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Severe acute respiratory syndrome-coronavirus 2, a novel betacoronavirus, has caused
the global outbreak of a contagious infection named coronavirus disease-2019. Severely
ill subjects have shown higher levels of pro-inflammatory cytokines. Cytokine storm is
the term that can be used for a systemic inflammation leading to the production of
inflammatory cytokines and activation of immune cells. In coronavirus disease-2019
infection, a cytokine storm contributes to the mortality rate of the disease and can lead
to multiple-organ dysfunction syndrome through auto-destructive responses of systemic
inflammation. Direct effects of the severe acute respiratory syndrome associated
with infection as well as hyperinflammatory reactions are in association with disease
complications. Besides acute respiratory distress syndrome, functional impairments of
the cardiovascular system, central nervous system, kidneys, liver, and several others
can be mentioned as the possible consequences. In addition to the current therapeutic
approaches for coronavirus disease-2019, which are mostly supportive, stem cell-based
therapies have shown the capacity for controlling the inflammation and attenuating
the cytokine storm. Therefore, after a brief review of novel coronavirus characteristics,
this review aims to explain the effects of coronavirus disease-2019 cytokine storm
on different organs of the human body. The roles of stem cell-based therapies on
attenuating cytokine release syndrome are also stated.

Keywords: coronavirus disease 2019, cytokine storm, mesenchymal stem cells, multi-organ failure, severe acute
respiratory syndrome-coronavirus 2
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INTRODUCTION

In certain pathological conditions, such as a viral infection,
the immune system may overproduce inflammatory cytokines.
This situation sometimes can result in organ failure and
death, known as a “cytokine storm.” Today, the cytokine
storm has drawn further consideration because of the new
pandemic disease related to the novel coronavirus [severe
acute respiratory syndrome- coronavirus 2 (SARS-CoV-2)]
or coronavirus disease 2019 (COVID-19) (Tisoncik et al.,
2012; Cena and Chieppa, 2020; Fajgenbaum and June, 2020;
Puelles et al., 2020; Song et al., 2020). Herein, COVID-19 has
warned us of the essential role of high host immunity and
the detrimental outcomes of immune dysregulation. Indeed,
the cytokine storm in COVID-19 is known to be one
of the key causes of multiple-organ dysfunction syndrome
(MODS) or multi-organ failure (MOF) as a hallmark of
COVID-19 severity (Wang and Ma, 2008; Zaim et al., 2020;
Kim et al., 2021). Many elderly individuals and those with
comorbidities are more prone to developing a cytokine storm
and dysfunctional immune reactions (Ciabattini et al., 2020;
Nidadavolu and Walston, 2020; Tay et al., 2020). In severe
cases, the involvement of assorted organs finally ends up
in protracting the hospitalization time and raising the share
of mortality (Rieg et al., 2020). Acute lung failure, acute
kidney damage, acute liver failure, cardiovascular disease,
and a broad range of hematological anomalies along with
neurological disorders are characterized by MOF and MODS.
Accordingly, since the MOF and MODS in COVID-19 subjects
are important health issues, developing the application of
modern therapeutic solutions can lead to ameliorate results and
reduce mortality rates (Mokhtari et al., 2020; Sherren et al.,
2020). Nowadays, cell therapy and regenerative medicine as
one of the assuring and modern therapies have been able to
promote the function of organs involved in various disorders
and trigger their real healing reactions. Hereupon, different
cells, specifically various stem cells, can be applied (Wong
et al., 2013; Monsel et al., 2014; Mao and Mooney, 2015;
Goodarzi et al., 2019). Therefore, the purpose of the current
review is to highlight the effects of cytokine storms on different
organs in COVID-19 individuals and how stem cells manage
this phenomenon.

CHARACTERISTICS OF NOVEL
CORONAVIRUS AND CORONAVIRUS
DISEASE 2019

Since December 2019, SARS-CoV-2 infection has led to a
highly contagious disease named COVID-19 (Hu et al., 2020;
Sun P. et al., 2020; Yang et al., 2020). Coronaviruses, as a
member of the Coronavirinae subfamily (in the Coronaviridae
family), are positive-sense, single-stranded, non-segmented,
and enveloped RNA viruses (Arjmand et al., 2020; Harrison
et al., 2020; Zamanian Azodi et al., 2020). This novel
betacoronavirus has been shown 79% of genome sequence
identity to the previous betacoronaviruses, including severe

