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Background: Bone parameters derived from HR-pQCT have been investigated on a
parameter-by-parameter basis for different clinical conditions. However, little is known
regarding the interrelationships of bone parameters and the spatial distribution of these
interrelationships. In this work: 1) we investigate compartmental interrelationships of bone
parameters; 2) assess the spatial distribution of interrelationships of bone parameters; and
3) compare interrelationships of bone parameters between postmenopausal women with
and without a recent Colles’ fracture.

Methods: Images from the unaffected radius in fracture cases (n=84), and from the non-
dominant radius of controls (n=98) were obtained using HR-pQCT. Trabecular voxel-
based maps of local bone volume fraction (L.Tb.BV/TV), homogenized volumetric bone
mineral density (H.Tb.BMD), homogenized mFEA-derived strain energy density
(H.Tb.SED), and homogenized inter-trabecular distances (H.Tb.1/N) were generated; as
well as surface-based maps of apparent cortical bone thickness (Surf.app.Ct.Th),
porosity-weighted cortical bone thickness (Surf.Ct.SIT), mean cortical BMD
(Surf.Ct.BMD), and mean cortical SED (Surf.Ct.SED). Anatomical correspondences
across the parametric maps in the study were established via spatial normalization to a
common template. Mean values of the parametric maps before spatial normalization were
used to assess compartmental Spearman’s rank partial correlations of bone parameters
(e.g., between H.Tb.BMD and L.Tb.BV/TV or between Surf.Ct.BMD and Surf.app.Ct.Th).
Spearman’s rank partial correlations were also assessed for each voxel and vertex of the
n.org May 2021 | Volume 12 | Article 5684541
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spatially normalized parametric maps, thus generating maps of Spearman’s rank partial
correlation coefficients. Correlations were performed independently within each group,
and compared between groups using the Fisher’s Z transformation.

Results: All within-group global trabecular and cortical Spearman’s rank partial
correlations were significant; and the correlations of H.Tb.BMD–L.Tb.BV/TV,
H.Tb.BMD–H.Tb.1/N, L.Tb.BV/TV–H.Tb.1/N, Surf.Ct.BMD–Surf.Ct.SED and
Surf.Ct.SIT–Surf.Ct.SED were significantly different between controls and fracture
cases. The spatial analyses revealed significant heterogeneous voxel- and surface-
based correlation coefficient maps across the distal radius for both groups; and the
correlation maps of H.Tb.BMD–L.Tb.BV/TV, H.Tb.BMD–H.Tb.1/N, L.Tb.BV/TV–H.Tb.1/N,
H.Tb.1/N–H.Tb.SED and Surf.app.Ct.Th - Surf.Ct.SIT yielded small clusters of significant
correlation differences between groups.

Discussion: The heterogeneous spatial distribution of interrelationships of bone
parameters assessing density, microstructure, geometry and biomechanics, along with
their global and local differences between controls and fracture cases, may help us further
understand different bone mechanisms of bone fracture.
Keywords: Colles’ fracture, HR-pQCT (high-resolution peripheral quantitative computed tomography), bone,
interrelationships, spatial analysis
INTRODUCTION

Osteoporosis is defined as a skeletal disorder characterized by
compromised bone strength predisposing a person to an
increased risk of fracture (1). Bone strength depends on both
bone mineral density (BMD) and bone quality, which includes
factors such as bone microstructure, micro fracture, bone
turnover, and mineralization (1). Therefore, areal BMD
(aBMD) derived from dual energy X-ray absorptiometry
(DXA), which is the clinical standard for osteoporosis
assessment, provides a limited evaluation of bone strength (2).
This limitation has been manifested with non-osteoporotic
subjects (T-score > -2.5) sustaining fragility fractures (3, 4).
Consequently, additional assessments such as volumetric BMD
(BMD) and quantification of the trabecular and cortical bone
microstructure and geometry, might improve the prevention of
fragility fractures (5–8).

