
Frontiers in Genetics | www.frontiersin.org 1 March 2021 | Volume 12 | Article 614711

ORIGINAL RESEARCH
published: 11 March 2021

doi: 10.3389/fgene.2021.614711

Edited by: 
Tatiana V. Tatarinova,  

University of La Verne, United States

Reviewed by: 
Jianjun Zhao,  

Agricultural University of Hebei, China
Hamed Bostan,  

National Institute of Environmental 
Health Sciences (NIEHS), 

United States

*Correspondence: 
Vitaly V. Gursky  

gursky@math.ioffe.ru

Specialty section: 
This article was submitted to  

Computational Genomics,  
a section of the journal  

Frontiers in Genetics

Received: 06 October 2020
Accepted: 28 January 2021
Published: 11 March 2021

Citation:
Pavlinova P, Samsonova MG and 

Gursky VV (2021) Dynamical 
Modeling of the Core Gene Network 
Controlling Transition to Flowering in 

Pisum sativum.
Front. Genet. 12:614711.

doi: 10.3389/fgene.2021.614711

Dynamical Modeling of the Core 
Gene Network Controlling Transition 
to Flowering in Pisum sativum
Polina Pavlinova 1, Maria G. Samsonova 1 and Vitaly V. Gursky 2*

1 Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University,  
Saint Petersburg, Russia, 2 Theoretical Department, Ioffe Institute, Saint Petersburg, Russia

Transition to flowering is an important stage of plant development. Many regulatory 
modules that control floral transition are conservative across plants. This process is best 
studied for the model plant Arabidopsis thaliana. The homologues of Arabidopsis genes 
responsible for the flowering initiation in legumes have been identified, and available data 
on their expression provide a good basis for gene network modeling. In this study, 
we developed several dynamical models of a gene network controlling transition to 
flowering in pea (Pisum sativum) using two different approaches. We used differential 
equations for modeling a previously proposed gene regulation scheme of floral initiation 
in pea and tested possible alternative hypothesis about some regulations. As the second 
approach, we applied neural networks to infer interactions between genes in the network 
directly from gene expression data. All models were verified on previously published 
experimental data on the dynamic expression of the main genes in the wild type and in 
three mutant genotypes. Based on modeling results, we made conclusions about the 
functionality of the previously proposed interactions in the gene network and about the 
influence of different growing conditions on the network architecture. It was shown that 
regulation of the PIM, FTa1, and FTc genes in pea does not correspond to the previously 
proposed hypotheses. The modeling suggests that short- and long-day growing conditions 
are characterized by different gene network architectures. Overall, the results obtained 
can be used to plan new experiments and create more accurate models to study the 
flowering initiation in pea and, in a broader context, in legumes.

Keywords: pea, gene network, flowering initiation, differential equations, neural networks, dynamical model

INTRODUCTION

Flowering is associated with a significant physiological change in plant development which 
manifests the transition from vegetative growth to reproductive development. For the reproductive 
success of plants, it is important for this transition to occur at the most appropriate moment. 
Various exogenous and endogenous pathways contribute to the control for the flowering time, 
and these pathways are best studied for the model plant Arabidopsis thaliana (Srikanth and 
Schmid, 2011; Andrés and Coupland, 2012; Khan et  al., 2014). The key factor in the activation 
of the photoperiodic pathway of flowering initiation in Arabidopsis is the protein encoded by 
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the FLOWERING LOCUS T (FT) gene. The FT, a 
phosphatidylethanolamine binding protein (PEBP), is a mobile 
signal transported from the leaves to the top of the shoot apex, 
where it promotes the plant’s transition to flowering. Expression 
of the FT gene depends on the influence of external and internal 
signals, which allow the plant to regulate the flowering initiation 
time (Kardailsky et  al., 1999; Kobayashi et  al., 1999; Jaeger 
et al., 2013). After synthesis in the leaves, the FT protein moves 
to the shoot apical meristem and forms a complex with the 
bZIP-type transcription factor FLOWERING LOCUS D (FD; 
Abe et  al., 2005), which belongs to the 14-3-3 protein family 
(Taoka et  al., 2011). Main target genes of the FT-FD complex 
are the flower meristem identity gene AP1 (APETALA1; Wigge 
et  al., 2005) and SUPPRESSOR OF OVEREXPRESSION OF 
CONSTANS1 (SOC1; Yoo et al., 2016). The latter is an activator 
of the gene LEAFY (LFY), which also controls the transition 
of shoot apical meristems to flower meristems (Lee et al., 2008). 
The flower meristem identity genes AP1 and LFY transcriptionally 
activate each other (Jaeger et  al., 2013).

The balance between activation and repression of flowering 
initiation is important for plants with indeterminate inflorescence 
architecture, in which newly forming flowers do not stop further 
plant growth (Benlloch et  al., 2015). The key repressor of 
flowering initiation in Arabidopsis is the gene TERMINAL 
FLOWER1 (TFL1), which is a close relative of FT and encodes 
a protein belonging to the PEBP family. This protein is expressed 
during floral transition in the center of the shoot apical meristem 
and maintains it in the vegetative state by suppressing the 
expression of LFY and AP1 (Jaeger et  al., 2013; Goretti et  al., 
2020). In turn, AP1 represses TFL1 by directly binding its 
regulatory elements (Kaufmann et  al., 2010). This mutual 
repression between TFL1 and LFY/AP1 explains the inflorescence 
meristem maintenance and flower meristem formation on its 
flanks (Benlloch et al., 2015). The minimal graph summarizing 
the genetic control of the photoperiod pathway in flower 
transition in Arabidopsis is shown in Figure  1A.