acute respiratory syndrome-CoV (SARS-CoV) and Middle East
respiratory syndrome-CoV (MERS-CoV), which also caused fatal
respiratory illnesses (Hu et al., 2020). The genome sequence
of SARS-CoV-2 contains 14 open reading frames (ORFs) that
16 non-structural proteins (nsp) are encoded by two-thirds
of that. Moreover, nine accessory proteins (ORF) plus four
structural proteins are encoded by the remaining one-third
(Harrison et al., 2020). Transmembrane spike (s) glycoprotein
mediates the coronavirus entry, which is mentioned to be
the main antibody target (Walls et al., 2020). Indeed, each S
protein of SARS-CoV-2 has two subunits, S1 and S2 domains.
Receptor-binding domain (within the S1 domain) is used by
the virus to bind to the angiotensin-converting enzyme 2
(ACE2) as the cellular receptor. It could also promote the
effects of transmembrane protease serine type 2 (TMPRSS2)
on cleaving S protein (Dong et al., 2020). After binding,
viral–host cell membrane fusion is activated leading to the
release of viral RNA into the cytoplasm (Ni et al., 2020).
ACE2 and TMPRSS2 can be expressed by different organs and
tissues in addition to the lungs including the heart, kidney,
colon, esophagus, liver, brain, testis, and gallbladder, which
suggests the extrapulmonary effects of SARS-CoV-2 (Dong
et al., 2020). On the other hand, COVID-19, according to
its severity, can be classified into four types, namely, mild,
moderate, severe, and critical, with different manifestations in
each group. Herein, fever, fatigue, dry cough, and diarrhea
are mentioned as the most common symptoms (Wang Y.
et al., 2020). Upper respiratory tract-related symptoms can
be seen in the mild form of the disease. Moderate patients
also have cough, shortness of breath, and tachypnea symptoms
with no severe form of symptoms. Acute respiratory distress
syndrome (ARDS), septic shock, sepsis, severe dyspnea, and
tachypnea are the signs and symptoms of severe pneumonia
seen in the severe form of the disease. Moreover, in some
of the patients, a critical disease can be developed with
the manifestations of respiratory failure, septic shock, and
MODS or MOF (Hassan et al., 2020). Droplet and human-
to-human transmission as the direct ways and contaminated
objects/airborne contagion as indirect means are the ways
that SARS-CoV-2 can spread (Lotfi et al., 2020). Herein, the
incubation period of COVID-19 ranges from 0 to 24 days,
which is averagely estimated at around 6.4 days (Wang Y.
et al., 2020). The most common radiological characteristics
of COVID-19 are ground-glass opacities in the lungs, patchy
consolidation, interlobular involvement, and alveolar exudates
(Sahin et al., 2020). Moreover, laboratory studies have shown
increased lactate dehydrogenase, C-reactive protein (CRP),
erythrocyte sedimentation rate (ESR), total bilirubin levels,
alanine aminotransferase (ALT), and aspartate aminotransferase
(AST) as well as higher creatine kinase (CK) and D-dimer level.
In addition, lymphocyte and eosinophil counts have shown lower
levels as well as the levels of serum albumin and hemoglobin
(Cascella et al., 2020; Velavan and Meyer, 2020). Additionally, as
it was mentioned, MODS and systemic inflammatory response
syndrome (SIRS) can be the results of SARS-CoV-2 infection
in which a powerful cytokine storm has an important role
(Sun X. et al., 2020).
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CYTOKINE STORM

It has been found that different triggers, including infections and
malignancy, can result in unregulated host immune responses
leading to the activated pathways of cytokine production. Thus,
cytokine storm can be introduced as a systemic inflammation
leading to the production of inflammatory cytokines and
activation of immune cells (Tang Y. et al., 2020). Different
immunity dysregulation disorders recognized by systemic
inflammation, constitutional symptoms, and MOF (as the
possible result of MODS) can be mentioned in this definition, too.
Cytokine storm in different conditions can be varying in onset
and duration, which depends on the cause and administered
therapeutic approaches. However, the clinical manifestations of
it usually overlap (Grupp et al., 2013; Fajgenbaum and June,
2020). Additionally, higher infiltration of cytokines has been
seen in lung tissues of patients, too. In this regard, COVID-
19 patients with severe conditions have shown more elevated
pro-inflammatory cytokines compared to those in moderate
conditions. Thus, it can be also related to the poor prognosis
of the disease. Taken together, this can indicate the contribution
of cytokine storm to the mortality of COVID-19 (Tang Y. et al.,
2020). Therefore, it is essential to monitor patients for cytokine
storm signs (Henderson et al., 2020).

Clinical Features and Laboratory
Abnormalities
Generally, cytokine storm can cause fever in almost all of the
patients, which can be in high grades in severe patients. Cytokine
storm can promote tissue damage pathways that, along with
acute-phase physiological changes and immune cell-mediated
reactions, may lead to some other symptoms, too. Some of
these symptoms are fatigue, anorexia, rash, arthralgia, myalgia,
headache, diarrhea, and neuropsychiatric changes (confusion,
delirium, aphasia, and seizure). It can also lead to disseminated
intravascular coagulation, hemostatic imbalance, catastrophic
hemorrhages, hypotension, vasodilatory shock, and even death.
It has been found that spontaneous hemorrhage is related
to hyperinflammation, low platelet levels, and coagulopathy.
Dyspnea, tachypnea, cough, pulmonary edema, ARDS, and
hypoxemia are also possible respiratory symptom-related events
that can be accompanied by cytokine storm. Splenomegaly
and hepatomegaly, in addition to cardiac damage, liver injury,
and renal failure, can be developed due to the more severe
conditions of cytokine storm (Lee et al., 2014; Templin et al.,
2015; Fajgenbaum and June, 2020; Gao et al., 2021). On the other
hand, some laboratory findings of patients with cytokine storm
syndrome are pancytopenia, abnormalities in liver function
tests, increased triglyceride and ferritin, and lower fibrinogen
levels. The cerebrospinal fluid analysis may also show some
abnormalities in patients who have neurological manifestations
(Rosado and Gopal, 2019). Exhaustion of natural killer cells/T
cells leading to lymphopenia are other characteristics of chronic
COVID-19 condition. Studies have shown that lymphocyte
count is decreased significantly in severe COVID-19, and thus,
lymphopenia can predict the disease prognosis and its clinical

outcomes (Tan et al., 2020; Zhao et al., 2020). Cytokines impose
a positive effect on the immune system to recruit immune cells
to the inflammation sites. It could develop inflammation and
some organ damages. Some of the important cytokines that
have roles in this extreme activation are growth factors (GF),
chemokines, interleukins (IL), tumor necrosis factor (TNF),
interferons (IFN), and colony-stimulating factors (CSF). These
cytokines, according to their functions, can be placed in two
groups of pro-inflammatory and anti-inflammatory factors.
For instance, TNF, IFN-γ, IL-1β, and IL-12 are in the pro-
inflammatory group of factors, whereas transforming growth
factor beta (TGF-β), IL-4, and IL-13 are some anti-inflammatory
factors (Song et al., 2020). The concept of cytokine storm for
COVID-19 infection is derived from the data that showed that
critically ill patients have higher levels of TNFα, IFN gamma-
induced protein-10 (IP-10), and the chemokine (C-C motif)
ligand-2 (CCL2), compared to the patients in mild or moderate
stages of the disease (Castelli et al., 2020). In addition to IP-
10 and TNF-α, severely ill patients have shown higher levels of
IL-2, IL-10, IL-7, granulocyte colony-stimulating factor (G-CSF),
macrophage inflammatory protein-1A (MIP-1A), and monocyte
chemoattractant protein-1 (MCP-1), too (Fara et al., 2020). In this
regard, lower CD4, CD8, and natural killer (NK) T cell levels
and increased monocyte and macrophage levels in COVID-19
patients can explain the higher levels of chemicals in them (Dong
et al., 2020). IL-6 is also an important inflammatory cytokine
that is elevated during COVID-19 inflammatory condition. It is
useful for disease monitoring and can indicate the severity of the
disease in its initial phases (Aziz et al., 2020; Liu et al., 2020).
Chimeric antigen receptor T cell (CAR-T) treatment technology
is introduced as a proper approach for immunotherapy (in
infections and disorders such as hematological cancers). It can
lead to cytokine release syndrome (CRS) as an adverse effect
that is mainly caused by IL-6 (Bonifant et al., 2016; Kishimoto,
2021). Taken together, a valid immunological feature of COVID-
19 is CRS in which hyper inflammation can manifest by a
disrupted immune activation. Herein, an important association
has been found between mortality rates and severe inflammation
(Fara et al., 2020).