High-resolution peripheral quantitative computed
tomography (HR-pQCT) enables in vivo visualization of the
three-dimensional (3D) bone microstructure at the distal radius
and tibia with high spatial resolution and a low level of radiation
exposure (9, 10). Because of its small voxel size (82 mm isotropic;
61 mm isotropic in the second-generation scanner), this unique
medical imaging modality can distinguish between cortical and
trabecular bone, and allows 3D assessments of microstructure,
density, and geometry. In addition, HR-pQCT provides the
capability of estimating bone strength using micro-finite
element analysis (mFEA) (11, 12). Since the introduction of
this high-resolution imaging modality, many studies have been
performed to evaluate the effectiveness of several bone
microstructural features in the assessment of various bone
disorders (13).
n.org 2
Colles’ fracture is the most common fragility fracture in the
distal radius, with osteoporosis being a risk factor, especially for
postmenopausal women (14). Existing studies using HR-pQCT
have demonstrated that lower BMD and deterioration of bone
microstructure and geometry in the cortical and trabecular bone
compartments are associated with fragility fractures in
postmenopausal women (5–7, 11, 15–17), particularly for wrist
fracture (12, 16, 18, 19). However, although it is known that
density, quality of bone microstructure, geometry, and bone
strength estimates derived from mFEA are significantly
correlated (15), it is unknown how these associations are
affected in subjects sustaining fragility fractures. Furthermore,
it is unknown if these associations are spatially homogeneous,
even in healthy subjects. We hypothesize than in subjects with
a recent Colles’ fracture, there is a disruption in the
interrelationship of bone parameters. The purpose of this work
was then to investigate interrelationships of bone parameters in
postmenopausal women with and without a recent Colles’
fracture to help our understanding of potential mechanisms of
bone fracture using HR-pQCT. In particular, interrelationships
of density, microstructural, geometrical and biomechanical
parameters derived from mFEA were investigated globally and
spatially for both the trabecular and cortical bone compartments.
METHODS

Subjects
This work was based on existing data from the study of Melton
et al. (18). Recruited subjects were 100 postmenopausal
women newly diagnosed with a Colles’ fracture in Olmsted
May 2021 | Volume 12 | Article 568454
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County, Minnesota; and 105 postmenopausal controls
frequency-matched based on the expected age distribution
of forearm fractures in that community. The event that
precipitated the fracture was characterized according to the
scheme of Palvanen and colleagues (20). Controls had no
history of another osteoporotic fracture that occurred after age
35 years.

This research was conducted in accordance to the regulations
of the participating institutions and informed consent was
obtained from all participants prior to enrollment. Analyses
were performed based on de-identified data.

Imaging
Imaging of the distal radius for each subject was performed using
an HR-pQCT system (XtremeCT; Scanco Medical AG,
Brüttisellen, Switzerland). The forearm was fixed in a carbon
fiber cast, then inserted into the gantry of the scanner. The non-
dominant side in controls and the unaffected side in fracture
cases was scanned. The starting point of the fixed scan region was
9.5 mm proximal from a reference line set manually at the
endplate in the distal radius. Scan settings were as follows:
voltage 60 kVp, current 900 mA, integration time 100 ms, and
effective dose 4.2 mSv. A 9.02 mm section spanned by a total of
110 slices was imaged with an isotropic voxel size of 82 mm.
Subjects were rescanned if clear images were not obtained. For
this study, all scans were scored for presence and severity of
motion artifacts using the current artifact grading scheme of the
manufacturer (21). Grades are based on the appearance of
horizontal streakings, contiguity of cortical bone, and amount
of trabecular smearing. Grade 1 represents no motion artifacts,
Grade 2 minor motion artifacts, Grade 3 moderate motion
artifacts, and Grades 4 and 5 represent severe and extreme
motion artifacts, respectively. Only scans with image quality
scores of 1 to 3 were analyzed in this work. Figure 1 shows
Frontiers in Endocrinology | www.frontiersin.org 3
representative axial cross-sections of HR-pQCT scans of the
distal radius for three controls and three fracture cases.

Image Analysis
Standard Analysis
Bone segmentation from HR-pQCT images was performed using
the standard evaluation software provided by the manufacturer
as mentioned in other studies (22, 23). Briefly, the periosteal
contours of the distal radius were identified semi-automatically
using an edge-finding algorithm, checked visually, and modified
manually as necessary (24). Then, a threshold-based algorithm
was used to segment the cortical and trabecular bone
compartments enabling compartment-specific assessments of
density, microstructure, geometry, and biomechanics (25).

The following parameters were measured for the trabecular
and cortical bone compartments: trabecular BMD (Tb.BMD),
trabecular bone volume fraction (Tb.BV/TV), trabecular number
(Tb.N), trabecular separation (Tb.Sp), cortical BMD (Ct.BMD),
and cortical thickness (Ct.Th) (26).

In addition, assessment of apparent biomechanical
parameters was accomplished using linear mFEA as previously
described in the literature (27). Briefly, a mesh of isotropic
elements was generated from the voxel-based representation of
trabecular and cortical bone. Elements in this mesh were
assigned an elastic modulus of 6.829 GPa and a Poisson ratio
of 0.3. Using the iterative solver provided by the manufacturer,
reaction forces on the superior and inferior ends of the model
were then calculated for a 1% axial compression. Based on these
estimates, failure load (mFEA.FL) and bone stiffness
(mFEA.Stiffness) were computed as in Mueller et al. (27).