During evolution of legumes, the floral transition regulation 
has become more complex. This class of plants is characterized 
by the formation of a more complicated, the so-called compound, 
inflorescence architecture (Benlloch et al., 2015). In the process 
of growth, two meristems (primary and secondary) are 
successively formed. Moreover, multiple copies of the PEBP 
genes were identified in legumes homologous to FT and TFL1, 
associated with multiple genome duplication events during 
evolution (Hecht et  al., 2011). The legume FT-like genes are 
subdivided into three subclasses: FTa, FTb, and FTc. Five FT-
like genes from these subclasses were identified in pea (Pisum 
sativum; FTa1, FTa2, FTb1, FTb2, and FTc). These genes are 
characterized by variable expression patterns under different 
conditions. Under long day (LD) conditions, FTa1 and FTb2 
are expressed in the leaves, while under short day (SD) conditions 
only decreased expression of FTa1 is observed. In the plant 
apex, only FTc and FTa1 are expressed. Such differences indicate 
distinct functions of the FT genes in floral initiation in pea 
(Hecht et  al., 2011).

Pea homologues of the flower meristem identity genes AP1 
and LFY are PROLIFERATING INFLORESCENCE MERISTEM 

(PIM/PEAM4) and UNIFOLIATA (UNI), respectively (Hofer 
et  al., 1997; Taylor et  al., 2002). Homologues of the floral 
repressor TFL1 in pea include DETERMINATE (DET), which 
is a marker of the primary inflorescence meristem (Berbel 
et  al., 2012), and LATE FLOWERING (LF), whose function 
is not entirely clear (Foucher et  al., 2003). The secondary 
inflorescence meristem is under control of VEGETATIVE1 
(VEG1; Berbel et  al., 2012). A pea homologue of FD is 
VEGETATIVE2 (VEG2), which is thought to form the complex 
with FTs similarly to Arabidopsis (Sussmilch et  al., 2015).

Hecht et  al. (2011) qualitatively analyzed the expression of 
these genes in pea, both in the leaves and in the shoot apical 
meristem, under different growth conditions and genotypes. 
Later, Sussmilch et al. (2015) proposed a scheme for regulations 
underlying the compound inflorescence development and floral 
transition in pea, as depicted in Figure  1B. In our study, 
we  apply modeling to test whether the proposed regulation 
scheme fits the expression data quantitatively.

Methods of mathematical modeling are widely applied to 
the analysis of gene networks. These methods include Boolean 
models, ordinary differential equations (ODEs), neural networks, 
Bayesian networks, and stochastic modeling (Chai et  al., 2014; 
Le Novère, 2015). The choice between different modeling 
approaches depends on the type of data used to calibrate 
the model.

Various modeling techniques were used for the quantitative 
analysis of gene networks involved in plant growth and 
development (Haque et  al., 2019), in particular, in the 
photoperiodic pathway of floral transition. A method of neural 
networks was applied to study the transition to flowering of 
Arabidopsis (Welch et  al., 2003). This model had a prescribed 
neural network architecture and described the interaction of 
the main genes responsible for various pathways of flowering 
initiation in the plant. The model was trained on values of 
such phenotypic parameters as the daylight length and the 
number of days after sowing. Later, the main regulatory elements 
underlying the photoperiodic pathway of Arabidopsis transition 
to flowering were identified using a dynamical model based 
on differential equations, which was applied to the data on 
flowering time of the wild and mutant genotypes (Jaeger et al., 
2013). It was shown that the dynamics of flowering initiation 
can be  explained by dividing the gene network into several 
feedback and forward loops with specific functional roles 
(Pullen et  al., 2013). A more advanced model was developed 
later by Leal Valentim et  al. (2015), in which additional 
regulators (SOC1 and AGL24) were added into the activation 
of LFY by the FT-FD complex, and the model was fitted to 
gene expression data. This approach allowed to test various 
hypotheses about LFY regulation by SOC1 and AGL24 and 
elucidated a nonlinear nature of the flowering network. Wang 
et  al. (2014) investigated different approximations used to 
formulate model equations and compared their influence on 
the model performance in describing floral initiation in 
Arabidopsis. Apart from Arabidopsis, similar models of floral 
transition were also elaborated for chickpea (Cicer arietinum), 
which is a member of the legume family. Like pea, it has multiple 
homologous of the FT and TFL1 genes (Ridge et  al., 2017). 
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A dynamical model of the flowering gene network was developed 
and used for testing various hypotheses on how the FT- and 
TFL1-like genes combine in regulating the flower meristem 
identity genes in the ICCV 96029 chickpea cultivar (Gursky 
et  al., 2018). The same model was not successful for CDC 
Frontier, which is another chickpea cultivar. A machine learning-
based modeling approach was developed and applied for this 
cultivar, predicting that SD and LD growing conditions may 
be  associated with different architectures of the flowering gene 
network (Podolny et al., 2020). Extending a classical qualitative 
model for the control of flowering initiation, Wenden et  al. 
(2009) elaborated a quantitative model of flowering in pea 
(Wenden and Rameau, 2009). This model was used to formulate 
new hypotheses about the signals controlling flowering. More 
sophisticated modeling and software platforms were proposed 
taking into account mechanical processes during flower 
development and, more generally, morphogenesis in plants, 
and using advanced data quantification methods (Barbier de 
Reuille et  al., 2015; Boudon et  al., 2015).

