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Metal ion removal using waste 
byssus from aquaculture
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Byssus is a thread-like seafood waste that has a natural high efficiency in anchoring many metal 
ions thanks to its richness of diverse functional groups. It also has structural stability in extreme 
chemical, physical and mechanical conditions. The combination of these properties, absent in other 
waste materials, has novelty suggested its use as matrix for water remediation. Thus, pristine byssus, 
upon de-metalation, was studied to remove metal ions from ideal solutions at pH 4 and 7, as model 
chemical systems of industrial and environmental polluted waters, respectively. The byssus matrix’s 
uptake of metal ions was determined by ICP-OES and its surface microstructure investigated by SEM. 
The results showed that the byssus matrix excellently uptakes metal ions slightly reorganizing its 
surface micro-structure. As example of its efficiency: 50 mg of byssus absorbed 21.7 mg·g−1 of Cd2+ 
from a 10 mM solution at pH 7. The adsorption isotherm models of Freundlich and Langmuir were 
mainly used to describe the system at pH 7 and pH 4, respectively. In conclusion, we showed that the 
byssus, a waste material that is an environmental issue, has the potential to purify polluted industrial 
and environmental waters from metal ions.

Metal ions are massively used in many fields, from constructions to medicine, and from electronics to agri-
culture. As consequence, they are widely dispersed into the environment as pollutants1,2. Potential sources of 
metal ion pollution in aquatic streams are mining refining ores, fertilizer industries, tanneries, battery dispos-
als, paper industries, pesticide utilization, etc.3,4. Those activities can introduce in the environment major toxic 
metal ions like V3+, Cr3+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+ Cd2+, Hg2+, Pb2+, etc. that are cause of concern due to their 
carcinogenicity5, bio-accumulation tendency6, and persistence in nature7. Effluent treatment processes have been 
designed to avoid metal ions dispersion in wastewater, reducing adverse effects8. Some conventional treatments 
for metal ion removal include complexing, solvent extraction, membrane separation, sedimentation, coagulation, 
flotation, precipitation, cementation, filtration, electrochemical technique, biological process, reverse osmosis, 
ion exchange, and adsorption9. Unfortunately, each method has its own limitations, such as expensiveness, low 
efficiency, incomplete removal, sensitive operating conditions, high-energy requirements, and production of 
waste products or toxic sludge that also require disposal3. The adsorption of metal ions using low cost renew-
able organic materials has gained importance with the time, this because of their high efficiency, easy handling, 
absence of by-products, high availability, and low cost–effectiveness ratio10–12. Among adsorbing matrices good 
results were obtained using agricultural wastes as cheap disposable adsorbents that also guarantee the reuse of 
wastes3,13–18. A more efficient, but expensive option, was given by chelating polymers as materials developed and 
synthesized to accomplish this task19–21. In the research of low cost metal ion adsorbing materials, the discarded 
solid residue from the mussel aquaculture (0.5 Mton per year worldwide) should be also considered22. Those resi-
dues consist of shells, soft tissues, and byssus threads (the latter about 5–15 kton). The waste shells have been used 
for remediation of anion pollution23, as a substrate for heterogeneous catalysts24, or as CaCO3 source25, to cite 
few examples of many applications. On the contrary, the recovery of byssus has been exploited in few studies26–29. 
The byssus is a protein-based fibrous holdfast that mussels use to anchor to different substrates in sea water and 
avoid being displaced by waves and currents30,31. This material is very rich in binding sites for metal ions due 
to its unique chemistry and molecular structure. Four regions comprise the byssus ultra-structure organization 
(Fig. 1), namely: (A) the stem; (B) the thread core; (C) the thread cuticle, and (D) the plaque32. As in many natu-
ral materials33, each different region has a diverse function, associated to a different chemical composition and 
molecular structure. Dihydroxyphenylalanine (DOPA) residues, which naturally are coordinated to Fe3+ in very 
stable complexes, are localized in plaque and cuticle34. The thread core and stem, instead, are mainly composed 
of collagen-based proteins (called PreCols35) having terminal histidine (His)-rich domains able to bind mainly 
Zn2+ and Cu2+36. Those metal-binding sites have a crucial role in the mechanical and self-healing properties of 
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the byssus. In this natural matrix, His makes up 2 mol.% of PreCols composition while DOPA content reaches 
10–15 mol.% in mussel foot protein-1 (mfp-1)37. Mfp-1 is the only protein composing the cuticle while one of 
the five different mfps composing the plaque. Among them, mfp-2 is the most abundant (25 wt.% of plaques) 
and is characterized by a relatively low percentage of DOPA content, from 3 to 5 mol.%38. The remaining 75 
wt.% of the plaque is composed of proteins with a higher amount of DOPA residues (e.g. mfp-3 and mfp-5 have 
DOPA contents higher than 20 mol.%)39. 

