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A B S T R A C T

Phosphorus is an essential constituent of all living organisms but it is non-renewable and its natural
reserves are fast depleting. Phosphorus discharged in wastewater could be sustainably reused by
microalgae. Knowledge about cellular phosphorus dynamics in microalgae has been rapidly advancing
and luxury phosphorus (poly-P) uptake phenomenon by microalgae is becoming the focus point for many
research studies. Ultra-membrane treated landfill leachate was used as a nutrient medium for the growth
of indigenous microalgal species with simultaneous removal of phosphorus (P-PO4

�3) and nitrogen
(N-NH4

+ and N-NO3). Different concentrations of phosphorus (15–100 mg. L-1 P-PO4
�3) was added to

leachate. Highest nitrogen removal (69.03% N-NH4
+) was observed for 100 mg. L-1 P-PO4

�3 supplemented
medium. P removal efficiency was 100% for all the tested P-PO4

-3 concentrations. Intracellular poly-P was
detected by florescence microscopy. Microalgae can be grown and utilized for the sustainable recovery of
P and N from landfill leachate.
© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Phosphorus (P) is an essential nutrient element for life of plants
and animals. It serves an integral role in aspects of cellular
metabolism ranging from energy storage (ATP and NADP), to
cellular structure (phospho-lipids), to the very genetic material
(DNA and RNA) that encodes all life on the planet [1]. However,
global reserves of high-quality phosphate rock (PR) are limited,
being a non-renewable natural resource, they are being consumed
rapidly [2]. Most modern phosphate (P-PO4

�3) fertilizers are made
from PR. The input of P-PO4

�3 based fertilizer is critical to the
production of sufficient food, feed, fiber, and fuel to support a
growing world population [3,4]. The appropriate and sound
utilization of PRs as P-PO4

�3 sources can contribute to sustainable
agricultural intensification, particularly in developing countries
endowed with PR resources.

Experts argue that a potential P crisis is coming and that it
will leave the world’s future food supply hanging in the balance [5].
P recovery and recycling are of considerable importance for
sustaining profitable agricultural production in the long term since
P-PO4

�3 is mostly used in fertilizers. On the other hand, increased
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discharge of inorganic phosphate (Pi) to lakes, bays, and other
surface waters needs to be regulated [6].

Wastewater treatment facilities have enough nutrient rich
water available with excess of nitrogen (N) and phosphorus (P) in
discharged wastewaters. Overloading of such nutrients may
negatively impact receiving natural ecosystem (rivers, lakes, ponds
etc.) by creating nuisance algae growth (eutrophication), oxygen
depletion and fish kills, undesirable pH shifts, and cyanotoxin
production [7,8]. Considerable attention has been paid to an
efficient means of Pi removal from wastewaters. Enhanced
biological phosphorus removal (EBPR) through phosphorus
accumulating organisms (PAOs) has become a well-established
process and is currently applied in many full-scale wastewater
treatment processes. Waste sludge (bacterial biomass) generated
from an EBPR process contains large amounts (4–8% of dry biomass
weight) of Pi and creates problems for safe disposal after use [6, 9].

P is also an essential macro-nutrient for microalgae growth.
Although microalgae do not need large amounts of P, as it contains
less than 1% of it, P is an important growth limiting factor,
especially in natural environments where P is limited. Low
P concentration is related to low cell densities [10]. Dual use of
microalgae to remove nutrients from wastewater and produce
biomass has been studied well since last decade or so. During
research studies, it was found that some microalgae could
assimilate more P (upto 3.3% dry biomass weight) than required
for growth under nutritional conditions unfavorable for growth
[9,11–13]. It was observed that microalgal biomass P content is
dependant on species and cultivation condition. Cellular P content
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Table 1
Physico-chemical characteristics of TL.

