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Abstract: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in 
the world. HCC incidence rate is sixth and mortality is fourth worldwide. However, HCC 
pathogenesis and molecular mechanisms remain unclear. The incidence of HCC is associated 
with genetic, environmental, and metabolic factors. The role of gut microbiota in the 
pathogenesis of HCC has attracted researchers’ attention because of anatomical and func-
tional interactions between liver and intestine. Studies have demonstrated the involvement of 
gut microbiota in the development of HCC and chronic liver diseases, such as alcoholic liver 
disease (ALD), nonalcoholic fatty liver disease (NAFLD), and liver cirrhosis. Peroxisome 
proliferator-activated receptors (PPARs) are a group of receptors with diverse biological 
functions. Natural and synthetic PPAR agonists show potential for treatment of NAFLD, 
liver fibrosis, and HCC. Recent studies have demonstrated that PPARs take part in gut 
microbiota inhabitation and adaptation. This manuscript reviews the role of gut microbiota 
in the development of HCC and precancerous diseases, the role of PPARs in modulation of 
gut microbiota and HCC, and potential of gut microbiota for HCC diagnosis and treatment. 
Keywords: gut microbiota, hepatocellular carcinoma, PPARs, carcinogenesis

Introduction
More than 1×1014 microorganisms colonize the human gastrointestinal tract, including 
bacteria (about 1×104 bacterial species), archaea, fungi, and viruses.1 Sequencing 
results for 1267 human intestinal microbial samples from three continents have 
shown that human gastrointestinal tract contains more than 9 million genes, which is 
150 times the number of all human genes. Among these genes, more than 99% are 
bacterial, thus intestinal microbiota are also called intestinal microflora.2 Most of the 
bacteria in the intestine belong to five phyla: Bacteroidetes, Firmicutes, Actinobacteria, 
Proteobacteria, and Verrucomicrobia. Bacteroidetes and Firmicutes account for 90– 
95% of all gut microorganisms in healthy people.1 Gut microbiota play a key role in 
human health through modulation of metabolism and immunity.3 Thus, gut microbiota 
are considered to be the “forgotten organ”4 Increasing evidence has demonstrated the 
involvement of gut microbiota in human diseases, such as inflammatory bowel disease 
(IBD),5 type 2 diabetes mellitus (T2DM),6 obesity,7 Alzheimer’s disease,8 and heart 
failure.9 The underlying mechanisms might be related to microbiota dysbiosis, alter-
nation of bacterial metabolite production, and host immune disorder.10 Gut microbiota 
is a dynamic system, which can be influenced by a serious of factors, including age, 
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immune system formation, geographical location, and short- 
and long-term dietary structure.11

Liver cancer is one of the most common malignant 
tumors of the digestive system and is characterized by 
a high mortality rate.12–14 In 2018, there were 841,080 
new liver cancer cases in the world, including 596,574 in 
males and 244,506 in females. A total of 781,631 patients 
died of liver cancer in 2018, of which 548,375 were males 
and 233,256 were females. Liver cancer became the sixth 
most common cancer in the world and the fourth leading 
cause of cancer death worldwide.15 Hepatocellular carci-
noma (HCC) makes up 75–85% of primary liver cancer 
cases. The pathogenesis of HCC is complex and involves 
a series of factors.16,17 In China, HCC is mainly attributed 
to hepatitis B virus (HBV) infection.18–20 In USA, the 
predominant HCC etiology is NAFLD.21,22 Commonly 
used diagnostic methods for HCC include abdominal ultra-
sonography, computed tomography (CT), magnetic reso-
nance imaging (MRI), selective hepatic angiography, and 
detection of serum alpha-fetoprotein and α-L-fucosidase.23 

Liver biopsy is the gold standard for the diagnosis of 
HCC. However, HCC diagnosis is usually performed 
with non-invasive techniques, such as dynamic-MRI and/ 
or dynamic-CT. During dynamic-MRI or dynamic-CT 
detection, comparing with surrounding liver, HCC nodule 
shows hypersignal intensity in the arterial phase (wash-in), 
and hypodensity or hyposignal intensity in the venous 
phase (wash-out). The detection of nodules with wash-in 
and wash-out in liver cirrhosis patients has an approxi-
mately 95% positive predictive value (PPV) for HCC 
diagnosis.24 If the patient is non-fibrotic or has no typical 
HCC imaging manifestations (wash-in and wash-out), then 
liver biopsy is recommended.25 However, liver biopsy is 
not suitable for patients with coagulopathy and hyperten-
sion and its sensitivity is not high enough for the diagnosis 
of early HCC. In addition, there are no early biomarkers 
and specific symptoms in early stages, resulting in diag-
nosis at advanced stages for the majority of HCC patients. 
Hence, a noninvasive diagnostic method for HCC at an 
early stage is urgently needed. Increasing evidence has 
indicated the potential of gut microbiota as a novel diag-
nostic tool for HCC and other precancerous diseases.26,27

In the past decade, the findings in experimental and 
clinical studies demonstrated the role of gut microbiota in 
the different stages of liver diseases and the development 
of liver cirrhosis and HCC.28 The majority of HCC 
develop in patients with liver cirrhosis.28 Pathological 
changes in liver cirrhosis, such as portal hypertension 

and decreased gastric acid secretion, directly destroy 
intestinal barrier and indirectly affect the composition of 
gut microbiota, promoting the pathological bacteria trans-
location and the progression of liver diseases.29 The 
mechanisms by which gut microbiota promotes the hepa-
tocarcinogenesis involves the leaky gut, gut microbiota 
dysbiosis, activated lipopolysaccharide (LPS)- Toll-like 
receptor 4 (TLR4) signaling and the alternation of bacter-
ial metabolites.30 Modulation of gut microbiome via 
administration of probiotics or antibiotics might suppress 
the occurrence and progression of HCC in animal 
models.31–33 T-cell checkpoint inhibition is considered 
the breakthrough in cancer immunotherapy. The anti-pro-
grammed cell death-1 (PD1) agent nivolumab has been 
approved for advanced HCC treatment after sorafenib 
failure.34 A recent review indicated that gut microbiota 
could modulate the efficiency of PD-1 inhibition in mela-
noma and might influence the efficiency of immune check 
point therapy in HCC.28 The present manuscript focuses 
on the mechanisms by which gut microbiota promotes the 
development of HCC and the potential of gut microbiome 
as a novel diagnostic biomarker and therapeutic target 
for HCC.

