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Our purpose was to develop a neural network-based registration quality evaluator 
(RQE) that can improve the 2D/3D image registration robustness for pediatric 
patient setup in external beam radiotherapy. Orthogonal daily setup X-ray images 
of six pediatric patients with brain tumors receiving proton therapy treatments were 
retrospectively registered with their treatment planning computed tomography (CT) 
images. A neural network-based pattern classifier was used to determine whether a 
registration solution was successful based on geometric features of the similarity 
measure values near the point-of-solution. Supervised training and test datasets were 
generated by rigidly registering a pair of orthogonal daily setup X-ray images to 
the treatment planning CT. The best solution for each registration task was selected 
from 50 optimizing attempts that differed only by the randomly generated initial 
transformation parameters. The distance from each individual solution to the best 
solution in the normalized parametrical space was compared to a user-defined error 
tolerance to determine whether that solution was acceptable. A supervised training 
was then used to train the RQE. Performance of the RQE was evaluated using test 
dataset consisting of registration results that were not used in training. The RQE 
was integrated with our in-house 2D/3D registration system and its performance 
was evaluated using the same patient dataset. With an optimized sampling step 
size (i.e., 5 mm) in the feature space, the RQE has the sensitivity and the speci-
ficity in the ranges of 0.865–0.964 and 0.797–0.990, respectively, when used to 
detect registration error with mean voxel displacement (MVD) greater than 1 mm. 
The trial-to-acceptance ratio of the integrated 2D/3D registration system, for all 
patients, is equal to 1.48. The final acceptance ratio is 92.4%. The proposed RQE 
can potentially be used in a 2D/3D rigid image registration system to improve the 
overall robustness by rejecting unsuccessful registration solutions. The RQE is 
not patient-specific, so a single RQE can be constructed and used for a particular 
application (e.g., the registration for images acquired on the same anatomical site). 
Implementation of the RQE in a 2D/3D registration system is clinically feasible.

PACS numbers: 87.57.nj, 87.85.dq, 87.55.Qr 
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I.	 INTRODUCTION

In external beam radiation therapy, registration of 2D X-ray projection images and 3D CT 
images has been used clinically for patient setup and motion mitigation.(1,2) Compared to 3D/3D 
registration-based patient setup strategies, the 2D/3D registration method does not require 
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lengthy 3D image acquisition on the daily basis and, more importantly, reduces imaging dose to 
the patient. The stochastic risk of carcinogenesis caused by imaging dose is a major concern for 
pediatric patients because of their longer life expectancy. For patient setup, although a number 
of dose reduction strategies for the CBCT imaging have been proposed,(3) a 2D X-ray imaging 
technique may still be a better choice if the 2D registration yields solutions that are clinically 
acceptable. At the present time, CBCT imaging is not available in our proton therapy systems. 
Patient setup relies on an X-ray imaging system with orthogonal projection geometry and a 2D 
image matching technique. Development of a reliable automated 2D/3D registration system 
may potentially reduce patient setup time and improve setup accuracy.

2D/3D registration approaches for patient positioning have been investigated(4–8) and were 
also implemented in commercial systems such as the Brainlab ExacTrac X-ray imaging sys-
tem (Brainlab AB, Feldkirchen, Germany), the Accuray CyberKnife Xsight system (Accuray, 
Sunnyvale, CA), and the MedCom VeriSuite system (MedCom GmbH, Darmstadt, Germany) 
for proton therapy systems. These systems align two X-ray (orthogonal or oblique) projection 
images to a treatment planning CT image and compute six transformation (three translational 
and three rotational) parameters. When used with a robotic patient couch that is able to move in 
five or six-degrees of freedom, the system can achieve better patient setup correction compared 
to traditional correction strategies that are based only on translations. 

Most 2D/3D registration methods require computation of digitally reconstructed radiographs 
(DRR) from a 3D CT dataset. A few years ago the computation burden of this step was a major 
obstacle that prevented the clinical implementation of such systems. However, this problem has 
been overcome by advances of graphics card–based computation techniques.(7,9) The calcula-
tion time required for an intensity-based 2D/3D registration has been reduced from a few hours 
using CPUs(4) to several seconds using graphics processing units (GPUs). With the technology 
of graphics-based computation continuously evolving, the speed of registration is no longer 
a concern. System reliability in terms of registration accuracy and robustness for a variety of 
anatomical disease sites has become the primary challenge in clinic.

