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Emerging studies indicate that several species such as corvids, apes and chil-

dren solve ‘The Crow and the Pitcher’ task (from Aesop’s Fables) in diverse

conditions. Hidden beneath this fascinating paradigm is a fundamental ques-

tion: by cumulatively interacting with different objects, how can an agent

abstract the underlying cause–effect relations to predict and creatively exploit

potential affordances of novel objects in the context of sought goals? Re-enacting

this Aesop’s Fable task on a humanoid within an open-ended ‘learning–

prediction–abstraction’ loop, we address this problem and (i) present a

brain-guided neural framework that emulates rapid one-shot encoding of

ongoing experiences into a long-term memory and (ii) propose four task-agnos-

tic learning rules (elimination, growth, uncertainty and status quo) that correlate

predictions from remembered past experiences with the unfolding present situ-

ation to gradually abstract the underlying causal relations. Driven by the

proposed architecture, the ensuing robot behaviours illustrated causal learning

and anticipation similar to natural agents. Results further demonstrate that by

cumulatively interacting with few objects, the predictions of the robot in case

of novel objects converge close to the physical law, i.e. the Archimedes principle:

this being independent of both the objects explored during learning and the

order of their cumulative exploration.
‘Any floating object displaces its own weight of fluid’
—Archimedes of Syracuse (Treatise on Floating Bodies)
1. Introduction
Archimedes’ principle is a law of physics that is fundamental to fluid mechanics.

Beyond the succinct formal expression of a physical phenomenon, a more fasci-

nating aspect is how such causal relations are approximately learnt and

exploited for survival by creatures (such as animals and children) who might

have never heard about such laws in the first place. A recent example comes

from experiments re-enacting one of Aesop’s most familiar fables that even pre-

dates Archimedes, i.e. the story of ‘The Crow and the Pitcher’. This fable has

been tested on a range of corvid species particularly New Caledonian crows

[1–3]. Results indicate that after exploring various objects, crows preferentially

dropped large objects instead of small objects [2], sinking objects rather than float-

ing objects and solid objects rather than hollow objects [1]: suggesting that they

gradually learnt the causal relations between functional properties of objects

and the resulting liquid displacement. The paradigm has been reproduced in

other species—rooks [4], Eurasian jays [5] and human children [6], suggesting

similar strategies used and ensuing behaviours.
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Hidden underneath this playful paradigm are a set of

fundamental questions that motivate this work: (i) what are

the shared cognitive mechanisms in human and non-human

animals which enable them to learn and infer causal relations

between their goals, actions and the objects in their environments?

(ii) By cumulatively interacting with different objects in the

world, how are task-relevant physical relations and object affor-

dances both abstracted and exploited in novel contexts?

Answers to these questions will not only help shed light on

the computational/neural underpinnings that not only orches-

trate such cognitive behaviours in natural and artificial agents

but also aid the design of intelligent robots that can learn and

apply causal knowledge during diverse applications in natural

living spaces [7,8]. This article is an adventurous exploration

in this direction, re-enacting the open-ended loop of explorative

learning–prediction–consolidation–goal-directed reasoning

in the context of the Aesop’s Fable paradigm on a state-of-the-

art humanoid platform, iCub (see Material and methods: §5.1).

Several modelling studies have attempted to investigate

and model causal cognition ranging from earlier heuristic

approaches [9,10], connectionist models [11–13], and probabil-

istic and Bayesian networks [14–16]. In parallel, learning

object–action relations and using such knowledge for pre-

diction and planning is becoming an active topic of study in

embodied robotics with modelling approaches ranging from

probabilistic Bayesian networks [17–19] to support vector

classifiers [20–22] and fuzzy logic systems [23–25]. While a

detailed commentary on these methods is out of the scope of

the present study, known bottlenecks of these methods (e.g.

[26]) have been the applicability and generalization to novel

contexts, new tasks especially in unstructured settings, and

the ability to learn cumulatively through time and experience

(like natural cognitive agents). We believe, while modelling

causal learning and inference from the perspective of a cumulat-

ively developing system (animal, embodied robot), it is critical

to look at the loop of perception–action, learning, memory

and goal-oriented reasoning in a holistic fashion. Further,

there are relatively few studies validating these models in

terms of their neural underpinnings [27], and connecting to

emerging trends from neurosciences, for example, the distribu-

ted property-specific organization of sensory motor information

[28,29], the discovery of the default mode network (DMN)