We extend the previous modeling attempts to floral transition 
in pea. We  construct several dynamical models and apply 
them to the previously published data on the photoperiodic 
pathway of flowering initiation in pea (Hecht et  al., 2011; 
Sussmilch et  al., 2015). We  specifically investigate the 
compatibility of the network from Figure  1B to the data at 
the quantitative level.

RESULTS

We calibrated our models on the previously published dynamic 
expression data of genes responsible for flowering initiation 
in pea (cultivar NGB5839; Hecht et  al., 2011; Sussmilch et  al., 
2015). We extracted the expression data for three FT-like genes 
(FTa1, FTb2, and FTc), two homologues of the TFL1 gene 
(DET and LF), one homologue of the FD gene (VEG2), a 
homologue of the flower meristem identity gene AP1 (PIM), 
and the VEG1 gene responsible for secondary meristem formation. 
For all genes except VEG1, data were available for the SD 
and LD growth conditions in the wild type; VEG1 expression 
data were available only for LD. In addition, expression data 
for the same genes were extracted for three mutant genotypes: 
late1-2, dne-1, and gigas-2. late1-2 is a mutant for gene LATE1, 
which has delayed flowering under LD. dne-1 represents a 
mutant for gene DNE1, which starts flowering under SD at 
the same time as a wild-type plant under LD. gigas-2 is the 
FTa1 null mutant.

Dynamical Models Based on the Proposed 
Regulation Scheme
We developed a dynamical model describing gene expression 
according to the regulation scheme shown in Figure  1B. 
We  formulated ODEs implementing the Michaelis–Menten 
kinetics for the expression of each gene under the influence 

A B

FIGURE 1 | Schemes for genetic control of floral initiation in (A) Arabidopsis and (B) pea (Pisum sativum). (A) The core gene network controlling floral transition in 
Arabidopsis thaliana (Jaeger et al., 2013). IM, inflorescence meristem; FM, flower meristem. (B) The core gene network controlling floral transition in pea. FTb2 is 
expressed in plant leaves under LD conditions; it then moves to the apex, where it interacts with VEGETATIVE2 (VEG2). The resulting complex VEG2-FTb2 
stimulates the formation of the primary inflorescence meristem (I1M) by activating the meristem identity gene DETERMINATE (DET). Within the apex, FTb2 also 
activates FTa1 and FTc and downregulates LF. FTa1 is expressed both in the leaves and in the apex. By means of the complex with VEG2, FTa1 probably stimulates 
FTc expression and activates VEGETATIVE1 (VEG1). The latter activation leads to higher expression of VEG1, enhanced by the reduced repression from LF, and this 
expression initiates the secondary inflorescence meristem formation (I2M). FTa1-VEG2 also activates the floral meristem (FM) identity gene PROLIFERATING 
INFLORESCENCE MERISTEM (PIM). The mutual repression between the three meristem identity genes (DET, VEG1, and PIM) ensures a spatial separation of the 
corresponding developmental compartments, maintaining the indeterminate inflorescence development. Dashed arrow-headed lines indicate movement of proteins 
from leaves to apex and protein complex formation within the apex. Red solid arrow-headed lines correspond to transcriptional activation, and blue solid T-like lines 
indicate transcriptional repression. The regulation scheme is based on a figure by Sussmilch et al., 2015.
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of its regulators and fitted this model to the expression data, 
in order to understand how the proposed regulation scheme 
matches the data at the quantitative level. We  first investigated 
a baseline model [the MM model; equations (1)–(11) in Materials 
and Methods] which includes only regulations shown in Figure 1B 
and, in particular, considers the competitive binding of VEG2 
by FTa1, FTb2, and FTc. We  found values of free parameters 
by fitting this model to the wild-type expression data. In order 
to reduce the probability of overfitting, we analyzed all solutions 
resulted from a series of the numerical optimization runs 
(Figure 2). These solutions qualitatively match the data dynamics 
but have several quantitative discrepancies. In SD, insufficient 
repression at early times and insufficient activation at later times 
of PIM and FTc are observed. As data for VEG1 were absent 
in SD, the solution for this protein was not fitted to data. As 
a consequence, most of the VEG1 solutions have unrealistically 
high expression values in SD. The defects in LD include deficient 
activation at later times in most solutions for PIM, FTc, and 
apical FTa1, and deficient activation of LF at early times. Testing 
the model on the data from mutants also showed a qualitative 
correspondence between the model and the data, but with 
quantitative defects (Supplementary Figures  1, 2).