Spatial Analysis
To incorporate parameters assessing bone microstructure and
biomechanics in our spatial analyses, we generated maps
FIGURE 1 | Representative axial cross-sections of HR-pQCT images of the distal radius for three controls (top) and three fracture cases (bottom).
May 2021 | Volume 12 | Article 568454
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representing inter-trabecular distances (Tb.1/N) and mFEA-
derived strain energy density (SED; J/mm3). SED is defined as
the potential energy stored in a volume by virtue of an elastic
deformation (18). Then to obtain smooth maps of bone
parameters suitable for voxel-wise associations at the
population level, we generated homogenized maps of BMD,
Tb.1/N and SED, as well as maps representing local
assessments of bone volume fraction using spherical kernels
(r=11 for BMD, SED and BV/TV; r=5 for Tb.1/N) (28).

Periosteal surface-based maps encoding the local apparent
cortical bone thickness (Surf.app.Ct.Th), effective cortical bone
thickness taking into account porosity and partial volume effects
(Surf.Ct.SIT; streamline integral thickness), mean cortical BMD
(Surf.Ct.BMD), and mean cortical SED (Surf.Ct.SED) at each
vertex were also generated as previously described by Carballido-
Gamio et al. enabling population-based vertex-wise associations of
cortical bone parameters (28). For this purpose, the cortical
compartment was identified with an in-house implementation of
a non-local fuzzy c-means (NL-FCM) algorithm using BMDmaps,
bone segmentations, and distances to the periosteal surfaces as
clustering features (28). Then, soft cortical bone classification was
performed using a fuzzy s-shaped membership function assigning
to each voxel a value between 0 (no cortical bone) and 1 (cortical
bone) (29), indicating the degree of membership of a voxel to the
category of cortical bone (Figure 2). Using the Laplace’s equation
approach, streamlines providing one-to-one correspondence
Frontiers in Endocrinology | www.frontiersin.org 4
without crossings between the periosteal and the endosteal
surfaces were computed. The lengths of these streamlines
represent the Surf.app.Ct.Th, while the integrals of the soft
cortical bone classifications along the trajectories of the
streamlines from the periosteal to the endosteal surfaces
represent the Surf.Ct.SIT. The mean of BMD and SED values
along the trajectories of the streamlines represent the Surf.Ct.BMD
and Surf.Ct.SED, respectively.

The smooth voxel-based and the surface-based parametric maps
described above were then spatially normalized to a common
template of the distal radius as previously described (28). This
spatial normalization step established anatomical correspondences
across the parametric maps of all subjects in the study enabling the
evaluation of voxel-wise and vertex-wise interrelationships of bone
parameters. The voxel-based spatially-normalized maps were
eroded to avoid the cortical bone and generate spatially-
normalized maps of: 1) homogenized Tb.BMD (H.Tb.BMD),
2) homogenized Tb.1/N (H.Tb.1/N), 3) homogenized Tb.SED
(H.Tb.SED), and 4) local Tb.BV/TV (L.Tb.BV/TV).

Statistical Analysis
Standard Analysis
Mean values of parameters of bone density, microstructure,
geometry and biomechanics were compared between controls
and fracture cases with linear regression models adjusting for
age, height, and weight.
FIGURE 2 | The standard bone segmentation provided by the manufacturer was used to generate a bone mask. The periosteal surface was then used to compute
a distance map, that together with the BMD map and the bone mask was fed to a non-local fuzzy c-means clustering algorithm (NL-FCM) to identify the endosteal
surface. BMD values within the cortex were used to generate a s-shaped membership function that mapped each BMD value to a value between 0 and 1, indicating
the degree of membership of each voxel to the category of cortical bone.
May 2021 | Volume 12 | Article 568454
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For each compartment, within-group interrelationships of
bone parameters were then evaluated using Spearman’s rank
partial correlations adjusting for age, height and weight. These
correlation coefficients were then compared between controls
and fracture cases using the Fisher’s Z transformation.

P-values in these statistical tests were considered significant if
they were less than 0.05.

Spatial Analysis
To assess within-group spatial interrelationships of bone
parameters, trabecular voxel-wise and cortical vertex-wise
Spearman’s rank partial correlations adjusted for age, height,
weight, and shape (90% of variance = first 4 principal
components) were computed using the spatially-normalized
parametric maps. This step generated correlation coefficient
maps and their corresponding P-value maps in the template
space. Given the large number of correlations, P-value maps were
corrected for multiple comparisons using the false discovery rate
method (FDR; q=0.05) (30). Spatial comparisons of the
correlation coefficients between controls and fracture cases
were then performed with voxel-wise and vertex-wise Fisher’s
Z transformations generating P-value maps that were also
corrected for multiple comparisons using FDR (q = 0.05).