Parameter (mg. L�1)

BOD5 211
BOD5/COD 0.26
COD 800
P-PO4

�3 5.42
N-NO3 150
N-NH4

+ 1100
TDS (g. L�1) 11.84
Conductivity (mS/cm) 23.5
Salinity (m) 14.37
Alkalinity 1700
pH 7
Chloride (Cl) 10000
Sodium (Na) 1540
Potassium (K) 2710
Mercury (Hg) 5.9
Lead (Pb) 5.15
Cadmium (Cd) 4.66
Zinc (Zn) 4.88
Nickel (Ni) 4.42
Copper (Cu) 4.44
Cromium (Cr) 3.78
Iron (Fe) 11.09
Sulphur (S) 17.54
Calcium (Ca) 1.5
Magnesium (Mg) 3.26
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varies greatly between species and even for each species it varies
among different cultivation conditions [14,15].

Further investigation on the phenomenon of luxury P uptake by
microalgae using 31PNMR analysis demonstrated that assimilated
P was in the form of poly-phosphate (Poly-P) [16]. Poly-P is a
biological polymer composed of Pi residues linked by high energy
phosphohydride bonds [13]. Poly-P plays a significant role in
enhancing cell resistance under unfavorable environmental con-
ditions. Dyhrman [1] reviewed that cellular poly-P has been
variously attributed to a stationary phase adaptation, an energy
storage compound, a metal chelator, a factor in DNA competency, an
osmotic regulator, a buffer against alkali conditions and in
phosphorus homeostasis (as a phosphate storage molecule) among
other potential functions. More studies have been undertaken
focusingonPoly-PmetabolisminalgaeinordertoenhancePremoval
fromwastewater, andthesestudies foundthatenvironmental factors
such as light, osmotic shocks, nutrient availability all affected
intracellular P accumulation. The microalgal species studied include
Chlamydomonas, Skeletonema, Thalassiosira, Synechocystis, Nostoc,
Calothrix, Synechococcus and Trichodesmium among others [1,16].
Microalgae based treatment approaches could be particularly
researched for non profit agricultural run off waters (or landfill
leachate) where EBPR process cannot be easily implemented. Once
P is accumulated and concentrated in the micoalgal biomass, it can
be recovered and utilized as bio-solids (fertilizer product) [13].
Landfill leachate LFL is a highly polluted waste stream naturally
generated in landfills (over time) by the dumbed solid wastes
undergoing degradation (physical, chemical and biochemical
reactions), rainwater percolation and inherent moisture content
of waste. One of the main issues regarding management of closed
landfills is the disposal of leachate which continue to be produced
(with high concentration of ammonium nitrogen N-NH4

+) for a long
time even after closure of the landfills [17–19].

Landfill leachatehas beenusedasagrowthmedium ofmicroalgae
for the removal of nutrients, heavy metals and organics etc. [22–24].
Since landfill leachate characteristics (age and structure) and
composition (nutrient load and toxicity) differ in regions according
to their respective climate and dumped solid waste, data on
P removal dynamics particularly luxury P uptake using leachate
collected from Istanbul municipal landfill (Odayeri Istaç- Istanbul
Buyukşehir Belediyesi) was lacking. In an attempt to sustainably
reuse and utilize landfill leachate nutrients, microalgae was grown in
ultra-membrane filtered (0.2 mm pore size) leachate (TL) in the
authors previous study (khanzada 2017). Tertiary treatment (polish-
ing) of TL was carried out simultaneously bygrowing microalgae, but
the biomass production was significantly reduced in the authors
previous work. One of the reasons was suggested to be P limitation
(5 mg. L�1P-PO4

-3), since TL had enough N (⁓500 mg. L�1N-NH4
+) to

support microalgal growth. The concentration of N and P (N:P ratio)
is considered to be a fundamental factor and has a direct effect on
microalgal growth kinetics, which relates to wastewater nutrient
removal and biomass production [16,25,26]. N to P ratio for an
effective nutrient removal is often assumed to match the Redfield
ratio of 16:1 (for phytoplankton) but is actually species specific and
most of the microalgae adjust their internal stoichiometric N:P
biomass ratio according to the aquatic media in which they are
growing [26,27]. Xin et al. [25] observed N:P ratios of 5:1 - 12:1 to be
optimum for growth, nutrient uptake and lipid production by
microalga Scenedesmus sp.