Intestinal Barrier and Gut-Liver 
Axis
Intestinal barrier prevents harmful substances and patho-
gens from entering the human body and maintains its 
stability. A normal intestinal barrier consists of mechan-
ical, biological, immune, and chemical barriers. The 
mechanical barrier includes the intestinal mucus layer, 
peristalsis, and epithelium. Normal peristalsis of the 
small intestine can prevent bacteria from remaining near 
the intestinal mucosa for too long and reduces the chance 
of bacteria passing through the mucosa to reach the epithe-
lium. Intestinal flora competes with pathogenic microor-
ganisms for nutrition and forms a biological barrier on the 
surface of intestinal mucosa, which can prevent the inva-
sion and colonization of pathogenic microorganisms. 
Some gut bacteria secrete bacteriostatic substances, bac-
teriocins, and organic acids, which can kill pathogenic 
bacteria and neutralize toxins.35 Gut microbiota have 
been reported to play a crucial role in the maturation of 
human immune system by regulating maturation and dif-
ferentiation of T, B, and dendritic cells and maintaining 
gut homeostasis. In turn, intestinal cells can regulate 
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intestinal flora through antimicrobial peptides secreted by 
Paneth cells.36,37

The immune barrier consists of intestinal mucosa lym-
phoid tissue and secretory antibodies of intestinal plasma 
cells (sIgA).38 S-IgA produced by the gut-associated lym-
phoid tissue (GALT) can selectively coat Gram-negative 
bacteria in the gut, form an antigen-antibody complex, 
block the combination of bacterial and epithelial cell 
receptors, stimulate secretion of intestinal mucus, and 
accelerate the flow of the mucus layer, which can effec-
tively prevent bacterial adhesion to intestinal mucosa.39 

The chemical barrier consists of mucus secreted by the 
intestinal epithelium, digestive fluid, and bacteriostatic 
substances produced by resident bacteria.1,40

The “gut-liver” axis theory based on a strong anatomi-
cal and functional interaction between the liver and the gut 
was first proposed in 1998.41 The liver has two indepen-
dent blood supply sources: the hepatic artery and portal 
vein. The portal vein makes up approximately 70–75% of 
liver’s blood supply. The portal vein brings the blood from 
the spleen and intestines to the liver and contains nutrients 
absorbed by the digestive tract as well as metabolites and 
antigens of gut microbiota, such as lipopolysaccharides 
(LPSs) and bacterial DNA. Bile secreted by the hepato-
cytes is essential for the digestion and absorption of lipids 
and fat soluble vitamins. In normal conditions, after spe-
cific receptors like nucleotide-binding oligomerization 
domain-like receptors (NLRs) and Toll-like receptors 
(TLRs) recognize bacterial metabolites, the liver clears 
intestinal bacteria and their products, such as LPSs, 
which are mediators of inflammation and antigens, in 
order to maintain a stable internal environment.42 Hence, 
normal liver function is a part of the intestinal barrier. Of 
note, constant exposure to low-level bacterial metabolites 
suppresses the activation of immune cells by TLRs, which 
is called “endotoxin tolerance,” and activates immune 
suppression via cytokines, such as transforming growth 
factor beta (TGFβ), interleukin (IL)-10, and hepatocyte 
growth factor (HGF).43 In physiological conditions, gut 
microbiota can regulate hepatic lipogenesis, bile acid 
metabolism, oxidation, and levels of inflammation media-
tors in the liver. In turn, liver regulates gut microbiota 
through secretion of bile.44

In addition, the liver and gut microbiota affect each 
other in pathological conditions. The clinical studies indi-
cated that patients with poorer liver function have higher 
gut permeability and mucosal impairment.45,46 High levels 
of portal vein LPSs were observed in patients with liver 

cirrhosis46 due to overgrowth of intestinal bacteria and 
dysbiosis, which are attributed to reduced gastric acid 
and bile acid secretion and low intestinal motility distur-
bance caused by liver cirrhosis.47 The LPSs activate 
Kupffer cells (KCs) and hepatic stellate cells (HSCs) in 
the liver, leading to overexpression of inflammatory fac-
tors, including tumor necrosis factor (TNF-α) and inter-
leukin (IL)-6, and inflammatory response and oxidative 
stress of the liver, finally causing hepatocyte DNA damage 
and the occurrence and accumulation of mutations.30 In 
turn, over release of inflammation mediators by KCs and 
HSCs aggravates intestinal mucosal injury, while portal 
hypertension results in the edema of intestinal mucosa, 
which increases its permeability.48,49 The next section 
will investigate the effects of gut microbiota on the occur-
rence and progression of HCC and its underlying 
mechanisms.

Mechanism for Intestinal 
Microorganism Promotion in HCC 
and Precancerous Diseases
Recent studies have revealed that alteration of the intest-
inal barrier and composition of gut microbiota, such as 
LPSs and deoxycholic acid (DCA), promote the develop-
ment of CLD and HCC by inducing chronic liver inflam-
mation and injury. The peroxisome proliferator-activated 
receptor (PPAR) pathway has been reported to modulate 
microbial inhabitation and adaptation, which might influ-
ence the onset and progression of HCC.

Leaky Gut
In pathological conditions, the structure of the gut microbial 
community is disturbed, leading to the reduction of beneficial 
microbial organisms, overgrowth of pathobionts or potentially 
harmful microorganisms, and loss of microbial organisms.50 

This process is called dysbiosis. Gut microbiota dysbiosis, 
reduced bile acid secretion, overexpression of inflammatory 
factors in the intestine, and other factors might destroy the 
intestinal barrier and increase permeability of the intestinal 
mucosa, leading to translocation of gut bacteria and high levels 
of bacterial toxins and metabolites in the portal vein, which 
activates the immune response in the liver. This phenomenon 
is known as a leaky gut.51,52 HCC is a consequence of 
a vicious cycle of chronic liver injury, inflammation, and 
regeneration and is the terminal stage of CLD, including 
chronic viral hepatitis, alcoholic liver disease (ALD), non- 
alcoholic fatty liver disease (NAFLD), and non-alcoholic 
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steatohepatitis (NASH).53 Moreover, the majority of HCCs 
occur in patients with liver fibrosis and cirrhosis. Hence, CLD, 
liver fibrosis, and liver cirrhosis are regarded as precancerous 
HCC diseases.54 A recent study indicated that the leaky gut 
and gut microbiota dysbiosis are observed in patients with 
CLD, and liver cirrhosis and might contribute to the occur-
rence and progression of HCC in mice.30 It should be noted 
that in hepatocarcinogenesis induced by diethylnitrosamine 
(DEN)+ carbon tetrachloride (CCl4), gut sterilization had a 
strong effect on the inhibition of HCC formation in the late 
stages and a mild effect in the early stages, demonstrating that 
tumor-promoting signals induced by the leaky gut mainly 
occur during late stages of hepatocarcinogenesis.33

LPS is a cell wall component of Gram-negative bac-
teria and is known as an endotoxin. It is released only 
when the bacteria die. LPS binds to its Toll-like receptor 
4 (TLR4) expressed by hepatocytes, KCs, and hepatic 
stellate cells, promoting hepatic inflammation and subse-
quent liver fibrogenesis and hepatocarcinogenesis.33 