An intensity-based 2D/3D registration algorithm aligns the acquired planar images with the 
computed DRRs by minimizing a cost function. Such an optimization process can be trapped 
in a local minimum due to the complexity of patient anatomy, image noise and artifacts, organ 
deformation, and the lack of monotonicity of the similarity function, which results in incor-
rect solutions. The frequency of such failures can depend on the initial conditions of 2D/3D 
registrations. Unsuccessful registration rate has been reported to be as high as 32% when 
initial shifts were 6 to 16 mm.(10) Traditionally, evaluation of the acceptability of a registration 
solution is carried out by visually comparing the overlapped source and target images. This 
method is subjective and inconsistent. Pattern classifier–based registration quality evaluation 
methods have been proposed by Wu and colleagues to identify local minima and avoid prema-
ture terminations, and have been successfully applied to 2D/2D(11) and 3D/3D(12) registration 
applications. Based on phantom and patient tests, they have demonstrated that the registration 
quality evaluator (RQE) could reject registration results with errors larger than a user-defined 
tolerance. Furthermore, based on a phantom study, Wu and colleagues(13) showed the potential of 
using the neural network-based RQE on 2D/3D registration applications. Although this pioneer 
study gave very favorable results, this approach has yet to be validated in a clinical setting.

For this paper, we used a similar method to the one described in Wu’s phantom study in 
a clinical application where 2D/3D registration can be used to assist patient setup before 
daily radiation therapy. A neural network–based RQE was used to automatically identify bad 
registration solutions. Compared to the 3D/3D RQE, the construction of a 2D/3D RQE with 
good performance is more technically challenging. Although the similarity functions and the 
optimization algorithms used in 3D/3D registration can be used in 2D/3D registration with 
minimal modification, the failure pattern for 2D/3D registration is significant different. A 
3D/3D registration is typically either successful or failed badly (i.e., far away from its optimal 
point in the transformation parameter space) because the objective function is smooth and an 
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optimization converges easily to a solution around an optimum. The objective function for a 
rigid 2D/3D registration has much more local optima even in the close vicinity of the globally 
optimum. The use of a pattern classifier to identity those nonoptimal solutions near the optimal 
solution is, therefore, much more challenging.

 
II.	 MATERIALS AND METHODS

A. 	 Patient data acquisition
In this study, we used the daily setup images of six randomly selected pediatric patients with ages 
ranging from 3 to 14. Patients selected for this study have previously consented to participation 
in our institutional IRB-approved protocol. All patients were diagnosed with brain tumors and 
have completed their proton therapy treatments in our institute. A pair of orthogonally projected 
kilovoltage (kV) X-ray images was acquired each day during the patient setup. The kV X-ray 
images, with 1152 × 1600 pixels, have pixel sizes of 0.18 × 0.18 mm2 and 0.21 × 0.21 mm2 for 
panel A and panel B, respectively. Treatment planning CT images were acquired with the pixel 
size of 0.75 × 0.75 mm2 in the axial plane and the slice thickness of 1 mm.

B. 	 2D/3D image registration
The original X-ray images were first down-sampled at the ratio of 1:2 and then rigidly registered 
to their treatment planning CT images. Registrations between two X-ray images and the CT 
image were performed using an in-house GPU-based 2D/3D registration program. This pro-
gram uses an iterative method to optimize the normalized mutual information (NMI) between 
the digitally reconstructed radiographs (DRRs) and the acquired X-ray images. The DRRs are 
computed in each iteration by ray-tracing a 3D CT image for a given set of transformation 
parameters using a graphics card. Each registration is based on the region of interest (ROI) as 
defined on the X-ray images. The room coordinates of the X-ray images were determined by 
image overlays of physical crosshair devices acquired simultaneously with the imaging subjects. 
The right–lateral and the posterior–anterior (PA) projection X-ray images of a selected patient 
are shown in Figs. 1(a) and 1(b), respectively. Figures 1(c) and 1(d) show the calculated final 
DRRs when optimization was completed. Figures 1(e) to 1(h) show the overlapped images of 
X-ray images and the edge images of DRRs. The edge images of DRRs were created by apply-
ing a Laplacian of Gaussian filter. Figures 1(e) and 1(f) show the images before registration 
and Fig. 1(g) and 1(h) the images after registration.

