VEGF expression and MMT induction in a model of
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peritoneal fibrosis induced by chlorhexidine gluconate in rats
(147). Accordingly, depletion of MØs limited fibrosis in a mouse
model of PD fluid exposure (143).

Mastocytes
Mastocytes or mast cells are predominantly localized at sites that
have direct contact with the external environment, such as the
skin, airways, and intestine, where they function as sentinel cells
in host defense and as main inducer of type I hypersensitivity
and of the allergic response (148).

While mast cells have been implicated in fibrogenesis,
angiogenesis, and the immune response against bacteria in various
organs such as kidney and in lung, only a few studies have dealt on
the role of mastocytes in peritoneal fibrosis (149, 150).
Frontiers in Immunology | www.frontiersin.org 10
Mechanistically, mast cells secrete various mediators of
inflammation such as histamine, platelet-activating factor,
prostaglandins, thromboxane, leukotriene, chymase. Moreover,
the secretion of cytokines such as TGF-b1 and IL-17 directly
contributes to peritoneal fibrosis (149, 151, 152)

The number of mast cells was significantly higher in the
fibrotic peritoneum of rats with chronic renal failure (CRF rats).
Tranilast, an anti-allergic drug with an activity of mast cell
stabilizer, was demonstrated to block the progression of
peritoneal fibrosis in CRF rats (153).

An interesting study performed on mast cell-deficient rats
demonstrated that mast cells promoted the increase of the
omental thickness and omental adhesion formation favoring
leukocyte recruitment (154).
A

B

FIGURE 3 | (A) Fibrosis induction: focus on MØs. DCs secrete high levels of CCR7 favoring lymphocyte recruitment. Pro-inflammatory M1 MØs secrete CCL2,
CCL3 and CXCL8 that are chemoattractant for lymphocytes and monocytes. At the same time, M1 MØs produce inflammatory cytokines such as IL-6, IL-1ß and
TNF-a that enhance the expression of adhesion molecules (V-CAM1/I-CAM1) by MCs promoting leukocyte adhesion. M2 MØs produce anti-inflammatory cytokines
(IL-10) and lymphocyte chemoattracting chemokines (CCL17). Predominance of M2 MØ response leads to an increased TGF-ß1 secretion that induces MMT of MCs
with up-regulation of ECM protein production. Moreover, MCs secreting CX3CL1 recruit MØs expressing CX3CR1. Receptor/ligand interaction determines a positive
loop that promote, in turn, CX3CL1 and TGF-ß1 expression. (B) Fibrosis induction: focus on Th17/Treg balance. The production of IL-6 by MØs and MCs during the
inflammatory process promotes IL-17 production by the peritoneal stroma which, in combination with IL-23, promotes the differentiation of Th17 lymphocytes. IL-17
promotes IL-1ß, TGF-ß1, VEGF and IL-6 production causing MMT induction and neoangiogenesis. Th17 abundance affects the activity of regulatory T lymphocytes.
Treg lineage has an anti-inflammatory activity (due to IL-10 production) and protects the peritoneal membrane by mediating tolerance mechanisms. High levels of
IL-6 and TGF-ß1 determine the predominance of Th17 over Treg with consequent peritoneal damage and fibrosis.
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Results in human peritoneal disease are controversial. A first
study showed reduced numbers of mast cells in samples from PD
patients (155), whereas increased mastocytes numbers have been
found in samples from different inflammatory and fibrotic
peritoneal diseases, including PD and EPS (156). Thus, although
evidence suggests that these cells may amplify the inflammatory
response during peritoneal damage, their functional role has not
so far been demonstrated.

Natural Killer Cells
Natural killer (NK) cells are a specialized lymphocyte subpopulation
that play a significant role during viral infections and in tumor
immune surveillance through direct killing of virus infected or
tumor cells or by production of cytokines and chemokines. NK cells
recirculate throughout the peritoneal cavity and are present in the
peritoneal fluid. Moreover, in uninflamed peritoneum, a resident
NK cell population isolated in mice was able to secrete IFN-g, GM-
CSF, and TNF-a and endowed with killing ability (157).

During an acute inflammatory process such as peritonitis, NK
cells produce inflammatory cytokines such as TNFa and IL-6.
Moreover, through production of IFN-g and TGF-b1 these cells
may directly orchestrate the fibrotic process.

In other organs, NK cells actively contribute to the genesis of
the fibrotic damage. Tubulointerstitial human CD56bright NK
cells correlate with loss of kidney function and with induction of
fibrosis and chronic kidney disease progression, mechanistically
linked to increased NK cell-mediated IFN-g production (158).

Interestingly, besides its potential in the amplification of the
inflammatory response, NK cells appear to have a role in the
resolution of inflammation in antigen-dependent peritonitis
promoting neutrophil apoptosis (159). Previous results confirm
that NK cells are capable of inducing apoptosis of neutrophils (160).