Dapito et al33 have found that administration of low dose 
LPSs through subcutaneous osmotic pumps for 3 months 
promoted hepatocarcinogenesis induced by DEN plus 
CCl4 in mice. The LPS treatment increased the release 
of inflammatory factors, tumor number, and size. Tumor 
growth was suppressed after the LPS levels were reduced 
by the treatment of cocktail antibiotics.33 When the intest-
inal barrier is destroyed by a series of factors, the perme-
ability of intestinal mucosa increases and LPSs and other 
gut microbiota metabolites translocate from the intestine to 
the portal vein, leading to subsequent liver injury. LPSs 
can also enter circulating blood, which is called intestinal 
endotoxemia.55 Hence, LPS levels in the portal vein and 
circulating blood to some extent reflect the permeability of 
intestinal mucosa. High levels of LPSs have been observed 
in patients with CLD and HCC and in animal models. It 
has been reported that patients infected with HBV and 
hepatitis C virus (HCV) have higher LPS serum levels 
than the uninfected individuals.56 Ethanol and its metabo-
lite acetaldehyde can destroy the intestinal barrier and 
increase the LPS levels in the portal vein and serum in 
rodent models administered with acute and chronic ethanol 
treatment.57 Accordingly, plasma LPS concentrations are 
elevated in patients with ALD.58 Insulin resistance plays a 
key role in the pathogenesis of NAFLD. In a high fat diet- 
induced mouse obesity model, LPS serum levels increased 
two- to three-fold, inducing insulin resistance by upregu-
lating inflammatory pathways.59,60 Accordingly, an 
increase in intestinal permeability was observed in patients 

with NAFLD due to alternation of gut epithelial tight 
junction.61 More importantly, a study conducted by Lin 
et al46 have demonstrated that LPS levels in the portal vein 
were positively correlated with the severity of liver cirrho-
sis (Child-Turcotte-Pugh scores) and highest levels were 
observed in patients with Child-Turcotte-Pugh cirrhosis 
stage C. Moreover, serum LPS levels were elevated in 
patients with HCC and HCC animal models.62,63 In addi-
tion, Bellot et al64 have found that plasma levels of bacter-
ial DNA, which activate Toll-like receptor (TLR)-9, were 
elevated in patients with CLD. These findings demonstrate 
that the livers of CLD and HCC patients were exposed to 
high LPS levels and other bacterial products due to a leaky 
gut, which might promote the onset and progression 
of HCC.

Dysbiosis
The qualitative and quantitative alternations have been 
observed in gut microbiota of CLD and HCC patients, 
including a change in bacterial abundance, loss of bene-
ficial bacteria, and increase in pathogens.65 This process is 
known as dysbiosis. Dysbiosis can affect the progression 
of CLD and HCC by altering microbiota metabolites, such 
as LPSs, short-chain fatty acids (SCFAs), and deoxycholic 
acid (DCA). By performing 16S rRNA gene sequencing, 
researchers have attempted to figure out the difference in 
gut microbiota between CLD or HCC patients and healthy 
individuals. The relative findings and references have been 
listed in Table 1.66–74

The above findings indicate that gut microbiota dysbiosis 
in CLD patients is disease-specific. However, the majority of 
CLD patients experience a stage of liver cirrhosis in the process 
of developing HCC. Research on gut microbiota dysbiosis in 
liver cirrhosis patients has included patients with diverse 
underlying CLD, demonstrating that at least some of the 
microbiota dysbiosis features in liver cirrhosis are common 
to different aetiologies, and the features are driven by end-stage 
liver disease features, including reduced bile secretion, portal 
hypertension, and changes in intestinal immune barrier.27,30 

Grat et al have reported an abundance of Escherichia coli in 
patients with liver cirrhosis and HCC.75 Increased levels of 
Streptococcus, Veillonella, Clostridium, Prevotella, and 
Enterobacteriaceae, Streptococcaceae, Veillonellaceae, 
Pasteurellaceae, and Fusobacteriaceae families were 
observed in patients with liver cirrhosis, as well as decreased 
levels of Bacteroides, Eubacterium, and Alistipes and 
Lachnospiraceae and Bacteroidaceae families27,76 (Table 1). 
In addition, dysbiosis in patients with decompensated liver 
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cirrhosis was more obvious than that in patients with compen-
sated liver cirrhosis, demonstrating that it is the cirrhosis stage 
and not the underlying CLD that drives gut microbiota dysbio-
sis in liver cirrhosis.77

Many HCC patients have been diagnosed at advanced 
stages due to the lack of effective strategy for early diag-
nosis. However, recent research on gut microbiota dysbio-
sis in HCC patients makes early diagnosis possible. A 
study conducted by Ren et al26 collected fecal samples 
from healthy individuals and liver cirrhosis and HCC 
patients in East, Central, and Northwest China. Then, 
fecal microbial diversity and composition were identified. 
Gut microbiota diversity in cirrhosis patients was lower 
than that in healthy individuals. However, diversity then 
increased from cirrhosis to early HCC with cirrhosis. 
Compared to healthy individuals, the levels of butyrate- 
producing genera were decreased, while genera-producing 
LPSs was increased in patients with early HCC (Table 1). 

Table 1 Changes in Gut Microbiota for Different Liver Diseases

Liver Disease Changes in Gut 
Microbiota

References

ALD Increased: 

Genus Bifidobacteria 
Lactobacilli 
Proteobacteria 
Fusobacteria 
Decreased: 
Genus Bacteroides

66,67

NAFLD/NASH Increased: 
Genus Proteobacteria 
Fusobacteria 
Erysipelotrichaceae 
Enterobacteriaceae 
Lachnospiraceae 
Escherichia Shigella 
Streptococcaceae 
Blautia 
Decreased: 

Genus Prevotella

68,69

CHB Increased: 

Genus Megamonas 
Clostridium sensustricto 
Actinomyces 
Enterobacteriaceae 
Enterococcus faecalis 
Faecalibacterium prausnitzii 
unclassified Lachnospiraceae 
Decreased: 
Genus Alistipes 
Bacteroides 
Asaccharobacter 
Butyricimonas 
Ruminococcus 
Clostridium cluster IV 
Parabacteroides 
Escherichia/Shigella 
Bifidobacteria 
Lactic acid bacteria

71,72

CHC Increased: 
Genus Streptococcus 
Lactobacillus 
Bacteroidetes 
Decreased: 

Genus Bifidobacterium 
Order Clostridiales

73,74

Liver cirrhosis Increased: 

Genus Streptococcus 
Veillonella 
Clostridium

27,76

(Continued)

Table 1 (Continued). 

Liver Disease Changes in Gut 
Microbiota

References

Prevotella 
Family Enterobacteriaceae 
Streptococcaceae 
Veillonellaceae 
Pasteurellaceae 
Fusobacteriaceae 
Decreased: 

Genus Bacteroides 
Eubacterium 
Alistipes 
Family Lachnospiraceae 
Bacteroidaceae

HCC Increased: 
Genera-producing 

lipopolysaccharides 

Escherichia coli 
Actinobacteria 
Decreased: 

Butyrate-producing 
bacterial genera 

Verrucomicrobia

26,75

HCC in NAFLD 

cirrhosis 

versus 
NAFLD cirrhosis 

without HCC

Increased: 

Bacteroides 
Ruminococcaceae 
Decreased: 

Bifidobacterium

78
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Thirty microbial markers were identified using five-fold 
cross-validation in a random forest model. Most impor-
tantly, these markers were further verified in patients from 
Central and Northwest China, achieving a cross-regional 
validation. However, this study has several limitations, 
influencing the interpretation of results to some extent. 
First, in the discovery cohort, the patients with early 
HCC had impaired liver function and higher portal hyper-
tension compared with patients with liver cirrhosis. It 
might be the severity of liver dysfunction rather than 
existence of HCC that caused the difference in gut micro-
biota between the two groups. Second, in the validation 
cohort, the authors only enrolled healthy individuals and 
patients with HCC. The diagnostic efficacy of these micro-
bial markers should be further investigated by studies 
conducted on patients with HCC and patients with CLD 
without HCC.