Testing Alternative Hypotheses About Gene 
Regulations
To improve the baseline model, we  tested several alternative 
hypotheses about additional interactions in the gene network. 
TFL1 inhibits floral initiation in Arabidopsis by repressing 

expression of AP1. Among two pea homologues of the TFL1 
gene (DET and LF), only DET was suggested as a repressor 
of PIM, which is the pea homologue of AP1 (Figure  1B). 
We assumed that LF also represses PIM and that this repression 
would reduce overexpressed PIM at early times in SD. To test 
this hypothesis, we  formulated the MM_LF model by adding 
the new regulation into equations of the baseline MM model 
[see equation (12) in Materials and Methods] and fitted the 
new model to the wild-type data. The MM_LF model showed 
a slightly better performance as compared to the MM model 
in SD, but the performance became worse in LD (Figure  3A). 
Taking into account that the early dynamics of PIM is not 
improved essentially (Supplementary Figure  3) and MM_LF 
is much worse than MM on data from the gigas-2 mutant 
(Supplementary Figure  4), we  can reject the hypothesis about 
PIM repression by LF.

On the next step, we tested whether the competitive binding 
of VEG2 by FTa1, FTb2, and FTc is essential. We  adjusted 
the MM model by assuming that the binding is uncompetitive, 
so that the concentrations of the complexes were taken equal 
to the product of the concentrations of the corresponding 
proteins [equations (13)–(15) in Materials and Methods]. This 
new alternative model (MC model) demonstrated a better 
performance on the wild-type data as compared to the MM 
model, both in SD and in LD (Figure  3B), and was also 
better than the MM model on the data from mutant genotypes 
(Supplementary Figure  4; Supplementary Table  3). The wild-
type solutions in the MC model are less variable than in the 

FIGURE 2 | Solutions in the baseline MM model in comparison with the wild-type data. The model solutions (red curves) corresponding to all parameter sets found 
by multiple optimization runs are shown for six genes and for the short day (SD, right panels) and long day (LD, left panels) conditions. The black dots and error 
ranges are the mean expression data and standard deviations, respectively, extracted from (Hecht et al., 2011; Sussmilch et al., 2015). The arrows indicate the most 
significant discrepancies between the solutions and data.
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MM model and show improvement in expression dynamics 
of PIM and FTc in LD (Supplementary Figure  5). VEG1  in 
the MC model also has a more reasonable expression dynamics 
range in SD (Supplementary Figure  5). These results suggest 
that the binding of VEG2 by the FT proteins is uncompetitive.

In SD, the MM and MC models both have solutions with 
an overstated early and understated late expression of PIM. One 
possible solution to this problem is to make the dynamical curve 
of PIM respond in a more nonlinear way to the monotonically 
increasing expression curve of the complex VEG2-FTa1, which 
is the only activator of PIM. This nonlinearity can be  achieved 
by adding a cooperativity parameter into the model, responsible 
for the putative cooperative binding of VEG2-FTa1 to the PIM 
promoter. It was shown that homologues of the FD (VEG2) and 
FT proteins form a complex consisting of several subunits in 
rice (Oryza sativa), thus sustaining the hypothesis about cooperative 
regulation by the VEG2-FT complexes (Taoka et  al., 2011; Tsuji 
et  al., 2013). We  implemented the cooperativity hypothesis into 
the MC model by assuming that the cooperativity parameter n 
(n  >  1) in the term responsible for the regulation of PIM by 
VEG2-FTa1 is an additional free parameter (MC_PIM model). 

However, the new model neither improved the total performance 
as compared to the MC model (Figure  3C) nor fixed the PIM 
expression dynamics in SD (Supplementary Figure  6), thus 
suggesting that the regulation of PIM is noncooperative.

Models Trained on Full Data
The models described above were trained on the wild-type data 
and tested on the mutant data. In these computational experiments, 
the MC model outperformed other alternative models on both 
the wild-type and mutant data (Figure  3; Supplementary 
Figure  4). However, most of the defects shown for the baseline 
MM model persisted in the MC model. In order to increase 
the amount of data used to optimize parameter values, we used 
the same equations as in the MC model and fitted them to 
gene expression data for all genotypes (wild type, dne-1, late1-2, 
and gigas-2). Since we  used all the available data to fit the 
model, we aimed to investigate the maximal possible performance 
of the model in this computational experiment. Later, we  will 
split both the wild-type and mutant data into training and 
testing subsets when modeling with neural networks.

We refer to this model trained on the complete data set 
as MC_Cdata. In terms of the normalized error, the MC_Cdata 
model expectedly outperforms MC on the mutant data but 
has a bit worse performance on the wild-type data 
(Supplementary Figure  7). However, the wild-type expression 
dynamics is qualitatively similar in the two models 
(Supplementary Figures  5, 8).

One of the defects observed in all models is a low FTa1 
concentration at later times in the wild type (Figure  2; 
Supplementary Figures  5, 8). According to the proposed 
regulation scheme, FTa1 in the apical meristem is activated 
only by the VEG2-FTb2 complex. In order to add activation 
to the FTa1 expression, we  suggested that FTa1 activates its 
own production in the apex. We  tested this hypothesis by 
inserting an additional term into the equation for FTa1 that 
characterized FTa1 activation by the VEG2-FTa1 complex 
[equation (16) in Materials and Methods] and fitting the 
resulted model to the complete data set (MC_Cdata_FTa1 
model). The new model did not show improved performance 
as compared to the MC_Cdata model (Figure 4), thus rejecting 
the hypothesis.