In this research, we aim to exploit the unique composition and structure of the byssus, evolved to bind metal 
ions, as material for metal ion removal from polluted waters. It has the potential to be a very cheap, high effi-
cient, and disposable or reusable adsorbent. Firstly, the byssus was de-metaled by chelating agents that left its 
macromolecular composition unaltered34,40 and, secondly, tested for metal ion removal application using both 
metal ions naturally present in the native byssus (Fe3+, Zn2+, and Cu2+) and some metal ions of environmental 
interest (Al3+, Cd2+, Co2+, Ni2+, Mn2+, and V3+).

Materials and methods
Materials.  Reagents and solvents were purchased from Sigma Aldrich. They were utilized without any fur-
ther purification. For each experiment, daily fresh solutions were prepared. A mussel farm close to Fano (Italy) 
provided the byssus from Mytilus galloprovincialis.

Byssus pre‑treatment.  The byssus (1–3 wt. %) was collected by hand from the mussels and pre-treated 
according to the procedure reported in Montroni et al.29. Briefly, the collected byssus was washed using tap water 
and soap until clear washing water. Then the soap was eliminated by rinsing with distilled water and the byssus 
was stirred twice in ethanol for 30 min and washed again with distilled water for 15 min. The clean and dry bys-
sus was stored in a desiccator under vacuum.

Byssus de‑metalation.  The de-metalation process was performed according to the procedure reported by 
Schmitt et al.40, and modified by Montroni et al.29. A 0.2 M ethylenediaminetetraacetic acid (EDTA) in a 0.1 M 
pH 4.3 Tris buffer solution was used as a metal ion chelating agent. The de-metaled byssus was then washed sev-
eral times in milliQ water to restore the neutral pH and eliminate the EDTA. The air-dried sample was conserved 
in a plastic Petri dish in a desiccator under vacuum.

Metal ion removal experiments.  Metal ion removal was performed inserting 50 mg of byssus in 2 mL of 
the buffered solution with different concentrations of metal ions. The experiments were performed in a polysty-
rene multi-well plate. For each experiment only one metal ion was used. Control experiments were performed to 
quantify the eventual desorption of metal from the byssus in the buffer solution used. The incubation time was 
72 h, afterward, the metal solution was collected. The byssus was then washed twice with 100 µL of the buffer. 
The latter buffer and the metal ion solution were collected together and diluted to 5 mL using the experimental 
buffer. The concentration of metal ion in solution was measured using induced coupling plasma optical emission 
spectroscopy (ICP-OES) in the final 5 mL solutions and in the loading solutions. The detection limits are reported 
in Table S1. The metal ion loading concentrations used were 0, 0.01, 0.1, 0.5, 1, and 10 mM. Each experiment 

Figure 1.   Schematic representation of the byssus. (A) The stem, (B) the thread core, (C) the cuticle, and (D) the 
plaque. In yellow, the collagen- and His-rich regions while, in blue, the DOPA-rich ones are shown.
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of incubation was performed in double at 25 °C, two more replicates were prepared and analyzed whether the 
first results were not in agreement. The buffer used was 50 mM 2,2-bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol 
(bis–TRIS) for the pH 7 solutions, except for iron (III) solution where 50 mM N,N-bis(2-hydroxyethyl)glycine 
(bicine) was used. A 50 mM acetate solution was used to obtain the buffer at pH 4.

Induced coupling plasma‑optical emission spectroscopy (ICP‑OES) metal measures.  All sam-
ples obtained from metal ion removal experiments were measured three times, 12  s each, with 60  s of pre-
running, using an ICP-OES, Spectro Arcos-Ametek, Inductive Coupled Plasma Optical Emission Spectroscopy 
with an axial torch and high salinity kit. The Al signal was measured at 117 nm, the Cd at 229 nm, the Co signal 
at 229 nm, the Cu at 325 nm, the Fe at 232 nm, the Ni at 232.0 nm, the Mn at 258 nm, the V at 293 nm, and the 
Zn at 214 nm. Certified standards in the experimental buffer were used to prepare the calibrating curves.