To better understand the spatial correlations, we also
performed statistical analyses of the smooth voxel-based maps
of trabecular parameters and the surface-based maps of cortical
parameters with no spatial normalization. In particular, we:
1) compared mean parametric values between controls and
cases using linear regression models adjusting for age, height,
and weight; 2) performed within-group Spearman’s rank partial
correlations of bone parameters within each compartment
adjusting for age, height and weight; 3) performed within-
Frontiers in Endocrinology | www.frontiersin.org 5
group Spearman’s rank partial correlations of bone parameters
with mFEA.FL within each compartment adjusting for age, height
and weight; and 4) compared the correlation coefficients between
controls and fracture cases using Fisher’s Z transformations.
P-values in these statistical tests were considered significant if
they were less than 0.05.
RESULTS

Subject Characteristics
The characteristics of the subjects included in this study are
shown in Table 1. Twenty-three scans out of 205 were excluded
because of severe motion artifacts (grade > 3). Therefore, 182
post-menopausal women were included in the analysis: 98
controls and 84 with a newly diagnosed Colles’ fracture.
Controls and fracture cases showed no significant differences
in age, height, and weight (all p > 0.05).

Standard Analysis
Global Comparisons
The differences between groups in BMD, bone microstructure,
geometry and mFEA parameters are summarized in Table 2.
Subjects with fracture had significantly lower Tb.BMD, Tb.BV/
TV, Tb.N, Ct.BMD and Ct.Th (all p < 0.01), and significantly
higher Tb.Sp (p = 0.015) than controls. In addition, the fracture
cases had significantly lower mFEA.FL and mFEA.Stiffness than
controls (both p < 0.001).

Global Correlations
All the interrelationships of trabecular and cortical bone
parameters were significant within each group (p < 0.001), but
TABLE 1 | Subject characteristics.

Controls Fracture cases p-value

Number 98 84
Age (years) 65.3 ± 9.3 63.8 ± 9.3 NS
Height (cm) 161.2 ± 5.6 161.8 ± 5.7 NS
Weight (kg) 73.6 ± 13.8 74.4 ± 17.7 NS
May 2021 | Volume 12 | Article
Values are shown as mean ± standard deviation.
Two-sample t-test.
NS = P ≥ 0.05.
TABLE 2 | Bone parameters assessed with the standard analysis method.

Parameter (units) Controls Fracture cases p-value

Tb.BMD (mg/cm3) 144.6 ± 39.6 121.1 ± 39.3 <0.001*
Tb.BV/TV 0.23 ± 0.05 0.19 ± 0.05 <0.001*
Tb.N (1/mm) 1.67 ± 0.36 1.47 ± 0.38 <0.001*
Tb.Sp (mm) 0.64 ± 0.30 0.74 ± 0.26 0.015*
Ct.BMD (mg/cm3) 886.0 ± 73.0 858.4 ± 76.1 <0.001*
Ct.Th (mm) 1.01 ± 0.22 0.95 ± 0.19 <0.01*
mFEA.FL (N) 2539.3 ± 467.1 2285.0 ± 492.9 <0.001*
mFEA.Stiffness (N/mm) 44070.2 ± 8425.7 39799.0 ± 8675.9 <0.001*
Values are shown as mean ± standard deviation.
Linear regression adjusting for age, height, and weight.
*Significant at p < 0.05.
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only the interrelationship of Tb.BMD-Tb.N was significantly
different between controls and fracture cases (p < 0.05) as shown
in Table 3.

Spatial Analysis
Statistical Maps
The Spearman’s rank partial correlation coefficient maps for the
different interrelationships of trabecular bone parameters are shown
inFigure 3 forboth controls and fracture cases. Thesemaps revealed
significant heterogeneous spatial distributions of correlation
coefficients across the distal radius, particularly with stronger
correlations proximally than distally in both groups. In addition,
in most of the correlation maps, fracture cases showed stronger
correlations than controls, which was manifested with clusters of
significant different correlation coefficients as shown in Figure 4 for
H.Tb.BMD–L.Tb.BV/TV, H.Tb.BMD–H.Tb.1/N, L.Tb.BV/TV–
H.Tb.1/N, and H.Tb.1/N–H.Tb.SED.