In a study conducted on NAFLD patients, fecal microbial 
diversity was found to decrease from healthy individuals to 
patients with NAFLD. However, no difference in fecal micro-
bial diversity was found between patients with NAFLD- 
related cirrhosis and HCC and patients with NAFLD-related 
cirrhosis without HCC.78 Compared with patients with 
NAFLD-related cirrhosis without HCC, patients with 
NAFLD-related cirrhosis and HCC have higher levels of 
Bacteroides and Ruminococcaceae and lower levels of 
Bifidobacterium.78 However, in another study conducted on 
NASH patients, no difference in fecal microbial composition 
was found between patients with and without HCC.79 The 
different findings in these studies might be due to the differ-
ences in techniques to analyze the samples, enrollment of 
cohorts, ethnics, geographical position and underlying liver 
diseases.80 It should be noted that even in studies on mice, the 
location of facility might influence the composition of gut 
microbiota. Moreover, a recent study indicated that gut micro-
biota in laboratory mice was significantly different from that in 
wild mice.81

Hence, in order to compare the findings and gener-
alize conclusions in different studies, sample collec-
tion, bacterial lysis, DNA purification sequencing, 
bioinformatics and statistical analysis should be stan-
dardized in the future studies on gut microbiota in 
HCC patients.82 The efficacy and stability of gut 
microbiota as a diagnostic tool for HCC needs to be 
further validated in populations from different conti-
nents. The combination of microbial markers and cur-
rent diagnostic strategies for HCC might promote the 
early diagnosis of HCC.26

LPS-TLR4 Pathway
It has been reported that leaky gut leads to high portal and 
plasma LPS levels in patients and animal models with 
CLD and HCC. Liver is the first target of gut microbe- 
associated molecular patterns (MAMPs). Pattern recogni-
tion receptors (PRRs), such as TLR4 and NLRs in the liver 
recognize MAMPs, especially LPSs. TLR4 is expressed in 
hepatocytes, HSCs, KCs, and endothelial cells. Activation 
of the LPS-TLR4 pathway leads to an inflammatory 
response in the liver.83 A functional study conducted in 
germ-free, gut-sterilized, or TLR-deficient rodents demon-
strated that the LPS-TLR4 pathway plays a significant role 
in hepatocarcinogenesis. Gabele et al84 have found that 
dextran sulfate treatment can lead to high plasma LPS 
levels due to the leaky gut, promoting liver fibrosis and 
subsequent hepatocarcinogenesis in mice with NASH. 
Chronic administration of low dose LPSs can increase 
the size and number of tumors in DEN+CCl4-induced 
HCC. Moreover, cancer size and tumor number in germ- 
free or antibiotics-administered mice were reduced in the 
same model. In addition, inhibition of TLR4 reduced the 
tumor size and number but had no effect on tumor 
incidence.33

Cancer-promoting effect of the LPS/TLR4 pathway is 
attributed to multiple mechanisms. TLR4 in HSCs is acti-
vated after recognizing LPSs, resulting in nuclear factor 
kappa-B (NF-κB)-mediated overexpression of hepatomito-
gen epiregulin, which promotes mitosis. Furthermore, 
HSCs activated by LPSs secrete extracellular matrix, espe-
cially collagen.85 HSC activation and excessive collagen 
deposition play essential roles in pathogenesis of liver 
fibrosis and subsequent liver cirrhosis.86 In addition, epir-
egulin-deficiency suppresses hepatocarcinogenesis in mice 
administered with DEN and CCl4.33 In addition, activated 
HSCs secrete vascular endothelial growth factor (VEGF). 
VEGF promotes angiogenesis, which plays a key role in 
hepatocarcinogenesis.85,87

Activated LPS/TLR4 can suppress hepatocyte apopto-
sis via the NF-κB-mediated mechanism. Cleaved caspase- 
3 is a biomarker that promotes cell apoptosis. Cleaved 
caspase-3 levels were negatively correlated with tumor 
size in TLR4-deficient and gut-sterilized mice.33 In addi-
tion, activation of the LPS/TLR4 pathway in KCs resulted 
in overexpression of inflammatory factors, including IL-6 
and TNF-α, leading to TNF-α- and IL-6-dependent com-
pensatory hepatocyte proliferation and reduction in hepa-
tocyte apoptosis.88
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Recent studies have demonstrated that the LPS-TLR4 
pathway is related to metastasis and poor prognosis in 
liver cancer patients.89 Jing et al have found that activation 
of the LPS-TLR4 pathway in HCC cells can enhance 
tumor cell invasive potential and induce NF-κB-mediated 
epithelial–mesenchymal transition, which is essential for 
tumor metastasis. In addition, the LPS/TLR4 and AKT 
+MAPK pathways collaborate to regulate cell prolifera-
tion, nitric oxide synthase (NOS) expression, and che-
moresistance of HepG2 cells.90

Microbiota Metabolites
In addition to LPSs, it has been reported that other bacterial 
metabolites, such as DCA and SCFA, regulate HCC pro-
gression. Bile acids (BA) are synthesized by hepatocytes 
and discharged into the intestine through the common bile 
duct. The intestinal microorganisms metabolize conjugated 
bile acids into unconjugated primary bile acids and further 
metabolize them into secondary bile acids in the colon. On 
the one hand, bile acids exert direct antimicrobial effects by 
damaging the member of bacterium. On the other hand, bile 
acids exert indirect antimicrobial effects by increasing far-
nesoid X-activated receptor (FXR)-induced intestinal anti- 
microbial peptide synthesis.91,92 Bile acids regulate the 
growth and adhesion of gut microbiota, playing a key role 
in gut microbiota homeostasis.93 About 95% of the bile 
acids are absorbed by the intestinal epithelium and then 
enter the liver through the portal vein. They are then meta-
bolized by the hepatocytes and secreted into the bile to 
complete the enterohepatic circulation of bile acids. The 
enterohepatic circulation of bile acids connects liver, intes-
tine, and microbiota together.