It was shown for soybean (Glycine max); another representative 
of legumes, that activation of flowering initiation under LD 
conditions involves different regulatory blocks than under SD 
conditions (Wu et al., 2019). We  investigated whether the model 
performance can be  improved if we  use the same proposed 
regulatory scheme for pea but fit the model to the SD and LD 
data separately (MC_SDdata and MC_LDdata models, respectively). 
The SD data comprise the SD part from the wild type and data 
from the dne-1 mutant, and the LD data include the LD portion 
of the wild-type data and data from the late1-2 and gigas-2 
mutants. MC_SDdata and MC_LDdata showed better performance 
than the MC_Cdata model for the SD and LD growing conditions, 
respectively (Figure  4). It should be  noted that the comparison 
between these models is not a rigorous test, because the  
MC_SDdata and MC_LDdata models were fitted to fewer data 
points than MC_Cdata for the same number of parameters.  

A

B

C

FIGURE 3 | Normalized root-mean-square error (NRMSE) calculated on the 
wild-type data and solutions obtained from multiple optimization runs in 
various models. NRMSE is shown for the following couples of a baseline and 
alternative models: (A) MM and MM_LF, (B) MM and MC, (C) MC and MC_
PIM. The model names are introduced in the text. The Mann–Whitney–
Wilcoxon test was applied to check that the alternative model provides better 
performance (smaller NRMSE) than the baseline model; p-values: (ns) 
0.05 < p ≤ 1, (*) 0.01 < p ≤ 0.05, (****) p ≤ 10−4.
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However, this computational experiment shows that it is possible 
to reduce the modeling error by narrowing the model to either 
SD or LD. This suggests that it may be  not feasible to use 
uniform regulatory assumptions under the two growing conditions. 
The analysis of individual genes reveals that the MC_LDdata 
model most significantly improves the expression dynamics of 
PIM and FTc (both in the wild type, LD), while MC_SDdata 
improves the expression dynamics of DET (wild type, SD, and 
dne-1) and FTa1 in the apex (dne-1; Supplementary Figures 9–13).

Dynamical Models Based on Neural 
Networks
The previously described dynamical models were based on the 
suggested regulation scheme underlying floral initiation in pea 
(Figure  1B), so studying these models was aimed at answering 
the question about the quantitative correspondence between this 
scheme and the expression data. In the next stage of the study, 
we  developed models without prescribing a specific topology 
of the gene regulatory network, thus trying to answer the 
question of what regulations can be inferred from the expression 
data ab initio. Along with changing the question, we also changed 
the formalism of ODEs to the neural network method to 
formulate new models, so as not to be  dependent on only one 
modeling method and, thus, increase the robustness of conclusions.

We developed three models (NN, NN_SDdata, and NN_LDdata) 
based on neural networks, all of which were constructed on 
the same principles and differed from each other only by the 
data used for their training. The models were formulated as 
dynamical regression models in which the apical expression of 
all genes on the current day was determined by the apical 

expression of the same genes and the expression of the FT-genes 
from the leaves from the previous day (Podolny et  al., 2020). 
As VEG1 data were present only in LD, we  excluded VEG1 
from the model for simplicity; we  also considered VEG2 as an 
independent variable. The NN model was trained on the full 
data (wild-type, dne-1, late1-2, and gigas-2), NN_SDdata on the 
SD portion of the full data (wild-type, SD, and dne-1), and 
NN_LDdata on the LD portion of the full data (wild-type, LD, 
late1-2, and gigas-2). For the NN and NN_SDdata models, 
we separated data from several days for each condition (daylight 
and genotype) as the testing dataset, and all data from the late1-2 
mutant were used as the testing dataset for the NN_LDdata model.

The solutions in the NN_SDdata and NN_LDdata models 
show better correspondence to the wild-type data compared 
to the models based on the proposed regulation scheme 
(Figures 5–6). There are improvements in expression dynamics 
of DET, LF, and FTa1 in the apex under the LD conditions 
and of PIM, FTc, and FTa1 in the apex under the SD conditions 
(arrows in Figure  5). The solutions in the NN model is close 
to NN_SDdata and NN_LDdata but have defects for FTa1 and 
DET in LD and for LF and FTc in SD. In contrast to the 
wild-type data, the neural network models do not show a 
definite difference with the ODE-based models on the mutant 
data (Figure  6). NN and NN_LDdata are better for gigas-2, 
while the comparison is in favor of the ODE-based models 
for the other two mutants. A worse performance of NN_LDdata 
for late1-2 can be  explained by the fact that the whole data 
from this mutant were used as a testing set in this model.

In order to understand what interactions were restored in 
the neural network models, we  simulated gene knockouts in 

FIGURE 4 | NRMSE in models trained on the full data (MC_Cdata and MC_Cdata_FTa1) or on the SD and LD portions of the full data (MC_SDdata and MC_
LDdata, respectively). The Mann–Whitney–Wilcoxon test was applied to check that the alternative models provide better performance (smaller NRMSE) than the 
MC_Cdata model; p-values: (ns) 0.05 < p ≤ 1, (**) 0.001 < p ≤ 0.01, (****) p ≤ 10−4.
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FIGURE 5 | Best solutions in the neural network models (NN, NN_SDdata, and NN_LDdata) in comparison with the models based on the proposed regulation scheme 
and ordinary differential equations (ODEs; MC_Cdata, MC_SDdata, and MC_LDdata), for the wild type and two growing conditions. The black dots and error ranges are the 
mean expression and standard deviation, respectively, in the data. The arrows indicate the improvements in expression dynamics achieved in the neural network models.