Cortical Spearman’s rank partial correlation coefficient maps
are depicted in Figure 5 for both controls and fracture cases.
These maps also revealed significant heterogeneous distributions
of correlation coefficients across the distal radius within each
group. However, these heterogeneous distributions were not
significantly different between controls and fracture cases,
except for the correlation of Suf.app.Ct.Th–Surf.Ct.SIT as is
shown in Figure 6.

Global Comparisons
Differences in homogenized and local trabecular voxel-based
parameters, and in cortical surface-based parameters with no
spatial normalization are summarized in Table 4. Fracture cases
had significantly lower H.Tb.BMD, L.Tb.BV/TV, H.Tb.SED,
Surf.Ct.BMD, Surf.app.Ct.Th and Surf.Ct.SIT than controls (all
p < 0.001). Fracture cases also showed significantly higher
Frontiers in Endocrinology | www.frontiersin.org 6
H.Tb.1/N than controls (p < 0.05). However, Surf.Ct.SED did
not differ between groups.

Global Correlations
The interrelationships of homogenized and local trabecular
voxel-based parameters, and cortical surface-based parameters
with no spatial normalization using Spearman’s rank partial
correlations are summarized in Table 5. With the exception of
the correlation of H.Tb.1/N– H.Tb.SED for controls (p = 0.006),
all within-group compartmental trabecular and cortical
Spearman’s rank partial correlations were significant at p <
0.001. In addition, the correlations of H.Tb.BMD–L.Tb.BV/TV,
H.Tb.BMD–H.Tb.1/N, L.Tb.BV/TV–H.Tb.1/N, Surf.Ct.BMD–
Surf.Ct.SED, and Surf.Ct.SIT–Surf.Ct.SED were significantly
different between groups at p < 0.05.

In terms of correlations with mFEA.FL, mean values of the
homogenized and local trabecular voxel-based parameters and
cortical surface-based parameters manifested significant
correlations in both groups, except for Ct.SED in the fracture
group. There were no significant differences in the strength of
these correlations between groups (Table 6).
DISCUSSION

In this study, we assessed the spatial distribution of
interrelationships of parameters of bone density, microstructure,
geometry and biomechanics in the distal radius of postmenopausal
women with and without a recent Colles’ fracture using HR-
pQCT. Spearman’s rank partial correlation coefficient maps
showed significant heterogeneous spatial distributions of these
interrelationships across the distal radius for both groups. In
addition, small clusters of significant different interrelationships
TABLE 3 | Global compartmental Spearman’s rank partial correlations for bone parameters assessed with the standard analysis method.

Interrelationships Controls Fracture cases Controls vs. Fracture cases

r p-value r p-value p-value

Tb.BMD Tb.BV/TV 0.98 <0.001* 0.99 <0.001* NS
Tb.BMD Tb.N 0.83 <0.001* 0.91 <0.001* 0.03*
Tb.BMD Tb.Sp -0.86 <0.001* -0.91 <0.001* NS
Tb.BMD mFEA.FL 0.67 <0.001* 0.65 <0.001* NS
Tb.BMD mFEA.Stiffness 0.62 <0.001* 0.60 <0.001* NS
Tb.BV/TV Tb.N 0.85 <0.001* 0.91 <0.001* NS
Tb.BV/TV Tb.Sp -0.88 <0.001* -0.92 <0.001* NS
Tb.BV/TV mFEA.FL 0.65 <0.001* 0.65 <0.001* NS
Tb.BV/TV mFEA.Stiffness 0.58 <0.001* 0.59 <0.001* NS
Tb.N Tb.Sp -0.99 <0.001* -0.99 <0.001* NS
Tb.N mFEA.FL 0.48 <0.001* 0.59 <0.001* NS
Tb.N mFEA.Stiffness 0.40 <0.001* 0.54 <0.001* NS
Tb.Sp mFEA.FL -0.51 <0.001* -0.59 <0.001* NS
Tb.Sp mFEA.Stiffness -0.43 <0.001* -0.55 <0.001* NS
mFEA.FL mFEA.Stiffness 0.99 <0.001* 0.99 <0.001* NS
Ct.BMD Ct.Th 0.69 <0.001* 0.63 <0.001* NS
May 2021
r = Spearman’s rank partial correlation coefficient.
Spearman’s rank partial correlations were adjusted for age, height and weight.
The Fisher’s Z transformation was used to compare correlation coefficients between groups.
*Significant at p < 0.05.
NS = P ≥ 0.05.
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FIGURE 3 | Spatial assessment of interrelationships of trabecular bone parameters. Three-dimensional views at three different levels (1/4, ½ and ¾ of the scan
length) of the statistical maps showing Spearman’s rank partial correlation coefficients for the different interrelationships of trabecular bone parameters for controls
and fracture cases. All maps were adjusted for age, height, weight, and shape. Voxels that were no significant after correcting for multiple comparisons were
rendered transparent.
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between controls and fracture cases were identified, particularly
for trabecular bone, with stronger interrelationships in the
fracture cases.