Pathophysiological Features
In response to invading pathogens, the effective immune system
is expected to return the body’s homeostasis by recognizing
invaders and responding to them proportionally. In order
to obtain this homeostasis, sufficient cytokine production
is required along with the avoidance of hyperinflammatory
reactions. Because, although inflammation activates innate and
adaptive immune systems, it can cause collateral damages
in hyperinflammatory states (Fajgenbaum and June, 2020).
Endothelial dysfunction, metabolic abnormalities, and MOD can
occur as the results of higher cytokine levels. Herein, elevated
levels of TNF and IL-1β as acute phase response cytokines and
higher IL-8 and MCP-1 levels can cause a facilitated increase of
IL-6 levels (which, in COVID-19 subjects, is considered as a main
intermediary of viral cytokine storm and inflammation). IL-6 in
combination with membrane-bound IL-6 receptor or soluble IL-
6 receptor forms a complex that affects glycoprotein 130 (gp130).
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Subsequently, it can lead to the regulated IL-6, granulocyte-
macrophage colony-stimulating factor (GM-CSF), and MCP-1
and thus the perpetuation of the inflammatory responses. This
process could be done through the Janus kinases (JAK)/signal-
transducer and activator of transcription (STAT) pathway. The
acute phase responses driven by IL-6 and other cytokines result
in elevated ferritin, CRP, complement, and also pro-coagulant
factors. On the other hand, the hyperinflammatory reactions of
cytokine storm can produce reactive oxygen species (ROS) that
causes cell death and stimulation of NLR family pyrin domain
containing3 (NLRP3) and nuclear factor-kappa B (NF-κB)
(Bhaskar et al., 2020). Herein, it has been found that transcription
factor NF-κB can drive induced cytokine storm (Khalil et al.,
2020). NLRP3 inflammasome can induce the immune responses
leading to the increased release of cytokines and circulating cell
debris, named danger-associated molecular pattern molecules
(DAMPs). This can trigger and amplify the innate immunity
reactions and the complement cascade (ComC) whose activation
can be related to the worsened prognosis of COVID-19 patients
(Ratajczak and Kucia, 2020). Pulmonary-activated platelets
through the formation of platelet–neutrophil complexes (PNCs)
have an important contribution to systemic sepsis, too. Herein,
they are mentioned to be considerable sources of cytokines and
ROS. Moreover, the effects of PNCs on increasing neutrophil
recruitment and development of proinflammatory/procoagulant
environment and their contribution to ARDS have been also
found (Morris et al., 2020).

Cytokine Storm and Multi-Organ
Involvement in Coronavirus Disease 2019
Inappropriate reactions of host cells to a different group
of acute insults can result in MODS, which is mentioned
to be an important reason for mortality and morbidity
in intensive care units (Wang and Ma, 2008). Indeed, in
MODS condition, an autodestructive response of generalized
inflammation can be the result of elevated pro-inflammatory
cytokine levels (Aikawa, 1996). Hereupon, in COVID-19
infection, the hyperinflammatory responses along with severe
acute respiratory syndrome direct effects are in association with
disease complications (Zaim et al., 2020). The disease progression
has been shown to be highly affected by extrapulmonary
manifestations and its comorbidities. In this regard, multi-organ
effects of COVID-19 have accompanied the infection since its
emergence. Therefore, plausible organ injuries and comorbidities
of COVID-19 require full attention in order to reduce death
numbers (Sun X. et al., 2020; Wu T. et al., 2020; Zaim et al., 2020).
Some important organ involvements of COVID-19 are explained
separately in the next subtitles (Figure 1).

Cardiac Damage
Cardiovascular disease (CVD), as an important comorbidity
accompanied by SARS-CoV-2 infection, can lead to a higher
mortality rate than other associated comorbidities. Cytokine
storm along with other mechanisms including thrombosis,
endotheliosis, and lymphocytopenia can cause this cardiac
damage or make it worsen (Unudurthi et al., 2020). Thus, the
cardiovascular system can be involved in virus extrapulmonary