FIGURE 6 | NRMSE for neural network models (NN, NN_SDdata, and NN_LDdata) and models based on ODEs (MC_Cdata, MC_SDdata, and MC_LDdata), for 
different genotypes and growing conditions. NRMSE was calculated for five genes shown in Figure 5. For gigas-2, PIM was excluded from the NRMSE calculation in 
NN and NN_LDdata as PIM was also excluded from the ODE-based models by construction. The two-tailed Mann–Whitney–Wilcoxon test was applied to check the 
performance difference between the indicated models; p-values: (ns) 0.05 < p ≤ 1, (**) 0.001 < p ≤ 0.01, (***) 10−4 < p ≤ 0.001, (****) p ≤ 10−4.
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the models. In these knockouts, we  set a potential regulator 
protein concentration to zero in the model and calculated how 
the area under the dynamic expression curve changed for each 
potential target as the result of such perturbation. We  kept the 
concentrations of all other proteins fixed at their values from 
the data during this simulation in order to estimate the direct 
influence of the regulator on the target, excluding possible 
feedbacks from other genes whose dynamics may also be altered 
by the perturbation. The resulted gene network topology exhibits 
some deviations from the proposed regulation scheme from 
Figure 1B and is qualitatively different in SD and LD (Figure 7). 
In the proposed regulation scheme, FTa1 is the only activator 
of the floral meristem identity gene PIM, while the neural 
network models predict FTc as an additional activator both in 
SD and LD. Other noticeable differences include strong FTa1 
self-activation in LD and FTc self-activation in SD.

Concerning differences between LD and SD, the regulatory 
topology exhibits more activation on the whole in LD compared 
to SD (Figure  7). Interestingly, VEG2 and FTa1 are predicted 
to be  independent activators. VEG2 is the main activator in 
SD, with FTa1 almost not influencing other genes. FTa1 serves 
as the main activator in LD, while VEG2 is either non-active 
or even shows some repressive potential under this growing 
condition. Overall, these results show that the improvement 
in the solution quality demonstrated by the neural network 
models comes at the price of perturbations to the regulation 
scheme from Figure  1B.

DISCUSSION

The classical approach to elucidating functional regulations in 
a gene network consists in obtaining and qualitatively analyzing 
the expression patterns of genes involved in the network in 

various genetic backgrounds. As more data are collected on 
the genes controlling floral initiation in legumes (Hecht et al., 2011; 
Sussmilch et  al., 2015; Ridge et  al., 2017; Cheng et  al., 2018), 
more quantitative approaches are required to infer the interactions 
in the gene regulatory network underlying this process (Jaeger 
et  al., 2013; Leal Valentim et  al., 2015; Gursky et  al., 2018). 
Just as it has successfully been done for Arabidopsis, modeling 
gene networks responsible for the transition to flowering in 
legumes can be  used for testing various hypotheses about the 
network structure and other properties of the process, in order 
to better understand the mechanism or to find possible flaws 
in the current understanding. In this study, we  elaborated 
several models of the core gene network involved in flowering 
initiation in pea and applied them to the previously obtained 
expression data in the wild type and in mutants. In order to 
make our results more robust, we  used two different methods 
to construct models. We  showed that both formalisms, ODEs 
and neural networks, can be  utilized to formulate dynamical 
models suited for the gene expression data used in the study.

Our modeling results indicate that the regulation scheme that 
was previously proposed by analyzing the expression data qualitatively 
does not fully correspond to these expression data at the quantitative 
level. There are two types of evidence in our results for this conclusion. 
Firstly, the best models implementing the proposed gene regulations 
(the MC and MC_Cdata models) consistently generated solutions 
with defects in the expression dynamics of several genes. These 
defects comprise wrong expression dynamics of PIM and FTc in 
SD, LF in LD, and inconsistent apical expression of FTa1. Moreover, 
we  showed that this picture cannot be  fixed by targeted and fine-
tuned modifications of the regulation scheme. The rejected alternative 
interactions include repression of PIM by LF, cooperative activation 
of PIM by the VEG2-FTa1 complex, and FTa1 self-activation. As 
a floral meristem identity gene, PIM is of a special interest. One 
of the strongest constrains for introducing new potential activators 

FIGURE 7 | Gene interactions predicted by the neural network models on the wild-type data. The heatmaps show gene knockout simulations in (left) the NN_
LDdata and (right) NN_SDdata models; similar results for the NN model and for all three models but on the mutant data are shown in Supplementary Figures 14, 
15. Gene knockouts were simulated as described in Materials and Methods. Values below 1 mean activation, above 1 mean repression, and equal to 1 mean no 
interaction.
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of PIM for testing in the model is in the fact that PIM expression 
is almost zero in FTa1 mutant gigas-2 (Hecht et al., 2011). Therefore, 
more complicated regulatory modules have to be devised to provide 
an additional activation to PIM, so that they can be  deactivated 
in the absence of FTa1.