Metal ion quantification within the byssus matrix.  The byssus from the metal ion removal experi-
ments was washed three times using 1 mL of Pre-milliQ water to remove experimental buffer traces. The metal 
inside the byssus was quantified digesting 50 mg of sample. The sample was set in a Teflon holder with 0.5 mL 
of H2O2 (30% Carlo Erba, for electronic applications) and 6 mL of nitric acid (65% Honeywell). The holder was 
set in a microwave oven, Milestone, programmed to operate as follows: 2 min at 250 W, 2 min at 400 W, 1 min 
at 0 W, and 3 min at 750 W. The digested sample was quantitatively collected and diluted to 10 mL with water, 
filtered on paper, and analyzed as described in the ICP-OES section. This analytic procedure was verified using a 
certified reference material (Lagarosiphon major, CRM 60; Community Bureau of Reference, Commission of the 
European Communities). The measure was carried out in duplicate for each sample type.

Scanning electron microscopy (SEM).  SEM images were collected using a Philips SEM 515 with a ten-
sion of 15 kV. The wet samples were glued on carbon tape, dried in a desiccator, and coated with 20 nm of gold 
prior image them.

Results
The pristine byssus was digested and its metal composition was analyzed (Table S2). The matrix had a 0.5 ± 0.2 
wt.% metal content, the major metals were Al, Cu, Fe, and Zn. After the de-metalation process, the metal con-
tent of the byssus matrix was 0.122 ± 0.006 wt.% (80 ± 10% less than the pristine), and the main metals were Al 
and Fe. The concentration of other element did not change considering the standard deviation of the measures. 
Five different loading concentrations were tested for each metal ion studied: 0.01, 0.1, 0.5, 1, and 10 mM. The 
amount of adsorbed metal ion was measured as the difference in concentration between the loading and the 
final solution, after incubating the byssus matrix for 72 h at room temperature (25 °C). The results of the metal 
ion removal at pH 7 are reported in Table 1 and Figure S1, and the discoloration of three colored metal ion 
solutions, i.e. Mn2+, Fe3+, and Cu2+, due to the byssus’ metal ion adsorption are shown in Fig. 2. The system 
was studied in a buffered solution using bis–TRIS, a non-chelating buffer, at pH 7. For Fe3+ a bicine buffer was 
used since iron (III) hydroxide precipitated in bis–TRIS. The analysis of the metal ion solution after the byssus 

Table 1.   Metal ion adsorption at pH 7 calculated as the difference between the initial and final concentration 
of the loading solution. For each condition, the results are reported in mg·g−1 of the byssus matrix above and 
the percentage of metal adsorbed from the solution below. The results not reported gave problems due to ion 
desorption from the matrix. (*, #) No difference was observed with the loading solution. The standard deviation 
is reported. # The desorption concentration of metal ions from the byssus matrix in 2 ml of the buffer-only 
solutions are reported in table S4.