Based on these research findings, present study was conducted
with five different Pi concentrations (15, 25, 50, 75 and
100 mg. L�1 P-PO4

-3) added to TL, inorder to understand which
combinationofN:PinTLmediumpromotedbetterbiomassgrowthand
nutrient removal (particularly N-NH4

+, N-NO3 and P-PO4
-3). Intracellu-

lar luxury P uptake was also observed by the tested indigenous
microalgal strains and cross checked by flourescence microscopy.
2. Methodology

Fresh water indigenous microalgal cultures of Chlorella vulgaris
and Chlamydomonas reinhardii were obtained from Ege University,
Izmir. 20% (v/v) exponentially growing inoculum measured at an
absorbance of 680 nm (using spectrophotometer, model U-2001,
HITACHI, Japan) was used to start and monitor microalgal
growth in the lab study. Treated leachate TL (effluent of ultra-
membrane filtration, 0.2 mm pore size) was kindly provided by
Istanbul municipal landfill management (Odayeri Istaç- Istanbul
Buyukşehir Belediyesi) and stored at 4 �C in 20 L air tight plastic
containers in dark until use. Physico-chemical parameters of TL is
presented in Table 1. 1 L glass bottles with 500 ml working volume
was used for the experiment. Continuous air bubbling was
supplied at a rate of 3 L. min�1 (flow rate in each 500 mL culture
was �0.31 mL. min�1), continuous artificial irradience of 55 mmol
photon m-2s-1 through white fluorescent lamps (measured by a
digital quantum meter- Model MQ-200 Apogee, USA) was provided
with room temperature of 24–25 �C. pH was maintained between
6.5–7.5 manually on alternate days with 0.5 N H2SO4/ NaOH. For
lab study, five different concentrations of elemental P (15, 25,
50, 75, 100 mg. L�1 P-PO4

-3) was made from P stock solution
(0.67 mM K2HPO4) and added to autoclaved TL (20 min at 121 �C).
BG11 nutrient media was set as positive (+ive) control and TL
(without any P-PO4

-3 addition) as negative (-ive) control. Experi-
ment was run in batch cultures (after priliminary trials with same
conditions) for 30 days in dublicate.

2.1. Analytical methods

Biomass dry weight was determined after oven drying (at 60 �C)
the centrifuged microalgal paste until constant weight was
reached (� 3 days). Nitrogen- ammonium (N-NH4

+) and nitrogen-
nitrate (N-NO3

�) were measured using an ion-selective electrode
(Orion 95–12) with an Orion IonAnalyser 701A meter (Orion
Research Inc., Boston, MA). P-PO4

�3 concentration was determined
following standard methods SM 4500- PBD [28]. The data was
statistically analysed by ANOVA (single factor) followed by
Student’s t-test comparing with controls at p � 0.05 using micro-
soft excel. Averaged values are presented here.



Fig. 2. P-PO4
�3 removal from the leachate media along with N:P ratios (in legends)

after addition of different P-PO4
�3 concentrations (data shown is the mean � SD).
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2.2. Fluorescence microscopic analysis

The samples (collected every week) were centrifuged and
stored at �20 �C for the detection of poly-P granules using
fluorescence microscopic analysis. 10 ul frozen pellets were
incubated in solutions of 40,6-diamidino-2-phenylindole (DAPI;
Sigma Inc., 2 ug ml�1) dye over night and mounted on slides to
be observed by fluorescence microscope with attached CCD
camera (Zeiss Imager M2, DAPI Filter excitation/emission
338–378 nm/441-481 nm).