As previously reported by Melton et al. (18) and in agreement
with previous cross-sectional studies (12, 16, 19), we found that
the fracture cases had lower BMD, deterioration of bone
microstructure and geometry, and lower mFEA-derived bone
strength compared with controls using the standard analysis
techniques provided by the manufacturer (Table 2). Similar
trends were observed for the global analyses of homogenized
and local trabecular bone parameters, as well as for the surface-
based assessments of cortical bone with no spatial normalization
(Table 4). However, in contrast to H.Tb.SED, for which fracture
cases showed significantly lower values than controls,
Surf.Ct.SED was not significantly different between the two
groups. This result is consistent with the original study of
Melton et al. using the standard analysis method (18). SED
represents the area under the stress-strain curve (31, 32) and
Frontiers in Endocrinology | www.frontiersin.org 8
reflects the local energy stored per unit volume under the
apparent load; therefore, our results suggest that the resistance
to fracture in the cortical bone was maintained to some extent
even in the fracture group. The lack of a significant difference in
Surf.Ct.SED may be explained by compensatory prevention
mechanisms of cortical deterioration (16) or to the axial load
configuration of the mFEA, which does not fully resemble fall-
loading conditions. This result may be also partly attributed to
the fact that the radius is an unloaded site.

Despite global differences in trabecular and cortical bone
parameters between controls and fracture cases, results showed
expected global significant correlations of bone density,
microstructure, geometry and biomechanics for both the
trabecular and the cortical compartments within each group,
for both analysis methods (Tables 3 and 5). Our results
are in agreement with those of Boutroy et al., who also
reported significant expected interrelationships between
density and microstructural parameters at the distal radius in
FIGURE 4 | Assessment of spatial differences of interrelationships of trabecular bone parameters between controls and fracture cases. Three-dimensional statistical
maps showing voxels for which the Spearman’s rank partial correlation coefficients were significantly different between fracture cases and controls. Significant voxels
are showing the difference of correlation coefficients (fracture cases minus controls), and nonsignificant voxels were rendered transparent.
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postmenopausal women using HR-pQCT (15). In that study,
the trabecular correlations were in the absolute range of 0.78–
0.91, while the correlation of Ct.BMD with Ct.Th was equal to
0.95. Here, the trabecular correlations between density and
microstructural parameters were in the absolute range of 0.83–
0.99, with the correlation of Ct.BMD and Ct.Th equal to 0.69
and 0.63 for controls and fracture cases, respectively. Our
results also demonstrated significant correlations of density,
Frontiers in Endocrinology | www.frontiersin.org 9
microstructure and geometry with biomechanical parameters
derived from mFEA (|r| = 0.40–0.67). Moreover, we identified
s ign ificant he terogeneous spat i a l d i s t r ibut ions o f
interrelationships of bone parameters across the distal radius
for both the trabecular (Figure 3) and the cortical bone
compartments (Figure 5) within each group. In particular,
both groups manifested stronger Spearman’s rank partial
correlations proximally than distally for most of the
FIGURE 5 | Spatial assessment of interrelationships of cortical bone parameters. Surface statistical maps showing Spearman’s rank partial correlation coefficients
for the different interrelationships of cortical bone parameters for controls and fracture cases. All maps were adjusted for age, height, weight, and shape. Vertices that
were no significant after correcting for multiple comparisons are shown in white. r = Spearman’s rank partial correlation coefficient.
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trabecular interrelationships; with an opposite trend for the
cortical interrelationships of Surf.Ct.BMD with Surf.app.Ct.Th
and Surf.Ct.SIT, i.e., stronger correlations distally than
proximally for both groups. These observations might be
partly explained by the study of Boyd (33), who showed an
increase in Tb.N and a decrease in Ct.Th from the proximal to
the distal end of the radius. Interestingly, the local
interrelationships of Surf.Ct.SED with other cortical
parameters were in general small, even to the point of
showing nonsignificant areas on the distal end for both
groups. Another interesting finding for SED, was that for the
trabecular compartment the correlations were in general
stronger in the dorsal s ide , while for the cort ical
compartment they were stronger in the palmar side in both
groups. Although previous studies have demonstrated regional
Frontiers in Endocrinology | www.frontiersin.org 10
structural variations of trabecular and cortical bone (34, 35),
the regions in those studies were predefined, limiting the local
assessments to the size and location of those regions. Here, by
using our statistical parametric mapping (SPM) framework for
HR-pQCT studies (28), comprehensive local assessments of
interrelationships of bone parameters were possible across the
distal radius in both the trabecular and cortical compartments.
Nevertheless, results of this study and those based on
predefined regions of interest (34–36) underscore the
relevance of local assessments parallel to the global analyses
to improve our understanding of bone strength.