0.01 mM 0.1 mM 0.5 mM 1 mM 10 mM

Cd2+
0* (3 ± 1) × 10–2 0.4 ± 0.1 0.66 ± 0.02 21.7 ± 0.3

0* 9 ± 3 18 ± 6 15.7 ± 6 49.6 ± 0.4

Co2+
(5.4 ± 0.1) × 10–3 (5.0 ± 0.6) × 10–2 0.25 ± 0.2 0.43 ± 0.02 9.2 ± 0.1

26 ± 1 20 ± 2 19 ± 1 16.4 ± 0.7 34 ± 5

Cu2+
(6 ± 6) × 10–3 (12 ± 2) × 10–2 0.63 ± 0.03 0.85 ± 0.07 14 ± 2

30 ± 30 56 ± 7 52 ± 2 35 ± 3 55 ± 6

Fe3+
– – – 0.24 ± 0.09 7.5 ± 0.4

– – – 10 ± 4 33 ± 2

Mn2+
0* 0* 0.07 ± 0.05 0.47 ± 0.03 16.66 ± 0.01

0* 0* 6 ± 4 17 ± 1 66.29 ± 0.01

Ni2+
(1.3 ± 0.1) × 10–3 (6.8 ± 0.5) × 10–2 0.399 ± 0.003 0.71 ± 0.09 10.2 ± 0.5

8 ± 1 29 ± 2 31.6 ± 0.2 29 ± 3 39 ± 2

V3+
(2.0 ± 0.2) × 10–3 (3.8 ± 0.1) × 10–2 0.21 ± 0.02 0.58 ± 0.02 1.3 ± 0.1

11.4 ± 0.8 21.0 ± 0.6 24 ± 2 26 ± 1 7.5 ± 0.6

Zn2+
– (0.20 ± 0.05) × 10–2 0.10 ± 0.01 0.33 ± 0.01 12.8 ± 0.7

– 1.0 ± 0.3 9 ± 2 14.6 ± 0.6 55 ± 3
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treatment revealed the presence of trace metal ions released from the byssus matrix, most of them were largely 
below 10 ppb. Only three metal ions were released in an interfering quantity from the matrix, Al (~ 100 µM), Fe 
(~ 40 µM), and Zn (~ 10 µM). For this reason, reliable data for Al3+ and for low loading concentrations of Fe3+ 
and Zn2+ were not obtained. It was also difficult to determine the uptake of Mn2+ at a concentration lower than 
0.1 mM, this was due to the partial overlap of the emission bands of Fe and Mn that made difficult to discriminate 
the two contributes and detect the small concentration difference between final and loading solution. The byssus 
matrix was also tested at pH 4 since in this condition His residues are protonated and no more able to chelate 
metals41. Four metal ions were tested at this pH: Ni2+ and Cu2+ ions that have a high affinity to His, V3+ that has 
a high affinity to DOPA, and Mn2+ that has no preferential binding sites. The results of the metal ion removal at 
pH 4 are reported in Table 2 and Figure S2. Also at pH 4 desorption of metal ions from the byssus matrix was 
observed, as occurred at pH 7. Al ( ~ 50 µM), Fe (~ 50 µM), and Zn (~ 5 µM) were released from the matrix.

The absorption data were interpolated using three different isotherm models: Langmuir, Freundlich, and 
Dubinin- Radushkevich42,43. The statistics of the interpolations are reported in Table 3, Figure S3, and S4. The 
byssus matrix uptake of different metal ions (reported in mol·g-1 from the 10 mM solutions) was compared using 
a T-test (ν ≥ 2, p = 0.05). This test showed no significant differences among Cd2+, Co2+, Ni2+, Zn2+ and Cu2+ at pH 
7. A significant difference was not detected among Mn2+ at pH 4 and 7, and V3+ at pH 4. The metal ions absorbed 
into the byssus were also quantified in few representative matrices. Before the measurements, the byssus matrices 
were carefully washed with deionized water and digested in acid. The data (Table S3) show that not all the metal 
ions removed by the solution were in the byssus, suggesting that a fraction desorbed during the washing process.

SEM images were acquired to visualize if the presence of metal ion induces morphological changes on the sur-
face of the byssus matrix. The surfaces of byssus matrices treated with the 10 mM solution and with the 0.5 mM 
solution were observed. Two cases were discriminated. Case 1: no morphological differences were observed on 
the surfaces of the samples treated at the two concentrations examined. Case 2: the byssus thread treated using 
the 10 mM solution showed a smooth surface where globular structures were not visible, differently from threads 
treated with 0.5 mM metal ion solutions. The metal ions inducing this surface morphology alteration (case 2) 
at pH 7 were Co2+, Cu2+, Fe3+, and Mn2+, while Cd2+, Ni2+, V3+, and Zn2+ were in case 1. At pH 4 no metal was 
able to induce this change (case 1). Representative images of the byssus surface were reported in Fig. 3, while 
the complete set of images is reported in Figures S5 and S6.

Figure 2.   Camera picture of metal solutions and byssus. The 10 mM Mn2+, Fe3+, or Cu2+ solution before and 
after being in contact with the byssus are reported. After the treatment, a decrease in the color intensity of the 
solution is observed. The byssus exposed to Fe3+ assumed a darker coloration.

Table 2.   Metal adsorption at pH 4 calculated as the difference between the initial and final concentration 
of the loading solution. For each condition, the results are reported in mg·g−1 of the matrix above and the 
percentage below (#). The standard deviation is reported. # The desorption concentration of metal ions from the 
byssus matrix in 2 ml of the buffer-only solutions are reported in table S4.