effects with diverse manifestations of myocarditis, pericarditis,
decompensated heart failure, cardiogenic shock, edema,
myocardial fibrosis, and some other complications (Ellison-
Hughes et al., 2020; Vitiello and Ferrara, 2020). The virus can
cause its effects on the cardiac system through different ways of
direct infection, binding to the functional receptors of ACE2,
and immune damage. Cardiomyocyte infection by COVID-19
following by virus replication can lead to tissue degeneration,
necrosis (Benítez-Guerra et al., 2020), and apoptosis (Heffernan
et al., 2020). Indeed, the viral infection of COVID-19 can cause
extracellular matrix remodeling leading to the production of
fibrotic scars. These fibrotic lesions have some pathological
effects that can even lead to death in patients including cardiac
dysfunction and reduction of ejection fraction. Cardiac electrical
conduction system can also experience some alterations that
cause cardiac arrhythmias (Vitiello and Ferrara, 2020). The
cardiac damage measured by increased levels of high-sensitivity
troponin I has been mentioned to be found in about 20% of
COVID-19 patients (Heffernan et al., 2020). Besides cardiac
troponin I, increased levels of other laboratory cardiac markers
have been seen in patients, such as higher levels of CK, creatine
kinase-muscle/brain activity, myoglobin, alpha-hydroxybutyrate
dehydrogenase (α-HBDH), N-terminal pro-brain natriuretic
peptide (NT-proBNP), and AST (Benítez-Guerra et al., 2020).
Cardiac markers are stated to be instrumental in cardiac
damage diagnosis. In this regard, high-sensitivity troponin I
is an appropriate marker for both diagnostic and prognostic
approaches (Mishra et al., 2020). Early diagnosis of cardiac
involvement is an essential step to utilize effective therapeutic
approaches (Vitiello and Ferrara, 2020) due to the higher
morbidity and mortality rates of patients with cardiac injury
(Mishra et al., 2020).

Acute Respiratory Distress Syndrome
Acute respiratory distress syndrome is defined by an acute
respiratory failure as a clinical syndrome in which arterial
hypoxemia and dyspnea along with higher work of breathing
can be presented. ARDS patients mostly need positive pressure
ventilation and intubation. ARDS could be manifested in
different disorders such as sepsis, pneumonia, major trauma, and
aspiration (Matthay and Zemans, 2011). It has a broad range of
causes and a wide spectrum of severity, imaging abnormalities,
and other manifestations (Hariri and Hardin, 2020), which can
overlap with some other conditions. Nonetheless, respiratory
distress symptoms (for instance, dyspnea, and tachypnea);
decreased arterial oxygen saturation; as well as epigastric pain,
nausea/vomiting, hypotension, and fever are some mentionable
symptoms (Parhizkar Roudsari et al., 2020). Hereupon, the
associated symptoms of pneumonia-related COVID-19 range
from asymptomatic (or mild upper respiratory tract infection) to
severe forms of pneumonia, ARDS, and death (Xiao et al., 2020).
Thus, ARDS is also an important and plausible comorbidity
of COVID-19, the mentioned main cause of which is damages
to the alveolar epithelial cells (Khalil et al., 2020). Cytokine
storm, impaired IFN-I and IFN-III responses, and vasculopathy
of COVID-19, as well as the host immune responses of COVID-
19, can explain the underlying pathways of pneumonia-induced
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FIGURE 1 | Cytokine storm and multiple-organ damages. Cytokine storm is the term used for a systemic inflammation that can lead to the extreme activation of
GFs, chemokines, ILs, TNFs, IFN, and CSF (Song et al., 2020). Cytokine storm can result in MODS in COVID-19 patients with a worse prognosis. Myocarditis,
pericarditis, decompensated heart failure, cardiogenic shock, edema, myocardial fibrosis as some cardiovascular complications (Ellison-Hughes et al., 2020; Vitiello
and Ferrara, 2020); respiratory distress symptoms including dyspnea and tachypnea and decreased arterial oxygen saturation (Parhizkar Roudsari et al., 2020); renal
damage symptoms such as AKI, hyperkalemia, higher levels of uric acid, BUN, D-dimer, and creatinine as well as hematuria and proteinuria (Kunutsor and
Laukkanen, 2020; Patel et al., 2020; Puelles et al., 2020); an abnormal ALT or AST levels along with slightly increased bilirubin and low albumin (for liver damage
consequences) (Sun J. et al., 2020; Wu J. et al., 2020); and headache, malaise, unstable walking as well as cerebral hemorrhage and cerebral infarction,
meningitis/encephalitis, stroke, anosmia, and ageusia as some nervous system damages (Alomari et al., 2020; Berger, 2020) can be mentioned as some of the
important organ involvements of COVID-19 due to cytokine storm. GF, growth factor; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon; CSF,
colony-stimulating factor; MODS, multiple-organ dysfunction syndrome; TGF-β, transforming growth factor beta; AKI, acute kidney injury; BUN, blood urea nitrogen;
ALT, alanine aminotransferase; AST, aspartate aminotransferase.

ARDS. The pro-inflammatory cascades of SARS-CoV-2 infection
due to cytokine storm has a mentionable link to macrophage
activation syndrome (MAS), which is a life-threatening feature
of autoimmune diseases and can be mimicked in several viral
infections. It can cause the damaged cytolytic activity of NK
cells and CD8 + T cells. High levels of IL-6 may reflect an over-
exuberant inflammatory reaction as the result of cytokine storm
and can drive these impairments associated with MAS (Torres
Acosta and Singer, 2020). Because of the rapid development
of ARDS, the high mortality rate, and the lower quality of life
among survivors, finding novel and more effective therapeutic
approaches is considerably required (Xiao et al., 2020).

Renal Damage
Renal damage also takes a part in the extrapulmonary effects of
COVID-19 that has been observed in a significant population of
COVID-19-infected patients. Autopsy studies have also shown
renal involvement due to COVID-19 infection. In this regard,
acute kidney injury (AKI) is a common finding that can be
observed in up to 25% of critically ill patients of COVID-19
(with underlying comorbidities) (Patel et al., 2020). Needing
for renal replacement therapy and electrolyte disturbance, such
as hyperkalemia, are other common renal complications of