Nuclear receptor FXR is the major BA-sensing receptor. 
BA modulates the proliferation of intestinal epithelial cells, 
maintaining the integrity of epithelial barrier in a FXR-depen-
dent manner.94 FXR in hepatocytes has anti-inflammatory and 
liver generation-promoting effects.95,96 Meanwhile, FXR is 
the master regulator of bile acids. In physiological conditions, 
FXR modulates the BA synthesis and transport (discussed 
elsewhere).97 Cholesterol 7α-hydroxylase (CYP7A1) is the 
rate-limiting enzyme of bile acid synthesis. FXR is the tran-
scriptional repressor of CYP7A1.91 After sensing bile acids, 
intestinal epithelial FXR is activated. The activated FXR 
increases the expression of fibroblast growth factor 15/19 
(FGF 15/19), leading to the activation of hepatic fibroblast 
factor receptor4 (FGFR4). The activated FGFR4 suppresses 
the expression of CYP7A1, inhibiting the bile acids synthesis 
in the liver.98 In physiological conditions, FXR-FGF15/19- 

FGFR4 pathway plays a key role in BA homeostasis. 
Whole-body FXR-deficiency in mice promotes spontaneous 
hepatocarcinogenesis.99 In FXR-null mice, intestinal selective 
reactivation of FXR/FGF15 pathway restored BA homeostasis 
and inhibited spontaneous HCC development.100 During gut 
microbiota dysbiosis and inflammation, intestinal FXR is sup-
pressed, leading to the inhibition of FGF19-FGFR4 signaling.-
101 The enterohepatic circulation of BA is disrupted, high-level 
BA in the enterocyte might aggravate the intestinal 
inflammation.98 Meanwhile, the suppressed FGF19-FGFR4 
pathway increase hepatic BA synthesis by modulating c-Jun 
N-terminal kinase (JNK)–extracellular-signal-regulated kinase 
(ERK)–CYP7A1 pathway.102 Moreover, during the hepatic 
inflammation, hepatic nuclear factor kappa-B (NF-κB) signal-
ing is activated, suppressing the expression of FXR in the liver. 
Inactivated FXR increased the hepatic BA synthesis by reg-
ulating downstream small heterodimer partner (SHP)- 
CYP7A1 pathway.103 Meanwhile, the hepatic BA transporters 
controlled by FXR are suppressed when FXR is inactivated.103 

As a consequence, hepatic cholestasis and inflammation are 
aggravated, which might promote hepatocarcinogenesis.91

It has been reported that high-level bile acids may 
produce cytotoxicity by inducing cell necrosis.104 DCA 
is a secondary bile acid, which is produced after 7α-dehy-
droxylation of primary bile acids by the gut microbiota. In 
recent years, the role of DCA in the progression of CLD 
and HCC has been demonstrated. Increased levels of 
plasma DCA were found in NASH-induced HCC mouse 
model, which is induced by the administration of high-fat 
diet and dimethylbenz(a)anthracene (DMBA).105 

Accordingly, increased abundance of Gram-positive bac-
terial strains, particularly the Clostridium genus, which is 
capable of producing DCA, was observed in mice fed with 
a high-fat diet. Conversely, no HCC was observed in mice 
treated with DMBA and a normal diet. In addition, HCC 
formation was suppressed after endogenous production of 
DCA was inhibited by administration of vancomycin, 
while HCC formation was promoted by the treatment 
with diets containing DCA.105 Lipoteichoic acid (LPA) is 
a component of Gram-positive bacterial cell wall and an 
agonist of Toll-like receptor 2 (TLR2). LPA collaborates 
with DCA to activate TLR2 in HSCs, leading to upregula-
tion of senescence-associated secretory phenotype (SASP) 
and cyclooxygenase-2 (Cox-2). Cox-2-mediated prosta-
glandin-2 can inhibit antitumor immunity through prosta-
glandin EP4 receptor, thus promoting HCC progression.106

In addition, bile acid metabolism can regulate HCC growth 
by recruiting C-X-C chemokine receptor type 6+ natural killer 
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T (CXCR6+ NKT) cells. Chemokine C-X-C motif ligand 16 
(CXCL16) expressed in the sinusoidal endothelial cells is the 
solo ligand of CXCR6. CXCL16 can be activated by the 
primary bile acid and is suppressed by the secondary bile 
acid. Activated NKT cells secrete interferon-γ, kill tumor 
cells in a CD1d-dependent manner, and suppress tumor 
growth in the liver. Inhibition of conversion from primary to 
secondary bile acid via administration of vancomycin can 
induce NKT cell recruitment and suppress tumor growth, 
which can be reversed by oral supplementation with secondary 
bile acid.107

SCFA is a substance that can be absorbed by the 
intestinal tract and is produced by intestinal flora fermen-
tation of a variety of human indigestible polysaccharides 
such as cellulose, including propionic and butyric acids. 
Propionic acid is mainly produced by Bacteroidetes and 
butyric acid is generally produced by Firmicutes. SCFA is 
the direct energy source for intestinal epithelial cells that 
can reduce apoptosis and maintain the integrity of the 
mechanical barrier. SCFA can also reduce pH in the intes-
tine, inhibit growth and colonization of pathogenic bac-
teria, and suppress inflammatory reactions.108 Moreover, 
SCFA has been reported to regulate hepatocyte prolifera-
tion and differentiation and modulate T-reg cell differen-
tiation via an epigenetic mechanism, reducing the 
inflammatory response in the liver.109 In addition, Ortega 
et al110 have found that a butyric acid prodrug tributyrin 

induces apoptosis in HCC cells by upregulating p53 in the 
nucleus. These properties suggest that SCFA metabolic 
disorder can be related to the development of HCC.

PPARs and Gut Microbiota
Peroxisome proliferator-activated receptors (PPARs) 
belong to a superfamily of nuclear receptors that can be 
activated by their specific ligands. PPAR ligands include 
endogenous ligands, such as 15-deoxy-Δ12,14-prostaglan-
din J2 (15d-PGJ2),111,112 SCFAs,113 and free fatty acids,114 

as well as exogenous ligands, such as thiazolidinediones 
(TZDs),115 resveratrol,116 and honokiol.117 PPARs have 
been reported to play key roles in modulation of a variety 
of biological activities, including lipid and carbohydrate 
metabolism, bile acid synthesis, inflammation, and cell 
cycle.118–120 Three subtypes of PPARs have been identified 
in mammals: PPARα, PPARβ/δ, and PPARγ. PPARα is 
mainly expressed in the liver, heart, kidney, gastrointestinal 
tract, and adipose tissue.121 PPARβ/δ is expressed in the 
muscle, intestine, heart, and adipose tissue. PPARγ is 
expressed in the adipose tissue, colon, and immune cells.122

A recent study demonstrated that in order to colonize and 
survive in the gastrointestinal tract, gut microbiota modulate 
the host immune response by regulating the PPAR pathway in 
the intestinal epithelial and immune modulatory cells 
(Figure 1).123 Enterococcus faecalis is transferred from mother 
to child after birth. Are et al have found that co-culture with 

Figure 1 Interactions between gut microbiota and host PPARs in microbial inhabitation and adaptation. Lines ending in bars represent inhibition and lines ending in 
arrowheads represent activation. 
Notes: Adapted from Hasan A U, Rahman A, Kobori H. Interactions between Host PPARs and Gut Microbiota in Health and Disease. Int J Mol Sci, 2019. 20(2).123 