0.01 mM 0.1 mM 0.5 mM 1 mM 10 mM

Cu2+
(2.55 ± 0.03) × 10–3 (22.34 ± 0.06) × 10–2 1.079 ± 0.002 2.12 ± 0.03 10.4 ± 0.6

93.6 ± 0.8 93.92 ± 0.06 89.9 ± 0.4 88 ± 1 44 ± 3

Mn2+
(2.26 ± 0.08) × 10–3 (19.4 ± 0.1) × 10–2 0.93 ± 0.02 2.04 ± 0.05 16.96 ± 0.01

80 ± 3 77.1 ± 0.4 75 ± 1 78 ± 2 66.46 ± 0.01

Ni2+
(25.1 ± 0.5) × 10–3 (19.7 ± 0.2) × 10–2 0.97 ± 0.03 1.92 ± 0.01 4.5 ± 0.2

89 ± 2 87 ± 1 84 ± 2 82.2 ± 0.2 21.2 ± 0.8

V3+
(1.03 ± 0.01) × 10–3 (14.6 ± 0.3) × 10–2 0.878 ± 0.001 1.76 ± 0.01 15.51 ± 0.07

82.9 ± 0.3 85 ± 1 96.46 ± 0.03 96.6 ± 0.2 87.8 ± 0.3
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Discussion
The use of environmentally undesired wastes to purify polluted industrial and environmental waters from metal 
ions is a field of applied research of growing interest3,13–15,17. Thus, in an era environmentally wise, several materi-
als have been tested with a mechanistic approach, even if they do not uptake metal ions in their natural function. 
The byssus is a complex matrix, which makes difficult to understand the mechanism of molecular uptake of 
metal ions, evolved to chelate metal ions, a key element in its natural function. The main goal of this research is 
to test the byssus capability to absorb a wide range of metal ions in two model conditions of pH. To verify this 
capability, while trying to understand the mechanism of metal ion uptake, simple chemical systems were used. 
In them only one metal ion was present, allowing us to discriminate the byssus capability uptake, even if this is 
an important limitation compared to real cases.

Although is reasonable to attribute the metal ions uptake to the high content of DOPA and His residues, 
our results clearly suggest that many other binding sites are present, which could be no specific. The choice of 
the metal ions to be used in this research was addressed by a double objective, to prove the capability to uptake 
toxic and hazardous ions (e.g. Cd2+) and to understand the uptake mechanism due to specific interactions with 
functional groups (e.g. V3+ with DOPA40). Moreover, to simplify the chemical system, only metal chloride salts 
dissolved in buffers that avoided the formation of precipitates were used. All the solutions at the start and the end 

Table 3.   Calculated parameters from the fitting of the adsorption isotherms with different models. The R2 
values from the isotherm model(s) that indicated the best fitting are highlighted in bold. (–) the values of KL 
and qm were not reported since negative and with no chemical-physical meaning.

Metal

Langmuir Freundlich Dubinin–Radushkevich

R2
KL
(mg-1)

qm
(mg g-1) R2

KF
(mg g-1) n R2

KD
(mol2 kJ-2)

qD
(mg g-1)