COVID-19 (Kunutsor and Laukkanen, 2020). Renal damage
can be manifested by higher levels of uric acid, blood urea
nitrogen (BUN), D-dimer, and creatinine as well as hematuria
and proteinuria (Puelles et al., 2020). Indeed, proteinuria can
be the presentation of patients at hospital admission, and AKI
mostly develops in critically ill patients at later stages of COVID-
19. Thus, it could be a marker for MOD and the severity
of the disease (Ronco et al., 2020). Taken together, it has
been mentioned that renal damage is related to the severe
forms of COVID-19 infection with fatal outcomes, and pre-
existing CKD can lead to a higher incidence of AKI. A high
expression of ACE2, TMPRSS2, and cathepsin L (CTSL) in the
kidneys and direct cytopathic effects of the virus are possible
causes of kidney involvement during the COVID-19 pandemic
(Naicker et al., 2020; Puelles et al., 2020). Hypovolemia and
ARDS-related AKI are other possible mechanisms of kidney
injury associated with COVID-19. Moreover, cytokine storm in
association with secondary hemophagocytic lymphohistiocytosis
(sHLH) has a significant role in renal involvement of COVID-
19. Hemodynamic changes, hypercoagulable state, and direct
effects of cytokines (such as IL-6 and TNF) can be caused by
hyperinflammatory states of cytokine storm that may lead to
acute tubular necrosis (ATN) and tubulointerstitial nephritis
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(TIN) (Ahmed et al., 2020). There are no specific therapeutic
options for AKI-related COVID-19, and intensive care along
with clinical experience are mainly supportive that declares the
requirement for developing new approaches for the management
of this involvement (Ronco et al., 2020).

Liver Damage
There are numerous studies that have shown liver involvement
due to COVID-19 infection. Although the exact underlying
mechanism of liver damage has not been founded yet, abnormal
ALT or AST levels along with slightly increased bilirubin are
common manifestations of liver dysfunction (Wu J. et al., 2020).
Higher liver enzymes are found more commonly in males. In
addition, severe cases have more elevated liver enzymes than
milder cases of the disease. Low albumin is also an indicator of
severe infection with a worse prognosis. According to the effects
of cytokine storm on liver damage, the inflammation biomarkers
such as CRP, serum ferritin, lactate dehydrogenase (LDH), IL-
6, IL-2, and D-dimer were significantly higher in severely ill
patients of COVID-19 (Sun J. et al., 2020). Results of an autopsy
pathological study have shown moderate microvascular steatosis
that was along with mild inflammation of the lobular portal
zone, but direct killing influences of the virus were not observed
(Wu J. et al., 2020). Taken together, direct viral effects on bile
ducts, the role of cholangiocytes (for instance with their cell entry
receptor of ACE2), and immune system activation particularly
cytokine storm could be the probable causes for liver injury

(Alqahtani and Schattenberg, 2020). On the other hand, drug-
induced liver injury and hypoxia-induced damage are other
possible mechanisms that can be hypothesized for liver damage
because of SARS-CoV-2 infection (Kudaravalli et al., 2020; Wu
J. et al., 2020). It should be mentioned that patients with a
past medical history of liver diseases are more susceptible to
liver damage from SARS-CoV-2 (Sun J. et al., 2020). However,
more in-depth studies are required to demonstrate the causes
of liver damage and to provide anti-COVID-19 treatments that
particularly work on liver function (Vitiello et al., 2021).

Central Nervous System Damage
Besides the typical symptoms of COVID-19, some patients
may show some neurological symptoms such as headache and
malaise. Unstable walking as well as cerebral hemorrhage and
cerebral infarction, meningitis/encephalitis, stroke, anosmia, and
ageusia are other possible effects of SARS-CoV-2 infection
on the nervous system (Alomari et al., 2020; Berger, 2020).
Conducted studies have shown that neurological symptoms may
be manifested in more than one-third of patients with COVID-
19. However, they may be more commonly seen in severe
infections (Niazkar et al., 2020). It has been shown that the virus
can infect neurons and reduce synapse formation between them
in which the olfactory route and blood–brain barrier could be
the possible routes of invasion (Iadecola et al., 2020a; Marshall,
2020). In vivo studies done on human ACE2 transgenic mice
found that an ACE2-dependent manner of neuronal infection

FIGURE 2 | Mesenchymal stem cells effects on cytokine storm. Cytokine storm as the hallmark of COVID-19 severity is the increasing level of pro-inflammatory
cytokines that can lead to organ failure and death. The immune-regulatory effects of mesenchymal stem cells on various cell types of the innate and adaptive
immune system can attenuate cytokine storm in severe COVID-19 cases (Lee and Song, 2018; Wang et al., 2018; Zhu et al., 2020).
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can lead to neuronal death due to the organoids. Viral proteins
and molecular complexes of damaged cells could enter the
compromised blood–brain barrier, and after brain entry, they act
as DAMPs and pathogen-associated molecular patterns (PAMPs).
This can promote innate immune responses and express Toll-
like receptors (TLR). It was found that these receptors can
mediate the SARS-CoV pro-inflammatory effects that may result
in higher cytokine production and impaired brain function
(Iadecola et al., 2020a). Hypothalamic–pituitary–adrenocortical
(HPA) axis can be also activated due to the unregulated cytokines
in COVID-19, which can cause the autonomic nervous system
and catecholamine/steroids release (Iadecola et al., 2020b).
Despite all this, pathophysiological mechanisms underlying CNS-
related COVID-19 infection should be found more precisely
(Divani et al., 2020).

TREATMENTS FOR CYTOKINE STORMS

Overall, important strategies to avoid the development of
cytokine storms and ameliorate the prognosis of infection
include the reduction of viral load by targeted therapeutic
approaches in the early stages of the disease (with no or moderate
symptoms) and the regulation of inflammatory reactions via
immune modulators (Florindo et al., 2020; Khadke et al.,
2020; Pan et al., 2020; Tang L. et al., 2020; Ye et al.,
2020). Herein, cytokine inhibition, blood purification medical
care, corticosteroid therapies, and cell-based approaches are
the foremost therapeutic strategies (Iannaccone et al., 2020;
Ye et al., 2020). Accordingly, cytokine inhibition, e.g., by
means of IL-6/IL-6R blockers, IL-1 family blockers, TNF-
α blockers, and IFN-αβ blockers; blood purification medical
care through the adsorption, plasma exchange, perfusion,
and filtration of blood/plasma; corticosteroid therapies, which
contribute to histone acetyltransferase (HAT) inhibition and
histone deacetylase 2 (HDAC2) interest recruitment to be able
to downregulate inflammatory genes; and cell-based approaches
have powerful anti-inflammatory and immune-regulatory roles
(Choudhary et al., 2020; Henriksen, 2020; Hojyo et al., 2020;
Iannaccone et al., 2020).