Abbreviations: 1β, interleukin-1β; S, short-chain fatty acids; TJPs, tight junction proteins.
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Enterococcus faecalis isolated from newborn babies can reg-
ulate PPARγ1 phosphorylation, enhancing DNA binding and 
transcriptional activation of downstream IL-10 gene in colonic 
cell lines and mouse primary colonic epithelial cells.124 IL-10 
is an anti-inflammatory cytokine that plays a key role in gut 
homeostasis. In addition to PPARγ, PPARα activation also 
promotes IL-10 release in the intestinal epithelium.125 After 
binding with IL-10, gut macrophages convert to anti-inflam-
matory phenotype C–X–3–C motif chemokine receptor 
macrophages, modulating the immune response to maintain 
host intestinal barrier and gut microbial homeostasis. Loss of 
IL-10 receptors induces spontaneous colitis.126 In addition, 
intestinal pathogens also modulate intestinal inflammatory 
response via the PPAR pathway to colonize the gut. Kundu 
et al127 have found that Salmonella enterica serovar 
Typhimurium (S. Typhimurium) decreased the expression of 
PPARγ in a TLR4-independent manner in mouse intestinal 
epithelium, leading to overexpression of inflammatory tran-
scription factors NF-κB and AP-1 and downstream TNF-α and 
IL-6. The intestinal inflammatory response helps S. 
Typhimurium to colonize the host gut and induce colitis.

As PPAR ligands, SCFAs can regulate gut homeostasis 
via the PPAR pathway. The overgrowth of facultative 
anaerobic Enterobacteriaceae is considered a marker of 
dysbiosis. Activation of the PPARγ pathway by butyrate 
activates β-oxidation of colonocytes and inhibits the 
expression of inducible nitric oxide synthase (NOS) in 
the colon. Moreover, T-reg cell expansion induced by 
SCFAs can cooperate with the activated PPARγ pathway 
to limit the luminal bioavailability of oxygen and suppress 
the growth of facultative anaerobic bacteria Escherichia 
and Salmonella.128

Clostridia-related segmented filamentous bacteria 
release the inflammatory mediator interleukin (IL)-1β. IL- 
1β activates intestinal T helper 1 and 17 (Th1 and Th17) 
cells via the PPARα pathway.125 Activated Th1 and Th17 
cells produce the inflammatory cytokine interleukin (IL)- 
22. On one hand, IL-22 is essential for maintenance of gut 
barrier integrity and intestinal epithelial regeneration. On 
the other hand, IL-22 activates anti-microbial peptide 
RegIIIβ, RegIIIγ, and calprotectin expression in epithelial 
cells, which is essential for intestinal mucosal immunity.129 

Decreased levels of IL-22, RegIIIβ, RegIIIγ, and calprotec-
tin increased intestinal inflammation susceptibility and gut 
dysbiosis in PPARα-deficient mouse, which could be 
reversed by PPARα agonist GW7647.

Yu et al130 have reported increased incidence of HCC 
in PPARγ-deficient (PPARγ±) mice compared to wild-type 

(PPARγ+/+) mice in a DEN-induced HCC model. A rosi-
glitazone (a type of TZD) treatment suppressed the inci-
dence of HCC in PPARγ+/+ mice, but not in PPARγ± mice. 
Moreover, overexpression of PPARγ induced by adeno-
viral infection in Hep3B cells inhibited cell proliferation, 
induced G2/M cell cycle arrest, and triggered extrinsic and 
intrinsic apoptosis.130 These findings demonstrate that 
PPARγ acts as an antioncogene in hepatocarcinogenesis. 
However, the direct effects of PPARγ on gut microbiota in 
hepatocarcinogenesis have not been investigated.115

Although FXR is the master regulator of bile acids, PPAR 
can also modulate their metabolism. In hepatocyte, PPARα is 
a target gene of FXR.91 Cytochrome P450 enzymes (CYPs), 
sulfotransferases (SULTs) and UDP-glucuronosyltrans-
ferases (UGTs) are responsible for BA detoxification and 
can be activated by PPARα131 During liver inflammation, 
hepatic nuclear factor kappa-B (NF-κB) pathway is acti-
vated, leading to the inhibition of hepatic FXR.91 The inhib-
ited FXR suppresses BA detoxification by decreasing the 
expression of PPARα and downstream CYPs, SULTs and 
UGTs.131 Moreover, suppressed PPARα pathway inhibited 
the expression of multidrug resistance protein 2 (MDR2), 
MDR3, multidrug resistance-associated protein 3 (MRP3) 
and MRP4. MRP3 and MRP4 regulate BA efflux to general 
circulation.132 MDR2 and MDR3 modulate the canicular 
biliary secretion of phosphatidylcholine.133 Combined with 
the cholestasis induced by the inhibition of FXR during liver 
inflammation as we discussed in Microbiota Metabolites, 
liver injury caused by high-level BA are aggravated, which 
might promote the progression of HCC.91

Although there have been no studies focusing on the 
direct effects of PPARs on the onset and progression of 
HCC by modulating gut microbiota, recent research has 
demonstrated the protective effects of natural and synthetic 
PPAR agonists against CLD by reversing leaky gut and gut 
dysbiosis.

Targeting Gut Microbiota for HCC 
Prevention
The above findings suggest that gut microbiota have an 
essential role in progression of CLD and hepatocarcino-
genesis in animal models and patients. Gut microbiota 
seems to be a promising target for the treatment of pre-
cancerous disease and HCC prevention. Studies conducted 
in animal models have indicated that administration of 
antibiotics and probiotics can prevent hepatocarcinogen-
esis induced by NAFLD and chemical toxins. Moreover, it 
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has been reported that gut microbiota can modulate the 
curative effect of targeted therapy.134,135

Antibiotics
Antibiotics including norfloxacin and rifaximin have 
been commonly used in the clinic to prevent encephalo-
pathy and treat enterogenous infections, such as sponta-
neous peritonitis in patients with advanced liver cirrhosis 
or HCC. The suppressive effects of antibiotics on hepa-
tocarcinogenesis are attributed to: 1) amelioration of the 
leaky gut by reducing the number of intestinal bacteria, 
including pathogens and potential pathogens and sup-
pressing liver inflammation; 2) production reduction of 
bacterial metabolites by some antibiotics that promote 
hepatocarcinogenesis.30 For instance, vancomycin can 
inhibit DCA production by eliminating Gram-positive 
bacteria.105 Oral supplementation with a cocktail of anti-
biotics containing ampicillin, neomycin, metronidazole, 
and vancomycin reduced the tumor size and number in 
HCC mice induced by diethylnitrosamine (DEN)+ car-
bon tetrachloride (CCl4) or dimethylolbutanoic acid 
(DMBA) + high-fat diet (HFD).33,105 It should be noted 
that suppressive effects of antibiotics on carcinogenesis 
are more effective at advanced stages than the early 
stages, suggesting the feasibility of antibiotics adminis-
tration for HCC patients with advanced liver cirrhosis 
and those at high risk of HCC. However, long-term 
treatment by broad-spectrum antibiotics might lead to a 
decrease in probiotics levels and an increase in drug- 
resistant bacteria in the intestine, promoting gut micro-
biota dysbiosis. In addition, the side effects of antibiotics, 
such as vancomycin nephrotoxicity, restrict their long- 
term administration.