Each patient received 30 treatment fractions, thus there are a total of 30 unique registration tasks 
per patient. The rigid registrations computed three translational and three rotational parameters.
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C. 	 Training and test data preparation
As described by Wu and Murphy,(12) a pattern classifier can be constructed and used to identify 
unsuccessful registration solutions that are caused by local minimum trapping or early termina-
tion. In this study, we applied this method to construct an RQE for 2D/3D registrations. Data 
preparation of the RQE involves: 1) sampling the parametrical space in the neighborhood of 
the point-of-solution, 2) computing a number of geometrical features from the sampled values, 
and 3) identifying the true category of a solution based on a user-defined error tolerance. We 
will describe these steps in details in the following sections.

Fig. 1.  The right-lateral view (first column) and the posterior–anterior view (second column) images of a selected pediatric 
patient. The setup verification X-ray images acquired just before treatment are shown in (a) and (b). The user-defined 
regions of interest are indicated by the line segments with blue vertices. The calculated final DRRs when optimization was 
completed are shown in (c) and (d). X-ray images and the edge images of DRRs are overlapped before the registration 
[(e) and (f)] and after the registration [(g) and (h)] to show the effects of image registration.
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C.1  Parametrical space sampling
In the previous paper,(12) Wu and Murphy sampled the similarity measure values by varying 
one translational parameter at a time using two user-defined sampling step sizes (i.e., 1 mm and 
5 mm). In this study, we sampled three rotational parameters in addition to the three translational 
parameters. This is because, for 2D/3D registrations, out-of-plane translations and rotations 
(with respect to the imaging planes) may change the similarity function value in different ways 
(e.g., different gradients) compared to the in-plane ones. The addition of rotational parameters 
will provide more information to the pattern classifier and potentially improve its performance. 
When we sampled the cost function, a normalized transform unit, the mean voxel displacement 
(MVD), was used for both translational parameters and rotational parameters in the parametrical 
space. Thus a unit change of a rotational or a translation parameter produces the same aver-
aged voxel displacement within the ROI defined on the CT images. For the brain patients in 
this study, the ROIs on the CT images are rectangular cuboids that are approximately centered 
at the isocenter and include the whole brain. Those ROIs were manually defined by a user for 
each CT image. We investigated the impact of sampling step size on the performance of RQE 
by varying the step size from 1 mm to 30 mm with 5 mm increments.

C.2  Geometrical feature calculations
The distinctiveness of optimum (DO) and the mirror symmetry (MS) have been used by Wu 
and Murphy(12) as geometrical features to evaluate their 3D/3D image registration solutions. 
The same geometrical features were used in this study, but were computed separately for the 
translational samples and rotational samples. 

The DO is based on our assumption that a global minimum generally has a deeper valley 
compared to that for a local minimum. The MS is based on our assumption that a global minimum 
has a relatively symmetrical profile centered at its minimum. The profile of a local optimum, 
on the other hand, is usually more irregular because of its limited capture range. Calculations 
of both features require the similarity function be sampled along the translational and rotational 
major axes in the parametrical space for a given step size. For each axis, the sampled points 
were centered at the current registration solution. 

As explained earlier, we computed DO and MS separately for translations and rotations, and 
denoted them as DOtrans, DOrot, MStrans, and MSrot, respectively. These features were computed 
for each registration solution.

C.3  Determination of true categories
We used the same method as proposed by Wu and Murphy(12) to determine the true category of 
a registration solution. In this method, a “gold standard” registration solution was obtained by 
taking the best solution over 50 registration attempts. These 50 registration attempts differ by 
randomly selected initial transformation parameters that are centered at the initial setup position 
(where the isocenters are aligned) and within the range of ± 5 mm and ± 2° in the parametrical 
space. The best solution has the minimal final cost function (i.e., negated NMI). This best solu-
tion was visually verified by using our in-house visualization software.