REGENERATIVE MEDICINE AND
CELL-BASED TREATMENTS

Cell therapy and regenerative medicine are marked as one of
the most hopeful possible strategies for the regeneration of
damaged or failed tissue and organs in the medical system.
There are different approaches here, containing the use of cells
from both autologous and allogeneic sources (Saberi et al.,
2008; Aghayan et al., 2014a; Goodarzi et al., 2014, 2015). In
other words, it encompasses a wide range of treatments via
using various types of cells (e.g., T cells, NK lymphocytes, and
different stem cells) with varying outcomes. In this context,
the adoptive T-cell therapy or CAR T-cell therapy approach
as a kind of immunotherapy has been shown to be effective
against some infections and diseases. Herein, T cells from

patient’s own immune system (autologous source) are extracted
and sent to a lab for genetic modification. The patient is
then re-infused with the engineered cells (Maus et al., 2014;
Bonifant et al., 2016; Maus and Levine, 2016; Seif et al., 2019).
Despite the impressive effectiveness of CAR T-cell therapy in
the treatment, it has a number of serious side effects including
CRS and neurologic difficulties. CRS with an immediate
onset tends to be a cytokine storm (Chen et al., 2019; Hong
et al., 2021). Currently, T-cell therapy has also shown promise
in immunosuppressed individuals as a preventive measure
against COVID-19. Accordingly, investigators employed
peripheral blood cells from convalescent subjects who had
been endangered by the virus (Keller et al., 2020). Regulatory
T cell-related strategies have been also suggested as considered
treatment approaches for disease management according to
their capacity for inactivation of innate/adaptive immunity
through inhibitory molecules (Stephen-Victor et al., 2020).
Additionally, transferring modified/unmodified antigen-specific
T cells has shown promising results in the treatment of different
disorders by reconstituting T cell subsets (effector/memory
cells). In this context, adoptive T cell therapy by transferring T
cell immune subsets is mentioned to have therapeutic benefits
that can be the same as adult tissue stem cell features. However,
high maintenance of memory T cells required and engraftment
processes may create some limitations (Busch et al., 2016). In
this regard, specific COVID-19-related T cells (within CD45RA-
memory T cells) have been recognized that can be feasibly
received by CD45RA depletion from convalescent donors.
These cells can provide a population of cells for lymphopenia
condition along with quick reactions to infection. COVID-19
CD45RA- memory T cells also provide immunity against
secondary probable infections that may be found in COVID-
19-hospitalized individuals (Ferreras et al., 2021). HLA-matched
cytotoxic T cells isolated from convalescent patients are other
promising approaches for the treatment of COVID-19 same to
EBV-specific cytotoxic T cells, which were utilized for EBV + -
related lymphomas (Hanley et al., 2020). Another promising
candidate for significant advancement has been NK cell therapy.
Hereupon, autologous or allogeneic origins may be used to
create pure populations of NK cells. Using the allogeneic NK
cells as a platform for CAR engineering has risen due to the
limitations of autologous NK cells (such as decreased effector
role and the demand for a patient-specific stock) (Veluchamy
et al., 2017; Daher and Rezvani, 2018). Since a decrease in
the number of NK cells can be linked to the severity of the
COVID-19 infection, some clinical trials used engineered NK
cells to help battle COVID-19 (Market et al., 2020; van Eeden
et al., 2020). However, using NK cell also has a number of
drawbacks that may hinder their effectiveness. Short lifespan (in
the lack of cytokine support), low cell numbers, and vulnerability
to the immunosuppressive situation, all of which could limit
their trafficking and operation (Nayyar et al., 2019; Liu et al.,
2021). In accordance with various introduced limitations, as
the epicenter of regenerative medicine, mesenchymal stem cells
(MSCs) have been widely investigated and applied, and also
have appeared throughout this area as a strong and commonly
used cell source. Their capacity to differentiate into diverse cell
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TABLE 1 | Number of cell-based clinical trials for COVID-19 (https://clinicaltrials.gov/).

Clinical trial heading Applied cell Thetotal
number of

participants

State of the
recruitment

ClinicalTrials.gov
identifier

Locations

Mesenchymal Stem Cell Infusion for COVID-19
Infection

Mesenchymal stem cells 20 Recruiting NCT04444271 Pakistan

Mesenchymal Stem Cell for Acute Respiratory
Distress Syndrome Due for COVID-19
(COVID-19)

Mesenchymal Stem cells 10 Recruiting NCT04416139 Mexico

Safety and Efficacy of Mesenchymal Stem Cells
in the Management of Severe COVID-19
Pneumonia

Umbilical cord-derived
mesenchymal stem cells

30 Not yet recruiting NCT04429763 United States

Novel Coronavirus Induced Severe Pneumonia
Treated by Dental Pulp Mesenchymal Stem
Cells

Dental pulp mesenchymal stem
cells

24 Not yet recruiting NCT04302519 China

Mesenchymal Stem Cells in Patients Diagnosed
With COVID-19

Mesenchymal stem cells 20 Recruiting NCT04611256 United States

Use of Mesenchymal Stem Cells in Acute
Respiratory Distress Syndrome Caused by
COVID-19

Mesenchymal stem cells
derived from Wharton’s jelly of
umbilical cords

9 Active, not
recruiting

NCT04456361 United States

Efficacy of Infusions of MSC From Wharton
Jelly in the SARS-Cov-2 (COVID-19) Related
Acute Respiratory Distress Syndrome

Ex vivo expanded Wharton’s
jelly mesenchymal stem cells

30 Not yet recruiting NCT04625738 France

Mesenchymal Stem Cell Therapy for
SARS-CoV-2-related Acute Respiratory
Distress Syndrome

Mesenchymal stem cells 60 Recruiting NCT04366063 Iran

Novel Adoptive Cellular Therapy With
SARS-CoV-2 Specific T Cells in Patients With
Severe COVID-19