Hence, an antibiotic with mild side effects, high long- 
term safety, or even life-long administration for HCC 
prevention is needed. Rifaximin is a potent broad-spec-
trum antibiotic that cannot be absorbed by the human 
body and has extremely high intestinal concentrations 
and mild side effects.136 Rifaximin is commonly used 
in the clinic to treat enterocolitis or traveler’s diarrhea 
and prevent encephalopathy in patients with advanced 
liver disease and HCC. More importantly, no resistance 
to rifaximin has been observed in patients receiving 
long-term treatment. In a DEN/CCl4-induced HCC 
mouse model, the rifaximin treatment effectively 
reduced tumor size and number. In addition, rifaximin 
effectively ameliorated portal hypertension and reduced 
the incidence of spontaneous peritonitis in patients with 

liver cirrhosis, thus prolonging their survival.137,138 

However, the effects of rifaximin on the development 
of HCC in patients with advanced liver disease remain 
unclear and more experimental and clinical studies are 
needed.

Probiotics
Probiotics are active microorganisms that are beneficial to 
the host as they colonize the human body and change the 
composition of certain types of host flora. They can promote 
absorption of nutrients and maintain intestinal health by 
regulating the immune function and intestinal flora balance. 
Recent studies have confirmed that probiotics can ameliorate 
CLD in patients and animal models and suppress hepatocar-
cinogenesis in animal models. Administration of a VSL#3 
mixture containing Streptococcus, Bifidobacterium, and 
Lactobacillus in patients or rodent models can improve insu-
lin resistance, reduce LPS serum levels, depress the total 
hepatic fatty acid content and liver inflammation, and attenu-
ate liver injury.139,140 In a clinical study conducted on 
patients with HBV-induced liver cirrhosis without overt 
hepatic encephalopathy, 3-month oral administration of pro-
biotics (containing Clostridium butyricum and B. infantis) 
improved patient cognition. There was an increased abun-
dance of beneficial Clostridium butyricum and B. infantis and 
a decreased abundance of opportunistic pathogens 
Enterococcus and Enterobacteriaceae. The intestinal barrier 
was improved after the probiotics treatment, resulting in a 
decreased level of venous ammonia and increased cognitive 
ability in patients with liver cirrhosis.141 Accordingly, 
Dhiman et al142 have found that the VSL#3 treatment in 
patients with liver cirrhosis reduces the risk of hospitalization 
for hepatic encephalopathy and decreases the severity of 
cirrhosis.

The VSL#3 pretreatment ameliorated gut microbiota 
dysbiosis, suppressed intestinal inflammation, reduced 
serum LPS levels, and inhibited HCC growth and multi-
plicity in HCC rats induced by DEN.143 Degirolamo et al 
have found that VSL#3 treatment increased fecal BA 
excretion and hepatic BA synthesis by inhibiting gut- 
liver FXR/FGF15 pathway in mice.144 The effect of 
VSL#3 on FXR/FGF15 pathway in hepatocarcinogenesis 
should be further investigated. In a subcutaneous mouse 
tumor model, the administration of a probiotics mixture 
Prohep containing Lactobacillus rhamnosus GG, viable 
Escherichia coli Nissle 1917, and heat-inactivated VSL#3 
suppressed tumor growth and reduced tumor size and 
weight. An increased amount of beneficial Prevotella and 
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Oscillibacter was observed in the treatment group, which 
produced anti-inflammatory cytokine IL-10. Prohep 
administration suppressed tumor angiogenesis by reducing 
the Th17 polarization and secretion of IL-17.145 Aflatoxins 
are carcinogenic fungal metabolites that can induce HCC. 
Gratz et al have found that treatment with a probiotic 
Lactobacillus rhamnosus strain GG, which binds aflatox-
ins, reduced the hepatotoxicity of aflatoxins by increasing 
their excretion via the fecal route in rats.32 The above 
findings demonstrate that the suppressive effects of pro-
biotics on hepatocarcinogenesis are attributed to ameliora-
tion of gut microbiota dysbiosis, improvement of intestinal 
barrier, inhibition of liver inflammation, modulation of 
host immune system, and reduction of carcinogen toxicity. 
Probiotics demonstrate good safety for CLD treatment, as 
all patients with decompensated cirrhosis tolerated the 
probiotics treatment.146 However, there are limited studies 
on the effects of probiotics on HCC patients. In addition, 
the majority of probiotics cannot colonize the host diges-
tive tract. The probiotics are also used in different combi-
nations in different studies, making it difficult to compare 
their effectiveness.

Fecal Microbiota Transplantation (FMT)
Fecal microbiota transplantation (FMT) refers to the pro-
cess of transplanting functional bacteria from the feces of 
healthy people into the intestinal tract of patients, thereby 
reconstructing intestinal microflora with normal structure 
and function.147 In third-century China, Ge Hong used 
stool from healthy people to treat food poisoning and 
diarrhea.148 The use of FMT as a treatment for 
Clostridium difficile infection (CDI) has been approved 
by the US Food and Drug Administration (FDA) in 
2013. FMT cure rate for treating recurrent and refractory 
CDI is nearly 90%, which is 2–3 times that of the standard 
antibiotics therapy.149 In recent years, FMT has shown 
potential for treatment of inflammatory bowel disease 
(IBD), irritable bowel syndrome (IBS), obesity, and idio-
pathic thrombocytopenic purpura.147,150 It has been 
reported that transplantation of intestinal microbiota from 
lean donors can increase insulin sensitivity in patients with 
metabolic syndrome. Increased gut microbiota diversity 
and abundance of butyrate-producing intestinal microbiota 
have been observed after the treatment.151 The effects of 
FMT on NASH and liver cirrhosis are currently being 
evaluated in clinical trials.152 FMT might suppress hepa-
tocarcinogenesis by ameliorating gut microbiota dysbiosis, 
reducing the release of LPSs and other cytotoxic products, 

and suppressing liver inflammation.148 This hypothesis 
needs to be verified with more animal experiments and 
clinical trials. Moreover, it has not been determined 
whether gut microbiota restoration by FMT is permanent 
or transient. Most importantly, the safety of FMT has not 
been demonstrated. The majority of patients with 
advanced liver disease have a suppressed immune system. 
Therefore, they might be infected with pathogens, viruses, 
and fungi through FMT.