[30,31], emerging trends from connectomics [32] and small

world properties [33]. The present work closely takes inspiration

from these trends to propose a novel framework for cumulative

learning and abstraction of cause–effect relations. Specifically,

we consider the following emerging trends from neuroscience

relevant to guide the design of a neural framework that supports

causal learning and inference.
1.1. Distributed plus hub view of semantic memory
Presently, there is mounting evidence both from functional

imaging [34,35] and connectomics [33,36] suggesting that sen-

sorimotor knowledge is grounded in a distributed fashion in

property-specific cortical networks that directly support per-

ception and action and that were active during learning

[28,37]. Activations in the property-specific zones (colour,

shape, word, faces, etc.) are gradually integrated [38,39] and

communicate through shared multi-modal zones or hubs

located in the anterior temporal lobes. Further, same network

of cortical areas are active both during real perception, imagin-

ation and lexical processing with retrieval or reactivation of the
neural representation triggered based on partial cues coming

from multiple modalities: for example, sound of a hammer

retro-activates its shape representation [40]. The core rationale

of this distributed plus hub perspective is that while there is a

fine level of functional segregation (property-specific proces-

sing zones) and global integration (though multi-modal

hubs) in the cortical organization of semantic memory, there

is also an underlying dynamics that facilitates cross-modal,

top-down and bottom-up activation of these areas. The

neural framework proposed in this article closely emulates

this organization of conceptual memory.
1.2. Interplay between memory, prospection and
consolidation

The discovery of the DMN [28,29] provides converging evi-

dence that seemingly disparate cognitive functions like

recalling past episodic memories, prospective simulation of

the future and goal-directed planning engage a shared set of

highly connected cortical areas (or hubs) in the brain. At the

same time, semantic learning is known to be a fruit of abstrac-

tion and consolidation of episodic events over time [41,42]. In

this sense, rapid/one-shot encoding new episodic experiences

(in medial-temporal-lobe), gradual consolidation of such

experiences into the semantic memory (putting the past in the

context of the present) and prospection (using the present to

simulate the future, generate plans) are closely linked. Thus,

complementing the property-specific organization of sensori-

motor information and its global integration through hubs,

the proposed architecture incorporates an episodic simulation

system in line with the known function of the DMN of the brain.

In brief, this article provides the following novel con-

tributions to the existing research: (i) a neural, embodied,

brain-guided, memory-based, cognitive framework for

causal learning through cumulative exploration of real-

world environment; (ii) the interplay between two memory

systems (episodic and semantic) and how it leads to abstrac-

tion of diverse causal relations; (iii) four simple task-agnostic

learning rules (elimination, growth, uncertainty, status quo)

that correlate predictions emerging from past learnt experi-

ences in the context of new/present experience to gradually

abstract underlying causal relations; (iv) validation of the

framework by mimicking a well-established paradigm to

investigate causal learning in corvids and children; and

(v) application of the model to practical robotic implemen-

tations. Importantly, the loop between learning, prediction

and abstraction is always closed: more learning and

experience leading to better prediction, inconsistencies in

prediction leading to new learning.

The rest of the article is structured as follows. The follow-

ing §1.3 gives a brief description of the Aesop’s Fable

paradigm, followed by §2 on the proposed computational/

neural architecture and learning rules for abstraction of

causal knowledge. With results from experiments on the

Aesop’s Fable task, §§3.1 to 3.3 progressively describe the

cumulative learning and inference of diverse causal relations

by the humanoid iCub through successive interactions with

objects of varying physical properties. Creative exploitation

of such knowledge in under novel situations and a compari-

son between the gradual evolution of the prediction error of

the robot and the physical law is summarized in §§3.4 and

3.5. A short discussion follows.



experimental setup for enacting Aesop’s Fable paradigm on iCub

(a) (b) (c) (d )

Figure 1. Experimental set-up for the Aesop’s Fable task. The set-up consists of a jar of water (water is coloured yellow for recognition through colour perception) containing
a green ball which the robot cannot reach initially. Some object(s) are available on the stand, within reach of the robot. In each experiment, the robot drops object(s) into the
jar of water, raising the water level to reach the goal (green sphere). Each experiment involves either dropping a single object or making a choice between multiple objects,
exhibiting causal learning and inference processes. The objects to explore vary in their physical properties: colour, size, shape and weight. The humanoid robot used in the
experiments was developed at Istituto Italiano di Tecnologia (IIT) through the EU funded project RobotCub (Material and methods: §5.1).
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1.3. Causal learning task
The task is inspired by Aesop’s well-known tale ‘The Crow

and the Pitcher’, in which a thirsty crow drops stones into a

half-filled pitcher of water, thereby raising the water level

until it is high enough to drink. Recently, the paradigm has

been reproduced in a range of species such as rooks [4],

corvids [1], Eurasian jays [5] and human children [6] as

articulated in the previous section. In an equivalent scenario

(figure 1), the iCub robot is presented with a random set of

objects to explore and a jar of water containing a floating

target/goal (green ball). With the goal to reach the (otherwise

unrealizable) green ball, iCub explores its environment to

learn if the available objects can help realize its goal. We

chose a real robotic platform instead of a simulation because

while using a real robotic embodiment, the real world with

its intricate dynamics is available for free, allowing us to con-

duct experiments with a range of objects with diverse

physical properties on the fly in an open-ended fashion, with-

out additional simulation infrastructure. The robot is endowed

with the following basic sensorimotor capabilities to begin with

(i) object perception through colour and shape (see Material and

methods: §5.2–5.4); (ii) ability to perform reach–grasp actions

on the objects [43], which is needed to initiate the cumulative

explorative learning loop. The interested reader may refer to

[43,44] for a review on the iCub action generation system. A
priori, there is no previous experience and nothing is known