3. Results and discussion

3.1. Effect of different P-PO4
�3 concentrations on microalgal growth

When using wastewater streams, one or more elements can be
added to reach proper nutrient molar ratio (C, N, P), required
for microalgae growth [7]. The leachate used in this study was P
deficient (5 mg. L�1P-PO4

-3)ascomparedtoN(<1000 mg.L�1N-NH4
+).

Chu et al. [16] observed that P-PO4
-3 concentrations significantly

affected biomass production. In the present study P-PO4
-3 addition

significantly enhanced microalgal growth curves as compared to TL
(-ive control) (except for 15 mg. L�1P-PO4

-3) but still significantly lower
than control group BG11 in all the tested concentrations of P (15, 25, 50,
75,100 mg. L�1 P-PO4

-3) (Fig.1). Growth curve showed no proper onset
of stationary phase and cultures continued to grow slowly until the end
of 30 day experiment (Fig.1). Microalgae growth showed a lag phase of
atleast 2–3 days in all the P-PO4

-3 concentrations tested, even after the
cultures were pre-acclimated to leachate medium for 3–4 weeks prior
to starting the experiment. High salinity (�14 g. L�1), brown color and
imbalancenutrientcompositionofleachateseemedtohavedelayedthe
growth of cultures and increased lag phase in all the treatments (Fig.1;
Table 1). Zhao et al. [29] also observed a lag phase of 6 days for 20%
leachate (338 mg. L�1 NH4

+-N) in their study.
In the present study, N:P ratio (of 25 mg. L�1 P-PO4

-3 treatment)
in the leachate media was close to BG11 media (+ive control) as
40:1, but growth was still significantly lower (Figs. 1,2 ). It could be
due to high concentration of N-NH4

+ (<1000 mg. L�1) which can be
toxic to microalgae [30]. Biomass growth in 15 mg. L�1 P-PO4

-3

treatment was as low as TL (-ive control). This is consistant with
Markou et al. [31] who provided 10–50 mg. L�1 P and observed that
growth was significantly reduced than TAP media (control group)
and poly-P accumulation was enhanced in their 10 mg. L�1 P
treatment. Chlorella sp. showed significant growth in 50 mg. L�1 P
where P was mainly used for proliferation of cells. Dry biomass
weight, growth rate and volumetric biomass productivities from
Fig. 1. Growth curve showing microalgal cell density in leachate media against
different concentrations of P-PO4

�3 (data shown is the mean � SD).
different P-PO4
�3 treatments and control groups are presented in

Table 2.

3.2. P-PO4
�3 removal from leachate media

In natural environment and wastewater, P is present in various
forms, such as ortho-phosphate (containing one phosphate unit),
poly-phosphate, pyro-phosphate, meta-phosphate and their or-
ganic complexes. The major form in which microalgae acquire P is
inorganic phosphate P-PO4

�3 (ortho-phosphate). The transport of
P-PO4

-3 into the microalgal cell is an energy dependent process and
its uptake rate is slower in dark than in light environments [32].
Moreover, the uptake of phosphate is influenced by pH; uptake
rates decrease in acid and relatively alkaline environments [33]. In
the present study continuous light was provided and pH was kept
close to neutral, which seemed to facilitate P-PO4

-3 removal from
TL media in all the concentrations of P-PO4

-3 tested (Fig. 2).
In the present study, P-PO4

�3 concentration in the medium
reached to minimum on day 20th in all the treatments (Fig. 2). The
P-PO4

�3 was observed to reach to minimum quicker than N-NH4+,
which is similar to Rasoul-Amini et al. [34], who observed a faster
removal efficiency for P-PO4

�3 (94.77%) than nitrogen (51.41%)
within first 4 days using urban wastewater. Qu et al. [35] also
evaluated that P uptake was a relatively rapid process. Su et al.
[36] also observed a faster 100 mg. L-1 P-PO4

�3 removal than
N-NH4

+. P-PO4
�3 was completely consumed (99%) in their

experiment within 6 days.
This could imply that microalgal cells accumulated P from the

media and utilized this intracellular (stored) P later for N-NH4
+

consumption and other cellular functions [10]. Microalgal cells
absorb N and P from wastewater and use these nutrients to
produce biomass and the removal of one nutrient depends on the
availability of the other. At high N supply, the concentration of P in
the microalgal biomass was a function of the supply of P [27]. In the
present study, N was in excess, which also might have favoured the
removal of all (tested concentrations of) P from leachate medium.