To confirm accuracy of the gold standard, 100 validation registrations were performed for 
all daily setup images of a randomly selected patient (i.e., Patient 1). Those 100 registrations 
are based on 100 random initial guesses that are centered on the best known alignment. The 
maximal deviations from the center are also limited to ± 5 mm and ± 2°. The differences between 
the new registration solutions and the gold standard are compared.

Once the “gold standard” solutions were established, a new round of 20 registration repeti-
tions was carried out for each registration problem to generate the training and test dataset for 
the RQE. These 20 registration repetitions also differ by randomly selected initial transformation 
parameters that are centered at the initial setup position where the isocenters are aligned. This 
results in a total of 3600 registration solutions (i.e., 6 patients × 30 fractions/patient × 20 reg-
istrations/fraction) to be used to train and test the RQE. By balancing the number of successful 
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and unsuccessful registrations, the ranges of random perturbations to the initial transformation 
parameters were empirically chosen to be ± 20 mm and ± 8°.

The registration errors for these new solutions were quantified by calculating the MVD with 
respect to their “gold standard” solutions. As described by Skerl and colleagues,(14) the MVD is 
equivalent to the Euclidean distance from the point of the current solution to the point of the “gold 
standard” solution in the normalized parametrical space. So the MVD of a registration solution 
can be calculated conveniently and compared to a user-defined error tolerance to determine 
the acceptance of this solution. In this paper, a MVD tolerance of 1 mm was used. We believe 
this choice is reasonable since 1 SD of all successfully registration solutions is about 0.5 mm.

D. 	 Training and validation of the neural network
The same two-layer, feed-forward neural network as proposed by Wu and Murphy(12) was used 
in this study. The network was implemented using the MATLAB Neural Network Toolbox 
(MathWorks, Inc., Natick, MA). There are four inputs to the neural network. The inputs are 
the computed geometrical features — DOtrans, DOrot, MStrans, and MSrot. There is only one 
single numerical output ranging from 0 to 1. An output greater than 0.5 is considered to belong 
to the category of unsuccessful registrations. Hyperbolic tangent sigmoid transfer functions 
were used in both the hidden layer and the output layer. To avoid the problem of overfitting, 
effort has been taken to keep the network structure simple. We started with having 20 neurons 
in the hidden layer and gradually reducing the number of neurons. We found out the classifier 
still has very good performance when the number was reduced to two, but its performance 
deteriorated remarkably when there was only one neuron left in the hidden layer. Thus in our 
final neural network structure there are two neurons in the hidden layer. During the network 
construction, the scaled conjugate gradient optimization algorithm(15) was used to minimize 
the mean sum-of-squares of the network output error. This method is based on the conjugate 
gradient method, but was designed to avoid the time-consuming line search by combining with 
the model-trust region approach.

To overcome the problem of overtraining and improve generality, the available data were 
divided into three subsets. Firstly, the data generated from each individual patient was chosen 
in turns as the test dataset. This is so called “leave-one-out” scheme. Then the rest of the data 
from five other patients were randomly divided into the training dataset (80%) and the validation 
dataset (20%). The training set was used for computing the gradient and updating the network 
weights and biases. After each training iteration, the network was tested on the validation set. 
The test data had no effect on training and they provided an independent measure of network 
performance during and after training. Thus it provided us with a valid method to evaluate how 
the network was generalized to new patients. Two criteria, sensitivity and specificity, were used 
to evaluate the performance of the classifier.