pH 7

Cd2+ 0.915 – – 0.978 0.00107 0.652 0.566 53.3 1.90

Co2+ 0.998 0.0279 0.494 0.976 0.00909 0.938 0.399 0.472 0.485

Cu2+ 0.298 0.259 0.0723 0.912 0.0267 0.922 0.544 0.304 0.585

Mn2+ 0.593 – – 0.975 7.53·10–6 0.365 0.805 695 7.13

Ni2+ 0.987 – – 0.984 0.00755 0.813 0.552 0.658 0.574

V3+ 0.993 – – 0.937 0.00905 1.05 0.766 0.507 0.286

Zn2+ 0.925 – – 0.993 6.16·10–5 0.450 0.709 32.1 0.895

pH 4

Cu2+ 0.989 0.135 4.43 0.955 0.356 1.50 0.756 0.0741 1.99

Ni2+ 0.984 0.182 1.83 0.902 0.224 1.64 0.764 0.0964 1.32

Mn2+ 0.979 0.0755 2.19 0.997 0.144 1.10 0.621 0.164 1.74

V3+ 0.613 – – 0.832 0.622 1.18 0.918 0.730 10.6

Figure 3.   SEM images of the byssus surface. Case 1: Zn2+ treated sample at pH 7 where no difference was 
observed between the two concentrations examined, 10 mM and 0.5 mM. This image is representative of the 
surface morphology effect of Cd2+, Ni2+, V3+, and Zn2+ at pH 7 and for all metals studied at pH 4. Case 2: Mn2+ at 
pH 7 where the 10 mM solution treated sample showed a smoother surface than those treated with the 0.5 mM 
solution. This image is representative of the surface morphology effect of Co2+, Cu2+, Fe3+, and Mn2+ at pH 7. For 
each condition, two different magnifications are reported.
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of each adsorption experiment were clear and no insoluble phase was observed. The presence of soluble species 
was confirmed by a tentative of metal ion speciation performed using the software Visual MINTEQ44. It revealed 
that the metal ions at pH 7 were present as soluble aqueous species, complex ions with chloride45, bis–TRIS46 and 
bicine47. At pH 4, Cu2+, Mn2+, and Ni2+ were mainly present as aqueous ions. V3+ has a complex chemistry48 and 
formed oxyanion complexes at both pH values49. However, this ion was still used since it is a proxy for DOPA 
chelation40. Despite the importance of the metal ion speciation, the complexity of the sorption matrix due to its 
richness of functional groups and different potential adsorption sites makes difficult to understand what metal 
ion species was adsorbed. This is a weakness from the point of view of understanding the adsorption mechanism, 
but it represents the strength of this matrix in terms of versatility and efficiency.

The utilization of byssus threads for metal ion uptake required a starting de-metalation process to produce 
metal ion free binding sites. This process, which reduced of 80 ± 10% of the metal ion content, did not affect the 
molecular composition, unless at least not in the case of side reactions involving DOPA cross-linking, as already 
reported34,40. After this simple procedure a low amounts of Al3+ from the aluminum rich sediments50 glued to the 
plaques, and Fe3+ and Zn2+ not completely removed from the byssus, desorbed during the uptake experiments, 
as reported in the result section.

Despite this apparent limitation, the capability of metal ion uptake by the byssus matrix (e.g.: 22 mg·g−1 for 
Cd2+, equal to 2 wt.% at pH 7) was higher than many other waste biomasses3,17. Similar efficiencies were reported 
using the waste of jatropha fruit51, and the natural biomass collected from an irrigation pond52, but these bio-
masses did not show the versatility of the byssus in terms of pH conditions and metal ion variety.

In the following discussion, the uptake of the different metal ions at the two pH conditions is analyzed. This 
discussion is necessary mainly mechanistic, due to the complexity of the matrix that does not allow determining 
uniquely the chemistry of the binding sites for the different metal ions. Cd2+, Co2+, and Zn2+ were adsorbed by 
the byssus (as mol·g−1) from solution at pH 7 with a similar slope of adsorbed metal ion vs. loading concentra-
tion, such slope was dissimilar and higher for Ni2+ (Fig. 4). Their adsorption isotherms fitted slightly better a 
Freundlich isotherm model (Table 3), which describes heterogeneous binding sites, than a Langmuir one, which 
requires homogeneous mono binding sites. In Freundlich model KF is a constant indicating the adsorption capac-
ity (mg·L−1) and the empirical parameter n represents the adsorption energy of the sites53. The Langmuir isotherm 
can be parametrized by dimensionless constant called separation factor (RL) that can be calculated by the equa-
tion: RL = 1/(1 + KL·C0), where C0 (mg·L−1) is the initial metal concentration and KL (L·mg−1) is the Langmuir 
constant. The value of RL indicates if the adsorption is unfavourable (RL > 1), linear and totally reversible (RL = 1), 
favourable (0 < RL < 1), or irreversible (RL = 0)54,55. In the Freundlich isotherm n value for the Cd2+, Co2+, Ni2+, and 
Zn2+ was below 1. This indicated an increasing adsorption with the concentration in solution and was associated 
with low values of KF. The fitting with the Langmiur model produced a realistic value of RL only for Co2+, while 
for Cd2+, Ni2+, and Zn2+ RL indicated an unreal desorption process. We can infer that the complex byssus matrix 
could have diverse binding sites only for Co2+29,56, which have to be mono and energetically equivalent at pH 7. 
The RL value of Co2+ was 0.98 and 0.06 in the 0.01 mM and 10 mM solution, respectively, indicating a change of 