Studies performed in humans are limited to adoptive transfer
of activated NK cells in an autologous NK cells setting used in a
frame of tumor therapy. It was demonstrated that administration
of NK cells in combination with IL-2 in patients with
malignancies caused peritoneal fibrosis (161). Thus, although
their role is potentially relevant, no definitive information is
reported about NK cells in the genesis of peritoneal fibrosis.

T Lymphocytes: A Balance of Mutually
Influencing Subpopulations
Besides the components of the innate immunity, the activity of
different T lymphocyte subsets is fundamental for the regulation
of the inflammatory response in the genesis of peritoneal fibrosis
and it could provide molecular targets to control peritoneal
damages. The relevance of the adaptive immunity in peritoneal
fibrosis is demonstrated by the use of lymphocyte-deficient mice.
In RAG-deficient mice, lacking mature T and B lymphocytes,
treatment with zymosan induced an exaggerated inflammatory
response with increased PMN infiltration (162). Accordingly, the
use of another experimental system demonstrated a role of
adaptive immunity in limiting PMN and MØ recruitment (163).

More generally, these approaches suggest that a network of
mutual interactions occurs between peritoneal stroma, innate and
adaptive immunity effectors during the genesis of peritoneal fibrosis.
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The composition of peritoneal fluid lymphocytes varies with
respect to blood lymphocytes. In particular, B lineage comprises
only around 2% of the total fluid, and T leukocyte
subpopulations are differently represented (164). Moreover,
changes in the consistency of T lymphocyte subpopulations
occur during peritoneal inflammation and during the practice
of PD.

With respect to the balance between CD4+ T-helper 1(Th1)
and T-helper 2 (Th2) subpopulations, it has been demonstrated
that during episodes of acute peritonitis, the immune response is
predominantly directed to the induction of Th1 cells (165).

On the other hand, the Th2 subset rapidly expands with the
practice of PD (166). The Th1/Th2 ratio could be evaluated by
measuring IFN-g (Th1 subset) and IL-4 (Th2 subset) levels both
in circulating and peritoneum-derived Th lymphocytes. In PD
patients, the IFN-g/IL-4 ratio is significantly reduced, indicating
a negative effect of bioincompatible fluids towards the Th1 cell
subset. Interestingly, this effect could be avoided using more
biocompatible fluids containing bicarbonate-buffered and
icodextrin, that may reestablish a more physiological Th1/Th2
balance and a reduced peritonitis rate (167).

A recently characterized leukocyte subpopulation, Th17
lymphocytes have been demonstrated as the main driver of
peritoneal fibrosis (132). The expression and the activity of this
lymphocytic subset is linked to the production of IL-17. Besides
Th17, other leukocytes, including CD4+ and gd T lymphocytes,
neutrophils, and mast cells may secrete this cytokine during
exposure to PD fluids or during peritonitis (168).

The strong stimulation of Th17 response during these
pathological conditions is due to both exogenous and
endogenous factors. Exogenous factors are represented by
bacteria and their derivatives entering the peritoneal cavity
through PD catheter or via intestinal translocation. These
bacteria stimulate TLR’s response by the peritoneal stroma,
which leads to an upregulation of IL-6 levels, promoting IL-17
production and subsequent differentiation of Th17 lymphocytes
(169). Similarly to bacterial derivatives, also factors related to PD
fluid such as AGEs expressed in conventional lactate-based PD
solution with low pH and high GDP contents are able to
stimulate the Th17 response (170) (Figure 3B).

IL-17 contributes to the host defense against bacteria and
fungi (171). It promotes neutrophil recruitment favoring the
release by MCs of chemotactic factors specifically attracting
neutrophils. Moreover, the IL-17 response favors the secretion
of a network of cytokines and chemokines including IL-1b, IL-6,
CCL2 and TGF-b1. In peritoneum, IL-17 favors through
different mechanisms the secretion of VEGF by MCs,
promoting angiogenesis (168). Most importantly, repeated
intraperitoneal administration of exogenous IL-17 led to
increased expression of several fibrosis-related genes, whereas
its neutralization with anti-IL-17 alleviated the extent of
peritoneal fibrosis (132).

The consistence of Th17 population in the peritoneum
directly affects the activity of another T cell subset, regulatory
T lymphocytes (Treg) (14). Tregs are suppressors of activated T
cell expansion, their activity is anti-inflammatory and favors the
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induction of tolerance (172). IL-6, in combination with TGF-b1,
is the main cytokine involved in the helper 17/regulatory T
(Th17/Treg) balance. The predominance of IL-6 favors the
generation of Th17 lymphocytes, which produce inflammatory
cytokines. On the other hand, TGF-b1 in the absence of IL-6
promotes the Treg lineage, able to maintain peripheral tolerance
and produce anti-inflammatory mediators such as IL-10, which
has been linked to protection of the peritoneal membrane from
inflammatory damage (173).