E. 	 Test of the integrated robust 2D/3D registration system
The RQE was integrated into our in-house, GPU-based 2D/3D registration system. The same 
patient dataset as mentioned above was used in this test. The RQE constructed with the first 
patient left out (arbitrarily chosen) were added to the 2D/3D registration system. Once a reg-
istration solution was reached, the RQE would determine whether the result was acceptable. 
If a solution was rejected, the registration method would restart with another trial, but using a 
different set of randomly generated initial transform parameters. In this paper, we set the maxi-
mal number of trials as five. If the RQE failure to accept a solution after the maximal number 
of trials has been reached, we consider the registration results were not reliable and a manual 
registration was required. Here we intend to estimate the efficiency of this integrated system 
rather than evaluate the accuracy and performance of the system. Consider two scenarios. 1) If a 
registration solution was accepted after too many registration trials, then the system would have 
little efficiency. 2) If all solutions were accepted on their first trial, then we would not need an 
RQE. It should be noted that, for the first case, it may not means the RQE has bad performance. 
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It may just mean the registration method failed to find a good solution. The method described 
in section D above is a better way to evaluate the performance of the RQE itself.

 
III.	 RESULTS 

Figures 2(a) and 2(b) show the profiles of the cost function (i.e., negative NMI) along shifts 
in x-, y-, and z-axes and rotations about x-, y-, and z-axes from the point-of-solutions (i.e., 
the origins) in the parametrical space. The units of shifts and rotational deviations have been 
normalized to MVD. The profiles in Fig. 2(a) are centered on a typical good solution, where 
the curves on the positive side and the negative side are proximately symmetric. The profiles in 
Fig. 2(b) are centered on a typical bad solution, where some curves are not symmetric and the 
valleys for all curves are shallower than the corresponding ones in Fig. 2(a). This demonstrates 
why DO and MS can be used to describe those two features.

The best solutions from 100 validation registrations differ no more than 0.16° in rotation and 
0.09 mm in translation compared to the gold standard. The average absolute differences between 
the best solutions and the gold standard are 0.04°, 0.03°, and 0.04° in rotation along x-, y-, and 

Fig. 2.  Profiles of the cost function (i.e., negative NMI) along shifts in x-, y-, and z-axes and rotations about x-, y-, and 
z-axes from the point-of-solutions (i.e., the origins). The units of shifts and rotational deviations have been normalized to 
MVD. The profiles of a typical good solution and a bad solution are shown in (a) and (b), respectively.
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z-axes, respectively. The differences for shifts are equal to 0.02 mm along all three major axes. 
Owing to the consistency of the registration solutions and the fact that all best solutions have 
been visual-checked, we have confidence that the gold standard is accurate and highly reliable.

The scatter plots of all data used in training, validation, and testing with 5 mm sampling 
size are shown in Figs. 3(a) and 3(b). There are 3,600 data points (i.e., 6 patients × 30 frac-
tions/patient × 20 registrations/fraction) in each plot. Since the “leave-one-out” scheme was 
used, 3,000 data points were used to construct each classifier. In Fig. 3(a), the distinctiveness 
of optimum for translations (DOtrans) was plotted against the distinctiveness of optimum for 
rotations (DOrot). In Fig. 3(b), the mirror symmetry for translations (MStrans) was plotted against 
the mirror symmetry for rotations (MSrot). The successful solutions are shown as blue circles 
and the unsuccessful solutions are shown as red crosses. As illustrated in 2D plots, there is no 
boundary to separate those two categories completely. It is also reasonable to assume that a 
simple boundary is not likely to be found in the 4D feature space.

Fig. 3.  Scatter plots of (a) DOtrans v.s. DOrot and (b) MStrans v.s. MSrot of all data with 5 mm sampling step size. The suc-
cessful solutions are shown as blue circles and the unsuccessful solutions as red crosses.



30    Wu et al.: Neural network-based 2D/3D registration quality evaluator	 30

Journal of Applied Clinical Medical Physics, Vol. 17, No. 1, 2016

To investigate the effect of the sampling step size on the performance of the RQE, the RQEs 
were constructed and tested separately for various step sizes ranging from 1 mm to 30 mm 
with 5 mm increment. As described in the previous section, each time, data from one of the 
six patients were chosen as the test data. The RQE was constructed using data from the rest 
of the patients for each given step size. Performances of the RQE in terms of sensitivity and 
specificity as a function of sampling step size are plotted in Figs. 4(a) and 4(b), respectively. 
The sensitivities for all test patients are similarly high with the sampling step size between 
5 mm and 25 mm. The specificities are very close for all patients in the entire test range except 
for Patient 2, whose specificity peaks at 5 mm step size. The sensitivity and the specificity of 
all patients with 5 mm step size are tabulated in Table 1.