Although we identified significant global and local
interrelationships between all bone parameters within each
group, and even similar heterogeneous spatial distributions of
the correlation coefficients between groups, the results showed
significant different global (Tables 3 and 5) and local
interrelationships (Figures 4 and 6) between groups. In terms
of cortical bone, there were no significant differences between
groups using the standard analysis techniques (Table 3).
However, the compartmental interrelationships of Surf.Ct.SED
with Surf.Ct.BMD and Surf.Ct.SIT showed significant
differences between groups using surface-based assessments
(Table 5). In addition, the Surf.app.Ct.Th–Surf.Ct.SIT partial
correlation coefficient maps yielded small clusters of significant
correlation differences between groups (Figure 6). The
differences in the compartmental interrelationships of
Surf.Ct.SED might be indicators of compensatory mechanisms
in the cortical bone to maintain bone strength in the fracture
group. The spatial differences in the Surf.app.Ct.Th–Surf.Ct.SIT
correlations between groups were probably due to cortical
porosity which is taken into account by Surf.Ct.SIT. In terms
of trabecular bone, the partial correlations of H.Tb.BMD–
L.Tb.BV/TV, H.Tb.BMD–H.Tb.1/N, and L.Tb.BV/TV–H.Tb.1/
N were significantly different between groups both at the global
(Table 5) and local level (Figure 4), although only the
interrelationship of Tb.BMD–Tb.N was significantly different
between groups using the standard analysis method (Table 3).
In addition, small clusters of significant correlation differences
between groups were observed for H.Tb.1/N–H.Tb.SED
(Figure 4). This correlation was not significantly different
between groups at the compartmental level (Table 5).
FIGURE 6 | Assessment of spatial differences of interrelationships of cortical
bone parameters between controls and fracture cases. Surface statistical
map showing vertices for which the Spearman’s rank partial correlation
coefficients were significantly different between controls and fracture cases for
the interrelationship of Surf.app.Ct.Th–Surf.Ct.SIT. Significant vertices are
showing the difference of correlation coefficients (fracture cases minus
controls) with nonsignificant vertices displayed in white. Surf.app.Ct.Th–
Surf.Ct.SIT was the only cortical bone interrelationship that showed significant
spatial differences between controls and fracture cases.
TABLE 4 | Homogenized and local trabecular voxel-based parameters, and cortical surface-based parameters with no spatial normalization.

Parameter Controls Fracture cases p-values

H.Tb.BMD (mg/cm3) 354.2 ± 37.0 332.5 ± 35.5 <0.001*
L.Tb.BV/TV 0.22 ± 0.05 0.19 ± 0.05 <0.001*
H.Tb.1/N (voxels) 7.92 ± 3.40 8.91 ± 2.87 0.020*
H.Tb.SED (J/mm3) 0.08 ± 0.03 0.06 ± 0.03 <0.001*
Surf.Ct.BMD (mg/cm3) 830.6 ± 91.5 793.5 ± 91.2 <0.001*
Surf.app.Ct.Th (mm) 0.98 ± 0.17 0.91 ± 0.15 <0.001*
Surf.Ct.SIT (mm) 0.72 ± 0.14 0.66 ± 0.12 <0.001*
Surf.Ct.SED (J/mm3) 0.27 ± 0.03 0.26 ± 0.03 NS
May 2021 | Volume 12 | Artic
Values are shown as mean ± standard deviation.
Linear regression adjusting for age, height, and weight.
*Significant at p < 0.05.
NS = P ≥ 0.05.
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An interesting finding was that in the significant global and local
correlation differences in the trabecular bone, fracture cases
showed stronger correlation coefficients than controls. The
opposite effect was observed for cortical bone, i.e., in the
significant global and local correlation differences, controls
showed stronger correlation coefficients than the fracture
cases. These compartmental differences in the strength of the
correlations between controls and fracture cases indicate that
postmenopausal women with a recent Colles’ fracture might
undergo a synergistic decline in bone quantity and quality in the
trabecular bone compartment, with a differential response of
bone properties in the cortical compartment, effectively affecting
compartmental bone biomechanics as was observed with
SED (Table 4).