Adoptive T-cell therapy 8 Recruiting NCT04351659 Singapore

Mesenchymal Stem Cells Therapy in Patients
With COVID-19 Pneumonia

Mesenchymal stem cells 21 Completed NCT04713878 Turkey

Part Two of Novel Adoptive Cellular Therapy
With SARS-CoV-2 Specific T Cells in Patients
With Severe COVID-19

SARS-CoV-2-specific T cells 18 Recruiting NCT04457726 Singapore

A Study of Cell Therapy in COVID-19 Subjects
With Acute Kidney Injury Who Are Receiving
Renal Replacement Therapy

Allogeneic human
mesenchymal stromal cells

22 Recruiting NCT04445220 United States

Safety of T Regulatory Cell Therapy in Subjects
With COVID-19 Induced Acute Respiratory
Distress Syndrome

T regulatory cells 20 Not yet recruiting NCT04737161 United States

Cell Therapy Using Umbilical Cord-derived
Mesenchymal Stromal Cells in
SARS-CoV-2-related ARDS

Umbilical cord Wharton’s jelly
derived human mesenchymal
stromal cells

47 Active, not
recruiting

NCT04333368 France

Treatment of Coronavirus COVID-19
Pneumonia (Pathogen SARS-CoV-2) With
Cryopreserved Allogeneic P_MMSCs and
UC-MMSCs

Cryopreserved
placenta-derived mesenchymal
stromal cells

30 Recruiting NCT04461925 Ukraine

Study of Intravenous Administration of
Allogeneic Adipose Stem Cells for COVID-19

Adipose-derived allogeneic
mesenchymal stem cell

20 Recruiting NCT04486001 United States

A Randomized, Double-Blind,
Placebo-Controlled Clinical Trial to Determine
the Safety and Efficacy of Hope Biosciences
Allogeneic Mesenchymal Stem Cell Therapy
(HB-adMSCs) to Provide Protection Against
COVID-19

Allogeneic adipose-derived
mesenchymal stem cells

100 Active, not
recruiting

NCT04348435 United States

Mesenchymal Stromal Cell Therapy for Severe
Covid-19 Infection

Bone marrow-derived
mesenchymal stromal Cells

20 Recruiting NCT04445454 Belgium

Treatment of COVID-19 Patients Using
Wharton’s jelly Mesenchymal Stem Cells

Umbilical cord Wharton’s jelly
derived human mesenchymal
stem cells

5 Recruiting NCT04313322 Jordan

(Continued)
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TABLE 1 | Continued

Clinical trial heading Applied cell Thetotal
number of

participants

State of the
recruitment

ClinicalTrials.gov
identifier

Locations

A Phase I/II Study of Universal Off-the-shelf
NKG2D-ACE2 CAR-NK Cells for Therapy of
COVID-19

NK cells 90 Recruiting NCT04324996 China

Safety and Efficacy of Allogeneic Human Dental
Pulp Mesenchymal Stem Cells to Treat Severe
COVID-19 Patients

Allogeneic human dental pulp
mesenchymal stem cells

20 Recruiting NCT04336254 China

Treatment With Human Umbilical Cord-derived
Mesenchymal Stem Cells for Severe Corona
Virus Disease 2019 (COVID-19)

Umbilical cord-derived
mesenchymal stem cells

100 Completed NCT04288102 China

Clinical Research of Human Mesenchymal
Stem Cells in the Treatment of COVID-19
Pneumonia

Umbilical cord mesenchymal
stem cells

30 Recruiting NCT04339660 China

Cell Therapy Using Umbilical Cord-derived
Mesenchymal Stromal Cells in
SARS-CoV-2-related ARDS

Umbilical cord Wharton’s jelly
derived human mesenchymal
stromal cells

47 Active, not
recruiting

NCT04333368 France

Study of Human Umbilical Cord Mesenchymal
Stem Cells in the Treatment of Novel
Coronavirus Severe Pneumonia

Umbilical cord mesenchymal
stem cells

48 Not recruiting NCT04273646 China

Mesenchymal Stem Cell Treatment for
Pneumonia Patients Infected With 2019 Novel
Coronavirus

Mesenchymal stem cells 20 Recruiting NCT04252118 China

Umbilical Cord (UC)-Derived Mesenchymal
Stem Cells (MSCs) Treatment for the
2019-novel Coronavirus (n COV) Pneumonia

Umbilical cord mesenchymal
stem cells

16 Recruiting NCT04269525 China

NK Cells Treatment for Novel Coronavirus
Pneumonia

NK cells 30 Recruiting NCT04280224 China

lineages, migration, and cellular regulator secretion together with
immunosuppressive and immunomodulatory potential of MSC
secretome are the features that make them extremely valuable.
On the other hand, their isolation is almost easy and does not
have significant ethical concerns (Aghayan et al., 2014b; Larijani
et al., 2014, 2015, 2021; Goodarzi et al., 2018a,b; Payab et al.,
2018; Arjmand et al., 2019; Abedi et al., 2020; Tayanloo-Beik
et al., 2021). These features makes them the most suitable
stem cell approaches among many of them (Azmi et al., 2020).
The umbilical cord, adipose tissue bone marrow, dental pulp,
and menstrual blood are important sources of MSCs. MSCs
derived from adipose tissue have been mentioned to have more
interesting results initially, but the best source of stem cell is
required to be found yet (Song et al., 2021). Moreover, through
their impacts on T and B cells, macrophages, and dendritic
cells, they help regenerate and refresh the condition (Lee and
Song, 2018; Wang et al., 2018). Accordingly, by inhibiting the
proliferation of T and B cells and by successful regulation of
pro-inflammatory cytokines to optimize the microenvironment
for intrinsic recovery, MSCs can reduce the cytokine storm. On
the other hand, as the indirect effects to attenuate cytokine storm,
they can restrict the innate immune system cell infiltration and
consequently decrease the secretion of inflammatory cytokines
(Ellison-Hughes et al., 2020; Gupta et al., 2020; Zhu et al., 2020;
Jeyaraman et al., 2021; Figure 2). 6 days after MSC therapy,
cytokine storm-related immunity cells were showed to have
dwindled. Increased levels of lymphocytes and regulatory
dendritic cells along with decreased CRP; IL-1, 6, and 12;