The registration results of the integrated 2D/3D registration system are shown in Table 2. 
The trial-to-acceptance ratio (TAR), which is defined as the ratio of the total number of trials to 
the number of acceptance, for all patients, is equal to 1.48. This indicates the integrated system 
has about 48% overhead compared to the original system. The final acceptance ratio (FAR), 
which is defined as the number of accepted solutions to the number of registration attempts 
(i.e., number of acceptances + number of final rejections), is 92.4%.

 

Fig. 4.  Sensitivity (a) and specificity (b) of the classifier trained with various sampling step sizes evaluated using test datasets.

Table 1.  Sensitivity and specificity of the classifier for test datasets with 5 mm sampling step size.

		  Patient 1	 Patient 2	 Patient 3	 Patient 4	 Patient 5	 Patient 6

	Sensitivity	 0.940	 0.964	 0.917	 0.905	 0.915	 0.865
	Specificity	 0.933	 0.797	 0.976	 0.990	 0.980	 0.927

Table 2.  Registration results for the integrated robust 2D/3D registration system.

		  Patient 1	 Patient 2	 Patient 3	 Patient 4	 Patient 5	 Patient 6	 Total

	 # of Acceptance	 317	 190	 320	 310	 320	 290	 1747
	 # of Trials	 359	 850	 334	 388	 349	 298	 2578
	# of Final Rejections	 3	 130	 0	 10	 0	 0	 143
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IV.	 DISCUSSION

Due to the similarity between the 2D/3D registration and the 3D/3D registration, this paper 
used the same training data generation, RQE generation, and performance evaluation method as 
previously reported.(12) However, we added features for rotational deviations in our 2D/3D RQE 
instead of utilizing only translational features. This is because, presumably, object translations 
and rotations about different axes may change the cost function at difference rates. This may 
not be a problem for the 3D/3D RQE because the cost function was calculated from 3D voxels. 
But the cost function for 2D/3D RQE is based on 2D pixels on two orthogonally projected 
images. Depending on their axes, a translation or a rotation can be in-plane or out-of-plane with 
respect to their projection image planes, which would result in different gradients in their cost 
function profiles. Generally speaking, including more nonredundant features in the classifier 
would potentially improve its performance with the cost of increased computation complexity, 
which is not significant in our case.

The “gold standard” of each registration task was determined by 50 registration trials that 
differed by their initial transformation parameters. We believe this is a better method than an 
exhaustive search method. The results of our 50 optimization attempts show majority of solutions 
are clustered in a small region within 0.2° and 0.2 mm (1 SD) around the mean solution when 
a few outliers (about 10) are excluded. This means we have confidence that the best solution 
we found is very close to its true global optimum. We also think further improvement on the 
accuracy is not necessary because the discrepancy between the global optimum determined by 
the mutual information and the true best alignment transform parameter has been reported to 
be about 1 mm.(16) Moreover, an exhaustive search method is not practical. Our optimization 
based method only needs to evaluate cost function about 50 × 300 times for each registration 
task. Given six patients and 30 fractions per patient, the computation for “gold standard” using 
GPU takes about one day. However if an exhaustive search method is used, to cover even a small 
range such as ± 0.2° and ± 0.2 mm, we need at least 20 sampling points for each degree of free-
dom (DOF). In the parameter space with six DOF, that would result in 64 million points. Using 
the same hardware and computation method, the calculation would take more than 11 years.

The performance of the classifier (e.g., sensitivity and specificity) depends on the threshold 
value that is used to categorize the neural network output. The optimal value for this threshold 
could be determined if the costs of making both the false positive and negative errors and 
the frequencies of making those errors were known.(11) The choices of those parameters are 
application- and user-dependent and beyond the scope of this paper. In this study, a threshold 
value of 0.5 was used, which is based on the arbitrary assumption that the costs of making 
both errors are equal.