In agreement with previous studies, our results suggest that
assessment of the trabecular bone in the distal radius might yield
parameters that are more sensitive to prevent fragility fractures
Frontiers in Endocrinology | www.frontiersin.org 11
(6, 7), including Colles’ fracture (16). In fact, a previous HR-
pQCT study demonstrated that trabecular bone microstructure
at baseline is important to predict the risk of fracture in
postmenopausal women with denosumab treatment (37).
Therefore, our results may indicate that the loss of both BMD
and bone quality on the trabecular compartment is likely to be
strongly associated with fragility fractures.

This study has two main limitations. First, Colles’ fractures
occurred with a median of 7 months prior to the HR-pQCT
scans, i.e., this is not a prospective study, which limits to certain
extent the impact of our findings. Second, the unaffected side had
to be scanned for the fracture group, which might not fully
represent the affected side since a previous study demonstrated
side-to-side differences of cortical area and failure load at the
radius of healthy women (38). However, in the same study, no
significant differences regarding other cortical and trabecular
parameters were reported.
TABLE 5 | Global compartmental Spearman’s rank partial correlations for homogenized and local trabecular voxel-based parameters, and for cortical surface-based
parameters with no spatial normalization.

Interrelationships Controls Fracture cases Controls vs. Fracture cases

r p-value r p-value p-value

H.Tb.BMD L.Tb.BV/TV 0.83 <0.001* 0.93 <0.001* 0.003*
H.Tb.BMD H.Tb.1/N -0.44 <0.001* -0.75 <0.001* 0.001*
H.Tb.BMD H.Tb.SED 0.78 <0.001* 0.65 <0.001* NS
L.Tb.BV/TV H.Tb.1/N -0.82 <0.001* -0.91 <0.001* 0.015*
L.Tb.BV/TV H.Tb.SED 0.64 <0.001* 0.62 <0.001* NS
H.Tb.1/N H.Tb.SED -0.28 0.006* -0.44 <0.001* NS
Surf.Ct.BMD Surf.app.Ct.Th 0.82 <0.001* 0.77 <0.001* NS
Surf.Ct.BMD Surf.Ct.SIT 0.86 <0.001* 0.83 <0.001* NS
Surf.Ct.BMD Surf.Ct.SED 0.80 <0.001* 0.59 <0.001* 0.004*
Surf.app.Ct.Th Surf.Ct.SIT 0.99 <0.001* 0.99 <0.001* NS
Surf.app.Ct.Th Surf.Ct.SED 0.61 <0.001* 0.40 <0.001* NS
Surf.Ct.SIT Surf.Ct.SED 0.66 <0.001* 0.45 <0.001* 0.046*
May 2021
r = Spearman’s rank partial correlation coefficient.
Spearman’s rank partial correlations were adjusted for age, height and weight.
The Fisher’s Z transformation was used to compare correlation coefficients between groups.
*Significant at p < 0.05.
NS = P ≥ 0.05.
TABLE 6 | Global compartmental Spearman’s rank partial correlations of mFEA.FL with homogenized and local trabecular voxel-based parameters, and cortical surface-
based parameters with no spatial normalization.

Interrelationships Controls Fracture cases Controls vs. Fracture cases

r p-value r p-value p-value

H.Tb.BMD 0.76 <0.001* 0.68 <0.001* NS
L.Tb.BV/TV 0.71 <0.001* 0.67 <0.001* NS
H.Tb.1/N -0.45 <0.001* -0.59 <0.001* NS
H.Tb.SED 0.67 <0.001* 0.57 <0.001* NS
Surf.Ct.BMD 0.52 <0.001* 0.46 <0.001* NS
Surf.app.Ct.Th 0.69 <0.001* 0.75 <0.001* NS
Surf.Ct.SIT 0.68 <0.001* 0.72 <0.001* NS
Surf.Ct.SED 0.28 0.005* 0.17 NS NS
r = Spearman’s rank partial correlation coefficient.
Spearman’s rank partial correlations were adjusted for age, height and weight.
The Fisher’s Z transformation was used to compare correlation coefficients between groups.
*Significant at p < 0.05.
NS = P ≥ 0.05.
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In conc lus ion , we as se s sed g loba l and spa t i a l
interrelationships of bone density, microstructure, geometry,
and biomechanics in postmenopausal women with and
without a Colles’ fracture, as well as the global and spatial
differences of these interrelationships between the control and
fracture groups. We showed significant heterogeneous spatial
distributions of these interrelationships across the distal radius
within each group, and also found small clusters of significant
differences for these interrelationships between groups,
particularly in the trabecular bone compartment. Our findings
indicate that local bone properties of BMD, microstructure, and
geometry are heterogeneous in the distal radius, and that
trabecular bone parameters may play a major role in the
assessment of bone fragility at this anatomical site.
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