In the present study, apart from cultivation conditions
(continuous light and neutral pH) and excess N availability, rapid
P uptake could be due to genetics of the tested microalgal strains,
as Chlorella vulgaris and Chlamydomonas reinhardtii are known
poly-P accumulator organism (PAOs) [12,16,35,37]. The luxury
uptake (by the PAOs) could likely drive the accumulation of poly-P
in aquatic systems or areas where P-PO4

�3 is in excess, like the
coastal zone. Poly-P concentrations of �7 % in coastal diatoms,
Skeletonema sp. was observed under nutrient replete conditions
and hypothesized a luxury uptake response. Ota et al. [13] observed



Table 2
Dry biomass weight, growth rate and volumetric biomass productivities of different P-PO4

�3 treatments and control groups in the experiment (data shown is the mean � SD).

Treatments # Optical density Dry weight (g/L) Growth rate per day Volumetric productivity
OD 750 nm R2 = 0.921 m= (lnODt-lnOD0)/t mg/L/day

BG11 (+ive control) 11.06 � 0.365 2.72 0.29 69.74
TL (-ive control) 6.02 � 0.51 1.47 0.15 36.79
15 mg. L�1 P-PO4- 6.29 � 1.13 1.49 0.16 38.20
25 mg. L�1 P-PO4- 7.58 � 0.83 2.00 0.24 57.40
50 mg. L�1 P-PO4- 7.67 � 0.164 1.92 0.19 49.20
75 mg. L�1 P-PO4- 6.8 � 0.164 1.84 0.17 47.10
100 mg. L�1 P-PO4- 7.12 � 1.10 1.87 0.18 47.90
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that 43% of P from TAP media was transformed into poly-P as a
storage molecule by the end of early stage (3 day culture), i.e., total P
and poly-P was accelerated during the early stage of sulphur-
deficient growth conditions for microalgae. Markou and Geogakakis
[33] reviewed that P deficient cells take up P-PO4

�3 at higher rates
than P sufficient cells do. In the present study, the inoculum was
growing in P deficient TL media and this might have triggered the
microalgae to accumulate P faster once P sufficient experimental
conditions were aquired. All of the tested concentrations of
P-PO4

-3 (15–100 mg. L-1) were removed from the leachate
media, which is consistant with the results abtained from
Ota et al. [13] who observed ⁓82 mg. L-1 P removed from TAP
media to be found as intracellular poly-P. Li et al. [38] observed 79% P
removal using autoclaved centrate with high P concentrations of
215 mg. L�1.

3.3. Intracellular poly-P storage

Fluorescence microscopy using DAPI dye staining of cultured
microalgal cells was also carried out to check the presence of poly-P
inside cells, apart from conventional assay of P-PO4

�3 residual
measurement in TL. Fluorescence images also confirmed the
presence of poly-P in the tested cultures against –ive control (TL),
which was without any added PO4

-3, i.e., Pi deficient cells (Figs. 3,4 ).
DAPI is a useful staining tool in the fluorometric analysis of DNA and
PolyP [39]. DAPI-poly-P complex can be seen as yellowish green
Fig. 3. Fluorescence microscopic image of Pi defcient cell
color (of intracellular poly-P) against blue DAPI-DNA stained cells
(Figs. 3,4). These findings suggested that illumination and autotro-
phic growth might significantly increase the metabolic requirement
for P and enhance P assimilation by Chlorella and Chlamydomonas
species. This also suggested that, when extracellular P-PO4

-3 is
plentiful, Microalgae (Chlorella and Chlamydomonas species)
continue to assimilate and store poly-P in their cells.