Secondly, gene interactions reconstructed from the data by 
the neural network-based dynamical models contain new 
regulations compared to the proposed scheme. It is interesting 
that one of these new regulations was FTa1 self-activation, which 
was rejected at the stage of fine-tuning the proposed scheme 
with the help of the ODEs-based modeling. This is an example 
of a hypothesis about a new regulation that does not work 
when implemented alone but fits in when the regulation acts 
in concert with other modifications. Another such new regulation 
is PIM activation by FTc. The solution for PIM in the neural 
network model with this regulation is not zero on the gigas-2 
data but is small enough to stay within error ranges 
(Supplementary Figure  16), i.e., the activation by FTc is 
compensated by all other PIM’s regulators in the absence of FTa1.

Our modeling results also support the possibility that different 
regulatory modules are active in SD and LD. The models based 
on the proposed regulation scheme show the best performance 
when fitted to the SD and LD data separately. The use of these 
data in the neural network models lead to qualitatively different 
regulatory topologies. In SD, VEG2 acts as the main activator, 
while FTa1 does not play a significant role, and the opposite 
situation is observed in LD. This possible activating role of 
VEG2 is in accordance with a previously obtained result showing 
that the model of floral initiation in Arabidopsis is effective 
under the assumption that FD (VEG2) can activate AP1 (PIM) 
as a monomer (Leal Valentim et  al., 2015). However, it is also 
possible that this VEG2 and FTa1 decoupling somehow reflects 
the activating role of the VEG2-FTa1 complex captured by the 
model differently for different daylight conditions. Another finding 
about VEG2 concerns cooperative binding in the formation of 
complexes between VEG2 and FT proteins, which appears to 
be  less favorable than the assumption about binding without 
constraints. This result can indicate that FTa1, FTb2, and FTc 
bind VEG2 without essential competition.

Not all regulations predicted by the neural network approach 
should be  considered as real, so that conclusions about those 
regulations should be  made with caution. The inconsistencies 
observed in the models based on the prescribed regulation scheme 
most probably mean that some important regulators are missing. 
A nonlinear response of the gene network to the unknown 
dynamic expression of these unknown regulators can be encoded 
in spurious interactions between the genes in the current version 
of the network. The defects in the model solutions highlight 
possible genes involved in missing regulations and, thus, can 
be  used to plan further experimental searches.

MATERIALS AND METHODS

Flowering Gene Expression Data
For model calibration, we  used previously published dynamic 
expression data of genes responsible for flowering initiation 

in pea (cultivar NGB5839; Hecht et  al., 2011; Sussmilch et  al., 
2015). The expression data in the wild type and in mutants 
were extracted from the published sources using the web-based 
tool WebPlotDigitizer (Rohatgi, 2018). The data represent the 
means and SDs of the expression levels of the following genes: 
FTa1, FTb2, FTc, DET, LF, VEG1, VEG2, and PIM. The wild 
type data comprise the expression dynamics from 7 to 35th 
days after sowing under LD conditions and from 7 to 56th 
days under SD. Only LD data in the wild type were available 
for VEG1. The mutant data contain the gene expression 
dynamics from the mutants dne-1 (mutation in the DNE1 
gene; 7–35  days after sowing under SD), late1-2 (mutation 
in LATE1; 14–56  days under LD), and gigas-2 (mutation in 
FTa1; 7–56  days under LD).

Dynamical Model Based on Differential 
Equations
We use the same methodology to construct the model as in Gursky 
et  al. (2018). We  model the expression of DET, PIM, VEG1, LF, 
FTc, and FTa1 in the apex with the following set of ODEs:
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where ui  describes protein concentrations. The 
concentrations of complexes of VEG2 with the FT proteins 
are denoted as uVEG FTa2 1  in the case of FTa1, and similarly 
for other FTs. As FTa1 is expressed both in the leaves and 
in the apex, the concentration of apically expressed proteins 
is written as uFTa apex1 . The parameters vi are the maximal 
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protein synthesis rates, and Ki are the Michaelis–Menten 
constants, which can be interpreted as equilibrium dissociation 
constants for regulator-promoter binding in the case of direct 
transcriptional regulation. The Hill constant n is used to 
account for the potential cooperative binding effect in PIM 
regulation by the VEG2-FTa1 complex; n  =  1  in all versions 
of the model except the MM_PIM model, in which n was 
a free parameter. The parameters li  are protein degradation 
constants. The translation process is not explicitly considered 
in these equations; we  assume that protein concentrations 
are proportional to the concentrations of corresponding  
mRNAs.

FTb2  in the apex comprises the protein transported from 
the leaves, while FTa1  in the apex additionally include the 
apically expressed fraction. Considering a time delay 𝜏 for the 
transport process, we write the total apical concentrations uFTa1 
and uFTb2 of FTa1 and FTb2, respectively, as follows:
 u t u t u tFTa FTa apex FTa leaf1 1 1( ) = ( ) + -( )t (7)

 u t u tFTb FTb leaf2 2( ) = -( )t (8)
where uFTa leaf1  and uFTb leaf2  are the concentrations of 

corresponding proteins expressed in the leaves.
The baseline model considers competitive binding between 

VEG2 and FTa1, FTb2, and FTc. Under equilibrium competitive 
binding conditions, the concentrations of VEG2 complexes with 
the corresponding FT proteins are as follows:
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Therefore, the baseline model MM consists of the equations 
(1)–(11).