Interestingly, the plasma membrane receptor CD69 appears
to control Th17/Treg balance. The exacerbated peritoneal
fibrosis observed in CD69−/− mice could be alleviated by the
blockade of IL-17 (174). Mechanistically, it was demonstrated
that CD69 directly interacting with Jak3/STAT5 blocks Th17
differentiation (175).

Besides shaping the immune response, these changes may
impact MC plasticity: it was demonstrated that IL-17 itself is able
to induce EMT in bronchial cells while inducing peritoneal
fibrosis in vivo (132, 176). In contrast, low levels of IL-6 may
promote Treg differentiation, which is associated to high IL-10
expression, leading to the establishment of an anti-inflammatory
state and possibly MMT reversal (14, 177–179).

In case of peritoneal dialyzed patients, the predominassnce of
Th17 over Treg favors fibrosis development and PM failure
instead of Treg-mediated tolerance. Currently, the modulation
of the expression of the cytokines involved in Th17/Treg balance
through recombinant antibodies or cytokines is an attracting
field for the design of new therapies aimed at counteracting
peritoneal MMT and fibrosis.

A bridge between the adaptive and the innate arm of the
immune system is constituted by Mucosal-associated invariant T
(MAIT) cells. These cells are different from conventional T cells,
since they do not react through major histocompatibility
complex (MHC) (180). Peritoneal MAITs (pMAITs) provide a
marker for systemic inflammation during spontaneous bacterial
peritonitis (SBP), since they are configured to respond pro-
inflammatory chemotactic signals sensed by CCR5, CXCR3
and CCR6 (181). pMAITs are a source of IL-17 (102). Clinical
data indicated a specific immune activation of pMAIT, driven by
CD69 expression and correlated to disease severity (181).
CONCLUSIONS

The cellular and molecular mechanisms described above witness
the complexity of the physiopathologic response occurring in the
inflamed peritoneum.

A study published almost 25 years ago by Topley et al.
identified the relationship between MØs and MCs as a key
factor in the response of peritoneum to infections, whose
dysregulation was causal to ultrafiltration failure and fibrosis in
PD patients (182). At that time, it was already clear that MCs
under MØ-driven stimuli may produce a number of extracellular
mediators including arachidonic acid derivatives, cytokines and
chemokines promoting the amplification of the inflammatory
response. Since then, the understanding of cellular and molecular
Frontiers in Immunology | www.frontiersin.org 12
mechanisms underlying has evolved considerably. A relevant
discovery has been the characterization of different MØ
subpopulations implicated in the secretion of pro-inflammatory
mediators, phagocytosis, apoptotic debris removal and scavenging
activity. Another major breakthrough has been the identification
of the ability of MCs and other cells to undergo deep
dedifferentiation processes culminating in the generation of
myofibroblasts. Moreover, a relevant concept that has emerged
in these years is that the relationship between MØs and MCs is
not unidirectional: MCs play an active role in influencing MØ
recruitment, survival and differentiation due to the synthesis of
extracellular mediators acting specifically on MØs. Last, this
dialogue is not limited to MØs and MCs: stromal driven signals
such as IL-17, IL-6 and TGF-b1 shape the Th17/Treg balance,
thus impacting the fibrotic response.

Although the fibrotic process has common marks in all the
organs, peritoneum fibrosis has specific features due to the
anatomic localization and the cellular components forming this
organ. The anatomic localization favors the encounter with
microorganisms through unique structures (i.e. the FALCs) With
regard to peritoneal stroma, the characteristic plasticity of MCs,
their ability to transdifferentiate and to become indistinguishable
from myofibroblasts, makes the difference with respect to other
organs, such as the liver, where parenchyma cells (hepatocytes)
may give little direct contribution in the genesis of fibrosis.

These new discoveries related to cellular communication and
cellular plasticity may have an impact in future therapeutic
strategies. Future directions aimed at improving peritoneal
viability and thus duration of PD therapy may be focused at
further improving PD fluid biocompatibility, as well at using
inhibitory monoclonal antibodies, in line with recent advances
with therapy of inflammatory/profibrotic diseases. Also specific
therapies aimed at supporting MC viability and regulating
peritoneal immune system and immune cell/MC interactions
may give a contribution. Deepening the analysis of cellular and
molecular mechanisms underlying peritoneal fibrosis may shed
light on our understanding of how we can preserve the long-term
function of the PM as a dialysing organ, but also to treat other
forms of peritoneal fibrosis such as post-surgical adhesions or
tumor related-peritoneal fibrosis.
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