Figure 4.   Graph of the adsorbed metal ion (mol·g−1) Cd2+, Co2+, Cu2+, Ni2+, and Zn2+ at the investigated metal 
ion loading concentrations, excluding the 10 mM solution to avoid artifact due to the saturation of the binding 
sites. From top to bottom, the elements reported are (light blue) Cu2+, (orange) Ni2+, (yellow) Co2+, (grey) Cd2+ 
and (blue) Zn2+. The standard deviation is reported.
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ion adsorption type from linear to irreversible. In addition, the low RL value at high initial Co2+ concentrations 
indicated a favorable adsorption in these conditions, as deducted from the Freundlich isotherm54. It was also 
observed that increasing Co2+ concentration the byssus surface morphology changed, suggesting an effect on 
the byssus surface structure.

At pH 4 His residues were completely protonated and no more able to bind metal ions41. In this condition, 
Cu2+ and Ni2+ were used as model metal ions with high His affinity and diverse chemistry57. V3+ was tested as 
a metal ion representative of those with a high affinity for DOPA residues40, and naturally absent in the byssus. 
Mn2+ as metal ion with no specific interaction with both binding sites.

The adsorption data showed that for metal ion concentrations lower than 10 mM the byssus matrix has a 
higher uptake at pH 4 than pH 7. In those conditions, the lowest percentage of adsorption was 75%, despite the 
fact that His-based binding sites were protonated. This higher uptake might be due to the speciation of metal 
ions (i.e. presence of oxyanions) and to the effect of protonation of the physical properties of the byssus matrix. 
Indeed, collagen-like molecules of the byssus thread can protonate and swell in acid solutions58. This physical 
state should favor metal ion diffusion and made accessible specific binding sites. This agreed with the observation 
that adsorption isotherms were described better by the Langmuir model than the Freundlich one for Cu2+, Ni2+, 
and Mn2+. As discussed for Co2+, Cu2+ and Ni2+ showed RL values close to unity in 0.01 mM solutions (0.92 and 
0.89, respectively) and close to zero in 10 mM solutions (0.008 and 0.024, respectively). These data indicated a 
more favorable adsorption for Cu2+ than Ni2+. Anyway, both the metal ions showed a shift from a linear to an 
almost irreversible adsorption with an increasing of the initial metal concentration. We could speculate that 
these metal ions have a stronger binding to the matrix at higher initial concentrations. On the other hand, the 
Freundlich isotherm fitting gave n > 1 (Table 3), meaning that a lower adsorption was observed by increasing the 
concentration of the metal solution. This might be explained by a saturation of the binding sites.

When the 10 mM solutions were used, Ni2+ and Cu2+ reduced their maximum uptake changing pH from 7 
to 4 (55 ± 5% and 23 ± 4% less metal respectively). This reduction was significantly similar (T-test, ν ≥ 2, p = 0.05) 
if calculated as mol·g-1 ( ̴ 7 × 10–5 mol·g−1) suggesting that the same number of binding sites were lost, probably 
His-based.

Cu2+, Cd2+, Co2+, Ni2+, and Zn2+ showed many similarities, as the same metal adsorption (in mol·g−1) at pH 
7. Despite that at pH 4 the byssus showed a higher uptake for Cu2+ than the Ni2+ and that at pH 7 it showed a 
slope of adsorbed metal ion (mol·g−1) vs. loading concentration (mM) (Fig. 4) higher than that of Ni2+. These 
similarities could indicate that Cu2+ have access to the same binding sites of Ni2+, Cd2+, Co2+, and Zn2+, with a 
higher affinity or a higher number of non-pH dependent binding sites. The latter could be amino and sulphur 
ligands or, considering the high amount of Cu2+ adsorbed, non-specific binding sites.