Prokinetics
Portal hypertension is observed in the majority of patients 
with advanced liver cirrhosis and HCC, leading to hyper-
emia and edema of the intestinal mucosa, which influences 
periodic peristalsis of the small intestine.153 In addition, 
liver injury can cause gastrointestinal dysfunction in 
patients with liver cancer, further aggravating the impact 
on gastric emptying and small intestine motility. Liver 
dysfunction can also induce sympathetic nerve excitation, 
inhibit the parasympathetic nerve, and have adverse effects 
on gastrointestinal motility, absorption, secretion, and 
other activities. Gut dysmotility caused by the above fac-
tors leads to bacterial overgrowth in the intestine and 
subsequent LPS translocation. The administration of cisa-
pride-a prokinetic can effectively reduce intestinal perme-
ability, improve intestinal transit, and suppress bacterial 
overgrowth and LPS translocation in animal models and 
patients with liver cirrhosis.154,155 Similar protective 
effects have been observed in nonselective β-adrenergic 
blockers (such as propranolol), which reduce sympathetic 
activity.156,157 Furthermore, cohort study results158,159 

have demonstrated that long-term administration of pro-
pranolol reduces the risk of developing HCC in patients 
with liver cirrhosis. In addition, propranolol has been 
reported to suppress proliferation and induce apoptosis of 
HepG2 and HepG2.2.15 liver cancer cells in vitro.160

PPAR Agonists
Sun et al161 have reported that a water-insoluble polysacchar-
ide (WIP) isolated from the sclerotium of Poria cocos 
improves hyperglycemia, insulin resistance, hyperlipidemia, 
and liver steatosis in mice with NAFLD by activating the 
PPARγ pathway. The WIP treatment increased the SCFA- 
producing Lachnospiracea, Alloprevotella, Parabacteroides, 
Clostridium IV, Ruminococcus, and Bacteroides and 
decreased pro-inflammatory Megamonas and Proteus. It 
also maintained intestinal integrity, demonstrated by the 
decreased LPS plasma levels.
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In a study conducted on rats with ethanol-induced liver 
disease, a selective PPARδ agonist MBX-8025 amelio-
rated liver injury. The MBX-8025 treatment restored bile 
acid homeostasis and increased hydrogen-producing 
Rikenellaceae. Hydrogen protected cells from oxidative 
stress. MBX-8025 decreased pathogenic Enterococcaceae 
and Coriobacteriaceae. Enterococcaceae is related to liver 
failure and increased LPS serum levels. Coriobacteriaceae 
can impair cholesterol homeostasis. The MBX-8025 treat-
ment also reversed ethanol-induced gut barrier 
dysfunction.162

Synthetic PPARγ agonists TZDs have been reported 
to have anti-hepatoma effects in vivo and in vitro. 
Rosiglitazone suppresses BEL-7402 and Huh7 cell pro-
liferation by upregulating phosphatase and tensin homo-
log (PTEN) and downregulating Cox-2 via activation of 
the PPARγ pathway.163 Rosiglitazone inhibits the migra-
tion of BEL-7404 cells via PPARγ-mediated upregula-
tion of PTEN and downregulation of phosphorylated Akt 
and focal adhesion kinase.164 Troglitazone has been 
reported to induce HepG2 cell apoptosis in vivo.165 

Moreover, in an orthotopic metastasis mouse model, 
rosiglitazone was found to suppress lung metastasis in 
MHCC97L cells.166 Endogenous PPARγ ligand 15d- 
PGJ2 inhibited proliferation and induced apoptosis of 
LM3, SMMC-7721, and Huh-7 cells via ROS-mediated 
JNK activation and Akt downregulation.167 Natural 
PPARγ agonist avicularin has been reported to induce 
apoptosis and inhibit migration and invasion of 
SMMC7721 and Bel7402 via PPARγ activation induced 
by ERK and AMPK. Furthermore, avicularin can inhibit 
lung metastasis in Bel7402 cells.168

A PPARα agonist fenofibrate has been reported to 
suppress expression of CYP7A1 by inhibiting hepatocyte 
nuclear factor 4 (HNF-4) in vivo.169 Fenofibrate was found 
to increase the biliary phosphatidylcholine secretion in rat 
hepatocytes by activating MDR3.170 More importantly, 
fenofibrate treatment improved cholestasis in patients 
with primary biliary cirrhosis and primary biliary 
cholangitis.171,172 The effect of fenofibrate on bile acids 
metabolism in hepatocarcinogenesis should be further 
investigated.

Based on the findings discussed above, it can be con-
cluded that PPAR agonists have anti-hepatoma effects and 
can potentially be used for treating CLD by modulating gut 
microbiota. However, the effects of PPAR agonists on the 
endogenous hepatocarcinogenesis driven by the leaky gut 
and dysbiosis remain unclear and need further investigation.

Modulation of Targeted Therapy
Sorafenib, approved by the FDA in 2007 for the targeted 
therapy of advanced liver cancer, is a small molecule oral 
multi kinase inhibitor. Sorafenib has dual antitumor 
effects. On one hand, it acts on serine/threonine kinase 
and receptor tyrosine kinase in tumor cells and blood 
vessels and directly inhibits tumor growth by inhibiting 
the Raf/MEK/ERK signal transduction pathway.173,174 On 
the other hand, it can block the formation of tumor neo-
vascularization by inhibiting VEGF and platelet-derived 
growth factor (PDGF) receptors and indirectly inhibit 
tumor cell growth.175–177 A recent study demonstrated 
that gut microbiota regulate the VEGF-C secreted by villus 
macrophages, which is essential for lacteal integrity in 
mice.178 More importantly, in a mouse obesity-driven 
choroidal neovascularization model, gut microbiota dys-
biosis induced by high-fat diet destroyed the intestinal 
barrier and increased the production of VEGF-A, leading 
to pathological angiogenesis.179 These findings indicate 
that gut microbiota might influence the effectiveness of 
sorafenib by regulating the expression of VEGF, which 
still needs to be verified via animal experiments and clin-
ical trials.

Conclusion
A large number of studies have demonstrated the con-
tribution of gut microbiota to the progression of CLD 
and hepatocarcinogenesis via multiple mechanisms. 
However, the direct effect of gut microbiota on hepato-
carcinogenesis has not been elucidated. The impaired 
gut barrier and alteration of gut microbiota and their 
metabolites, such as LPS and DCA, result in chronic 
liver inflammation and injury, promoting the develop-
ment of HCC. Studies on dysbiosis in HCC patients 
suggest the potential of gut microbiota as a noninvasive 
tool for early diagnosis of HCC. The administration of 
antibiotics, probiotics, FMT, and prokinetics, which tar-
get gut microbiota, might be safe therapeutic options for 
HCC prevention and treatment. The PPARs can modu-
late microbial inhabitation and adaptation. PPAR ago-
nists show potential for treating CLD by reversing leaky 
gut and dysbiosis, indicating the possibility of their use 
in HCC prevention and treatment (Figure 2). Gut micro-
biota might modulate efficiency of HCC-targeted ther-
apy. However, animal model findings cannot be directly 
translated to human patients since CLD and HCC devel-
opment cannot be perfectly modeled in animals. The 
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clinical trials on patients need to be well designed and 
administration of antibiotics, probiotics, and proton 
pump inhibitors before interference should be taken 
into consideration. Further efforts to determine the 
roles of gut microbiota during the onset and progression 
of HCC will assist in finding novel effective and safe 
strategies for HCC diagnosis, prevention, and treatment.
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