Model Modifications to Test Alternative 
Hypotheses
The MM_LF model is equivalent to MM but with an additional 
repression of PIM by LF, introduced by adding a repressive 
term into equation (2) as follows:
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The MC model is equivalent to MM but with the binding 
between VEG2 and FT proteins assumed to be noncompetitive. 
Under this assumption, the concentrations of complexes are 
written as follows:
 u u uVEG FTa FTa VEG2 1 1 2= (13)

 u u uVEG FTb FTb VEG2 2 2 2= (14)

 u u uVEG FTc FTc VEG2 2= (15)

It is not necessary to add free constants of proportionality 
into (13)–(15), since they can be  effectively scaled into free 
Ki already present in equations (1)–(6).

The MC_PIM model is equivalent to MC but leaves the 
Hill parameter n free in equation (2). This value, together with 
values of all other parameters, is found by parameter optimization. 
A value n larger than one would suggest the cooperative binding 
of the VEG2-FTa1 complex to the promoter of PIM.

The models described above were fitted to the wild type data. 
The MC_Cdata model is the model MC in which the values 
of free parameters were found by fitting to combined data, which 
join the wild-type data and data from dne-1, late1–2, and gigas-2 
mutants. The MC_Cdata_FTa1 model is equivalent to MC_Cdata 
but with added FTa1 self-activation in the apex, which was 
introduced by changing equation (6) to the following one:
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The MC_SDdata model is the MC model in which free 
parameters were found by fitting to the combined SD data, 
consisting of the SD part of the wild type data and dne-1 
mutant data. Similarly, MC_LDdata is the MC model fitted 
to the combined LD data, consisting of the LD part of the 
wild type data together with late1-2 and gigas-2 mutant data. 
Supplementary Table 1 summarizes all the models investigated 
in the study with their main characteristics.

Numerical solutions of the model equations were obtained 
using the ode23s solver in Octave. The concentrations of all 
regulators on the right-hand side of the equations were replaced 
by data interpolated in time. The initial conditions for all 
proteins were set to the data values at the first day.

Parameter Optimization
The parameter values were found by minimizing the following 
weighted residual sum of squares (wRSS):
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where the difference between the model solution ug and the 
data ugdatfor gene g is summed over all genes and times for 
which the data is available; ug ,max and ug ,min  are the maximum 
and minimum concentrations in the data for gene g. Since VEG1 
data was absent in SD, the numerical solution for this protein 
was calculated in the model but did not participate in the cost 
function (17). The data portion (wild type, mutant, SD, and 
LD) used in equation (17) depended on a model, as described 
above. This cost function was minimized using the DEEP software, 
which implements an entirely parallelized version of the differential 
evolution optimization method (Kozlov et  al., 2016).

To reduce the number of free parameters in the models, we set 
λi  =  0.199 for all proteins based on an experimental estimate 
of 3.49  days for the protein half-life in Arabidopsis grown at 
20°C (Ishihara et  al., 2015). To further reduce the possibility for 
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overfitting, we applied an ensemble approach (Samee et al., 2015; 
Gursky et  al., 2018). The optimization for each model was 
performed 20 times, and the judgment about the model performance 
was made by analyzing the resulted distribution of the wRSS values.

We compared the models using the normalized root-mean-
square deviation:
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The Mann–Whitney–Wilcoxon test was used to compare 
the normalized root-mean-square error (NRMSE) distributions 
resulted from the parameter optimization in the models.

Neural Network Models
The neural network models were constructed as described in 
full details elsewhere (Podolny et  al., 2020). The data set was 
expanded to 1,000 gene expression values per time point by 
sampling from normal distributions with the mean and variance 
taken from the initial data. The expanded data set was used 
for training and testing the models. The models were constructed 
as dynamical regression models in which the apical expression 
levels of six target genes (DET, PIM, FTc, FTa1, LF, and VEG2) 
on the current day was determined by the apical expression 
levels of seven genes (DET, PIM, FTc, FTa1, LF, VEG2, and 
FTb2) taken from the expanded data on the previous day.

The models were trained using the multilayer-perceptron 
regressor “MLPRegressor” of the Scikit-learn package (Pedregosa 
et  al., 2011), with f x x( ) = + -( )( )-1

1
exp

 as the activation 

function and the Adam stochastic method as the parameter 
optimization method (Kingma and Ba, 2015). The network 
architecture was chosen by training the models with different 
topologies and picking up the best one. Each model was trained 
20 times using 5-fold cross-validation, and the ensemble approach 
was applied for the performance analysis, as described above.

The NN model is the neural network model trained on the 
combined data (wild type and all mutant conditions). The NN_
SDdata model was trained on the SD data (SD wild type data 
and mutant dne-1 data). For these two models, the testing sample 
was constructed by taking data values from the last day of each 
separate condition. The NN_LDdata model was trained on the 
portion of the LD data that included the LD wild-type data and 
the gigas-2 mutant data, while data from the late1–2 mutant 
served as a testing sample for this model. Supplementary Table 2 
summarizes the neural models with their main characteristics.

Simulating Knockouts in Neural Network 
Models
In order to find out which interactions between genes are restored 
in the neural network models, a gene knockout analysis was 

performed. The models were tested on the wild type data in 
which the expression of one regulator gene was set to zero. 
Then the AUC of a target gene expression dynamics was calculated 
in this simulation (Sknock_out) and in the non-perturbed case (Swt). 
The ratio of these quantities provides information on the influence 
type that the regulator directly exerts on the target, as follows:
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