3.4. Effect of P supplementation on nitrogen (N-NH4
+ and N-NO3)

removal from TL

The presence of P-PO4
�3 is of great importance in the process

of N utilization in the microalgal cell and N uptake is considered
to be a function of P-PO4

�3 availability. Landfill leachate is
normally P limited and P is considered as growth limiting factor
when it comes to N-NH4

+ assimilation by microalgae. Pasku-
liakova et al. [40] achieved 90.7% N-NH4

+ removal when 10%
diluted raw leachate (100 mg. L-1 N-NH4

+) was supplemented
with phosphate (P-PO4

�3) to make N:P molecular ratio 16:1 in
24 days. Growth rate was observed to be 0.14 day-1, without
P-PO4

-3 addition N-NH4
+ removal was 51%. Presence of residual

nitrogen and phosphate in the system by the end of 24 days, was
suggested to be due to the limitation of microalgal cells by the
exhaustion of another micronutrient. In the present study,
N-NH4

+ removal was significantly increased in all the tested
P-PO4

-3 treatments against TL (-ive control) (Fig. 5). N:P ratio of
s in TL (-ive control) with no visual Poly-P presence.



Fig. 4. Fluorescence microscopic image of poly-P accumulated in microalgal cells. Poly-P is stained yellowish green against the blue DAPI dyed microalgal cells (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Fig. 5. N-NH4
+ removal from TL media supplemented with different P-PO4

�3

concentrations. Fig. 6. N-NO3
� removal from TL media supplemented with different P-PO4

-3

concentrations (data shown is the mean � SD).
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50, 75, 100 mg. L-1 P-PO4
-3 treatments (11:1 – 22:1) was close to

redfield ratio of 16:1 and showed better N-NH4
+ removal than TL

(–ive control) and 15 mg. L-1 P-PO4
�3) (Fig. 5).

Since wastewater are usually complex medium and nutrient
removal are not as direct as can be observed using regular nutrient
media, Procházková et al. [32] observed that extent of P limitation
can provoke different responses in algae. Also bacteria can effect
nitrogen (NO3-N-NH4

+) removal dynamics in microalgal cultures.
In the present study, N-NH4

+ was not fully removed from the
system in all the tested P concentrations (Fig. 5). Addition of
100 mg. L�1 P-PO4

-3 showed highest N-NH4
+ consumption 69.03%

as compared to TL (–ive control) (Fig. 5). But growth in the same
100 mg. L�1 P-PO4

-3 showed a similar growth curve to the rest of P
concentrations tested (Fig. 1). N-NO3- removal was significant
between 50–75 mg. L�1 P-PO4

-3 treatments and TL (–ive control)
but less than 50% was removed from the system in 30 days
experiment in all the treatments (Fig. 6).
4. Summary

In the present study, irrespective of landfill leachate’s high
N-NH4

+ concentration, salinity and dark color microalgal
cultures (Chlorella vulgaris and Chlamydomonas reinhardtii) were
able to grow sustainably and remove N and P from the system.
N-NH4

+ removal was 69.03% from 100 mg. L�1 P-PO4
�3 added TL,

but N-NO3- was not significantly removed among the tested
different P-PO4

-3 concentrations. At the end of 30 day experiment
residuel N was still present in the system. P-PO4

-3 removal was
rapid and efficient with 100% removal efficiency. P-PO4

-3 removal
from leachate medium via microalgae was suggested to be a luxury
uptake. Presence of intracellular poly-P granules (stored P-PO4

-3)
was confirmed by fluorescence microscopy. This intracellular
stored P can be extracted from microalgal biomass or the produced
microalgal biomass can be sustainably utilized for a number of
agricultural uses.
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