The optimal sampling size for the RQE in our study has been identified to be 5 mm. It should 
be noted that this value depends on many factors that could change the geometrical properties 
of the similarity function. Those factors may include treatment site, ROI definition, choice of 
similarity measure, DRR calculation method, and the imaging parameters such as pixel/voxel 
spacing, contrast, number of gray levels, imaging artifacts, and the noise level. However, for 
a specific clinical application, most of those factors are fixed. If we assume a relatively stable 
imaging system and have a protocol of ROI definition for creating the ROIs of the approxi-
mately same size and anatomical location among different patients, the optimal sampling size 
may be obtained per treatment site.

In this study, the NMI alone was used as the similarity measure and its geometrical properties 
are used by the classifier. It would be interesting to see if using a different similarity measure 
or using multiple measures simultaneously would improve the performance of the RQE.

The TAR (i.e., 1.48) we obtained indicates the RQE did effectively reject unsuccessful reg-
istration solutions. It also shows the integrated system requires about 48% more computation 
time compared to the original system. As mention before, this is not a major concern with the 
advance of the graphics card computation techniques. Of all the registration attempts, 92.4% of 
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cases had solutions that were finally accepted by the RQE before the maximal number of trials 
reached. Of all the rejected solutions, 90.9% originate from registering images for Patient 2. 
This is most likely due to the difference between the definitions of the ROI. A typical lateral 
projection X-ray image of Patient 2 is shown in Fig. 5(a) and its corresponding one for other 
patients shown in Fig. 5(b). A small portion of the posterior part of the cranial image was 
clipped out of the ROI for Patient 2 because of the selection of the imaging isocenter for this 
particular patient and the limited field-of-view (FOV) of the imaging system. For a scattering 
beam proton therapy system, the FOV of the X-ray imaging system corresponds to the choice 
of the treatment head (i.e., the snout size). Pediatric patients with brain tumor are typically 
treated with 25 cm snout. However, Patient 2 was treated with a 30 × 40 cm snout, which is 
very rare in our clinic. This results in a reduced FOV in the anterior–posterior direction in the 
lateral view. If this particular case is excluded from our dataset, the TAR will be reduced to 
1.11 (1 SD = 0.09) and FAR increased to 99.2%. With such a low TAR and high FAR, the RQE 
would greatly increase the robustness of the integrated 2D/3D registration system, without 
sacrificing much of the efficiency of the system. The user should be aware of the sensitivity 
of the classifier efficiency to the variations of the ROI definition. Efforts should be made to 
ensure the imaging content inside ROI when the classifier is constructed is the same as when 
the classifier is used. Clipping of the imaging content either by a user or an imaging system 
could adversely affect the efficiency of the classifier.

Our results are based on very limited patient data and a single treatment site. More accurate 
statistical evaluation would require the test on more patient data. The applications on other 
treatment sites that have non-rigid deformations with larger magnitude would be more chal-
lenging but also interesting.

It would also be interesting to adopt a scheme to adaptively update the RQE using the reg-
istrations results when it is used clinically.(17,18) The output of the RQE can be checked either 
online or offline by users. Erroneous decisions by the RQE can be corrected and fed back to 
the classifier to improve its future performance.

Two other more challenging, but interesting, extensions of this work are the applications 
of the RQE on multi-modality and/or deformable 2D/3D image registrations.(19–22) The key 
issue is to find features that are good indicators of a successful registration. For example, a 
simple intensity-based similarity measure is not adequate for a deformable registration because 
a registration solution with high similarity measure value does not necessarily indicate the 
deformation is physically meaningful. The features must also be robust so that they do not vary 
greatly among different patients.

 

Fig. 5.  A typical right–lateral projection X-ray image of (a) Patient 2 and (b) a patient other than Patient 2.
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V.	 CONCLUSIONS

Our patient study has demonstrated the proposed neural network-based RQE had fairly good 
performance when used with the NMI in identifying unsuccessfully 2D/3D registrations for 
daily patient setup. This technique can be used to improve the accuracy and the robustness of 
a patient setup system that relies on automated rigid 2D/3D registrations.
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