IFN-γ; and TNF levels are also other results of this kind of
therapy. Indeed, MSCs can provide antimicrobial peptides and
anti-inflammatory cytokines (Leng et al., 2020; Rajarshi et al.,
2020; Wang H.C. et al., 2020). Besides these anti-inflammatory
features, secretion of IL-10 and some growth factors along with
their regeneration and reparative capacity make them a potent
therapeutic approach for lung repair and ARDS treatment
in early stages (Azmi et al., 2020). MSC administration has
been also shown to have benefits in sepsis and septic shock
conditions regarding their capacity to normalize inflammatory
biomarkers, oxygen saturation, and pulmonary improvements
on CT imaging. For sepsis condition, umbilical cord-derived
MSCs [especially from Wharton’s jelly (WJ)], due to their
effectiveness and acceptability, are mentioned to be the best
source for MSCs (Laroye et al., 2020). In this respect, the US
Food and Drug Administration (FDA) has recently confirmed
the safety and efficacy of MSCs for widespread application in
COVID-19 cases (Choudhery and Harris, 2020; Kavianpour
et al., 2020). In addition to the mentioned benefits of MSC
administration, there are still some challenges; MSC-related
features regarding their dosage, route of administration,
frequency, and homing into the damaged sites have provided
some limitations. Remaining ethical concerns along with lack of
standardized protocols in preparation and isolation processes
are other challenges. One other important concern about
MSC therapy is the side effect of increased hypercoagulability
(Jeyaraman et al., 2021). Thus, according to the higher risk
of thrombosis, cell-free therapies including MSC secretome
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and MSC extracellular vesicles (EVs) seem to be interesting
treatment approaches for COVID-19 that have shown no risk
of mutagen/oncogenicity. Exosomes harbor different types of
miRNAs/mRNAs and diverse protein components and have
lower accompanied risk and decreased infection transmission.
However, dosage, timing, and route of cell delivery are required
to be known more clearly. Their capability for nebulized delivery
and their longer storage periods also make them promising
alternative therapeutic approaches (Maron-Gutierrez and Rocco,
2020; Kheirkhah et al., 2021). Therein, a number of cell-based
clinical trials for COVID-19 are reviewed in Table 1.

CONCLUSION AND FUTURE SCOPE

Due to the prevalence and complications of COVID-19,
including cytokine storm, which is followed by organ dysfunction
or failure and death, finding the efficient approach to treat
and improve patients is of great importance. Cell therapy is
now a modern way of treating several diseases, and many
experiments have been performed in recent months to use
different types of cells to treat the COVID-19, i.e., the MSC
transplantation (Parhizkar Roudsari et al., 2020). Manifold
aspects associated with the MSC application (e.g., standard
protocols for isolation and harvesting, selection of the proper
source for isolation, the appropriate dosage, route, and the

ideal timing of delivery) should be more discussed. Herein, in
explaining the potential of MSCs, preclinical researches and
continuing randomized trials will perform an important part to
promote our knowledge about MSCs’ fight against SARS-CoV-
2 (Mastrolia et al., 2019; Al-Khawaga and Abdelalim, 2020).
Because of possible accompanying side effects and limitations
of stem cell-based therapeutic approaches, EVs are emerging
alternative cellular treatments that have some advantages over
MSCs (Maron-Gutierrez and Rocco, 2020). On the other hand,
the importance of conducting more extensive studies to better
understand the new coronavirus and its different variants cannot
be ignored. This opens the door to researchers for designing more
effective treatments. Accordingly, genetically modified MSCs
have the ability to solve the challenges as a new sector and a
developing field (Sage et al., 2016).
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GLOSSARY

SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; COVID-19, coronavirus disease-2019; SARS-CoV, severe acute
respiratory syndrome coronavirus; MERS-CoV, Middle East respiratory syndrome coronavirus; ORFs, open reading frames; nsp, non-
structural proteins; S, spike; ACE2, angiotensin converting enzyme 2; TMPRSS2, transmembrane protease serine type 2; ARDS, acute
respiratory distress syndrome; MODS, multiple-organ dysfunction syndrome; MOF, multi-organ failure; CRP, C-reactive protein;
ESR, erythrocyte sedimentation rate; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CK, creatine kinase; SIRS,
systemic inflammatory response syndrome; GF, growth factor; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon; CSF,
colony-stimulating factor; TGF-β, transforming growth factor beta; IP-10, IFN gamma-induced protein-10; CCL2, chemokine (C-
C motif) ligand-2; MIP-1A, macrophage inflammatory protein-1A; MCP-1, monocyte chemoattractant protein-1; CRS, cytokine
release syndrome; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; JAK:
Janus kinases; STAT, signal-transducer and activator of transcription; ROS, reactive oxygen species; NF-κB, nuclear factor-kappa
B; DAMPs, danger-associated molecular pattern molecules; ComC, complement cascade; PNCs, platelet–neutrophil complexes;
CVD, cardiovascular disease; α-HBDH, alpha-hydroxybutyrate dehydrogenase; NT-proBNP, N-terminal pro-brain natriuretic
peptide; MAS, macrophage activation syndrome; AKI, acute kidney injury; BUN, blood urea nitrogen; CTSL, cathepsin L; sHLH,
hemophagocytic lymphohistiocytosis; ATN, acute tubular necrosis; TIN, tubulointerstitial nephritis; PAMPs, pathogen-associated
molecular patterns; TLR, Toll-like receptors; HPA, hypothalamic–pituitary–adrenocortical; HAT, histone acetyltransferase; HDAC2,
histone deacetylase 2; FDA, Food and Drug Administration; MSCs, mesenchymal stem cells; WJ, Wharton’s jelly; EVs, extracellular
vesicles; NK, natural killer; CAR, chimeric antigen receptor.
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