As already discussed Cu2+, Cd2+, Co2+, Ni2+, and Zn2+ adsorption isotherms were described better by a Fre-
undlich model at pH 7 and by a Langmuir model at pH 4. These metals showed a positive correlation between 
adsorption and initial metal ion concentration at pH 7 and an opposite trend at pH 4 (probably due to the satura-
tion of the binding sites). For Cu2+ the latter indication of energetically equivalent mono-binding site (Langmiur 
model) available at pH 4 was associated to a conservation in the final morphology of the byssus. In fact, Cu2+ 
treated byssus showed a surface morphology related to loading concentration as in case 2 (changed) at pH 7 and 
as in case 1 (unchanged) at pH 4 (Fig. 3, Figure S5 and S6). This microscopy observation apparently does not 
fit with the hypothesis of the collagen swelling at pH 4, with the consequent change of morphology upon metal 
ion uptake. However, it has to be considered that the collagen-like structures of the byssus are located in the 
bulk of the byssal threads and their swelling should not affect the surface texture and morphology of the byssus.

Ion manganese (II), instead, showed no difference in the uptake using the 10 mM solution in both pHs inves-
tigated, relying probably on non-pH-dependent binding sites. Moreover, as observed for other metal ions tested, 
an increase in the Mn2+ uptake percentage at lower concentrations was observed at pH 4. Interestingly, only at 
pH 7 the 10 mM Mn2+ solution induced a change on the morphology of the surface of the matrix. Moreover, at 
pH 4 the adsorption of Mn2+ could be described with both Langmuir and Freundlich isotherm models. This sug-
gested the anchoring on different binding sites, probably made accessible by the collagen swelling, with inversion 
of concentration dependent behavior as observed for Cu2+ and Ni2+.

The V3+ uptake was higher at pH 4 than pH 7 (16 mg·g−1 and 1 mg·g−1, respectively) as expected from its 
speciation. The adsorption isotherms could be described by both Dubinin–Radushkevich model (DR) and 
Freundlich model. At pH 7, n was close to 1 showing an almost linearity of adsorption with the starting metal 
concentration. At pH 4, the fitting with the DR model allowed to calculate the average free energy of adsorp-
tion [E = (2·KD)−1/2], 0.828 kJ·mol−159. This fitting implies an adsorption mechanism with a Gaussian distribu-
tion of energy onto a heterogeneous surface. The higher uptake at pH 4 can be due, among other factors, to a 
better availability of the DOPA residues. Dopamine, the de-carboxylated form of DOPA, is known to undergo 
oxidation at pH > 560, preventing the anchoring of metal ions. We suggest that this occurred during the byssus 
matrix preparation, where the pH is neutral at the end, and the 72 h of incubation at pH 7. That oxidation would 
explain the relatively low V3+ and Fe3+ uptake compared to other metal ions. On the contrary, at a pH below 5 
dopamine converts to trihydroxylate form, which coordinates metal ions61. This change in the redox state of the 
DOPA can explain why the matrix was able to chelate over 10 times more V3+ at pH 4 than pH 7. Differently to 
the other metals tested, V3+ did not fit the Langmuir model at pH 4. Thus, we could assume that this metal ion 
did not rely on the same non-pH dependent binding sites of the other metal ions tested. The fit of a DR model 
might be another clue of the DOPA affinity for the vanadium. In fact, the Gaussian distribution of energy on 
heterogeneous binding sites might arise from the diverse chemical structures that DOPA assume from its oxida-
tion/reduction cycle, when different crosslinking and hydroxylation reactions might take place creating a range 
of different catechol-based binding sites59.

An applicative question could be whether to reuse the byssus after metal adsorption or to dispose it. The bys-
sus can be regenerated by chemical treatment that chelate metals associated to the protonation of its metal ion 



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22222  | https://doi.org/10.1038/s41598-020-79253-7

www.nature.com/scientificreports/

chelating functional groups. On the other hand, the byssus is a proteic material that can be pyrolyzed, leaving a 
residue rich of metal ions. Thus, it can represent also a tool to recover metal ions from polluted waters.

Conclusion
In this study we explored the potential of byssus, a waste material from mussels, to uptake metal ions using sim-
ple model chemical systems. This allowed us to evaluate the capability of the byssus matrix to uptake different 
metal ions in two pH conditions, even if the chemical systems do not represent the complexity of environmental 
matrices. The byssus is an excellent metal ion-anchoring matrix, especially at pH 4, being suitable and promising 
for applications, as both disposable and reusable cheap matrix. The results gained in this research, combined 
with the reported adsorbing capability for aromatic dyes29,62, make the byssus a very promising cheap matrix 
to treat wastewaters from tanneries and paper industries, which usually combine dyes and metal ions to get 
colored compounds.
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