about the causal nature of the task at hand.
2. Computational model
2.1. Organization of sensorimotor information

through hubs
Figure 2 shows the central building blocks and information

flows in the proposed framework. At the bottom is the sensory

layer to analyse properties of the objects; in particular colour,

shape, size and weight. Word information is an additional

input coming from the teacher either to issue user goals or

teach names of new objects [45]. Information coming from the

sensory layer is projected bottom-up to a set of growing self-

organizing maps (SOMs [39]), organized in a property-specific

fashion. These maps learn and represent object properties as

conceptual features. Neural connectivity between the sensory

layer to the property-specific maps is learnt using standard

SOM procedure (see Material and methods: 5.2–5.4). There
onwards, a sensory input pertaining to a property would acti-

vate a winner neuron in the corresponding property-specific

SOM. In this sense, layer 1 emulates the distributed property-

specific organization of perceptual information in the brain

[28,34]. For example, perceptual analysis of an object (e.g. a

large heavy blue cylinder) leads to activations in different

property-specific SOM’s coding for colour, shape, weight

and size, respectively. The local activations in the property-

specific maps form the input to layer 2 SOM, i.e. the object

hub. The object hub facilitates integration, leading to a final

representation of the object in the scene. Note that, as we

move upwards in the hierarchy, information becomes more

and more integrated and multi-modal, and as we move

downwards information is more and more differentiated to

the level of perceived properties. The network of the object

hub and property-specific maps is complemented with a net-

work dynamics that allows the neural activity in one map to

retro-activate other members of the network and hence

allowing information to move top-down, bottom-up or in

cross-modal fashion [45] (see Material and methods: §5.5). For

example, a word like ‘green sphere’ generates activations in

the word map that causes activity in the object hub, which in

turn can retro-activate the colour and shape maps, similar to

anticipating top-down what a ‘green sphere’ might be.

In relation to the organization of action, there is a subtle

separation between the representation of actions at an abstract

level (what can be done with an object) and the action planning

details (how to do). While the former relates to the motor affor-

dance of an object, the latter relates to motion planning details

that is not depicted here. The interested reader may refer to

[43,44] for details related to motion planning. The abstract

layer corresponds to an action hub and consists of single neur-

ons coding for different action goals such as reach, grasp, etc.,

and grows with time as new primitives are learnt. In this sense,

neurons in this top-level action hub are similar to canonical

neurons found in the premotor cortex [46] that are activated

at the sight of objects to which specific actions are applicable.

Finally, the consequences of both perceptions and actions

alter the state of the body itself. This is represented by the

body hub. In other words, the body hub is a neural map that

explicitly represents the state of the body (like failing to

reach an object or grasping it, or successful realization of

goal). Reward of an experience is either given by the user or

evaluated by the robot itself though observation. In the present

task, reward is the volume/level of water raised by dropping

an object into the jar of water.



episodic memory
one-shot encoding of new experiences
recall of relevant past experiences from

partial cues (coming from hubs)
action hub

reach grasp

layer 2

layer 1

pick and
place

object connector hub
distributed object representation

(multimodal and task independent)

rewards
(self

evaluated,
user given)

body hub
reach
failure

grasp
success

size map weight map colour map shape map world map

iCub’s sensory layer
(hardware + algorithms for sensory processing: vision, proprioception)

Figure 2. The figure shows a block diagram of how information related to perception and action are organized and their link to the robots episodic memory. There
is a distributed property-specific organization of sensorimotor information. Layer 1 maps are fed bottom-up by information coming from the sensory layer and
represent the properties of objects in a distributed fashion. Activations in the level 1 maps are integrated at layer 2 (i.e. object hub), leading to a multi-
modal representation of the object in the scene. An episode of experience is the temporal sequence of activations in the different hubs (object, action,
reward, body) when the robot engages in an interaction with the environment. Such experiences are stored in the episodic memory network through one-
shot learning. Inversely, activations in the hubs also act as partial cues, to trigger retrieval of the full experience from the episodic memory (e.g. perceive a
heavy cylinder and recall a past experience of dropping it in water and the ensuing consequences).
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2.2. Episodic memory system and its link to the hubs
Practically, when a humanoid robot such as iCub interacts with

the environment, it is the ongoing sequences of actions on var-

ious objects, the ensuing consequences, internal body state and

rewards received that mainly form the content of its experi-

ences. Thus, in our architecture, it is the temporal sequence of

activations in the different hubs (object, action, reward, body)

when experience is gained that forms the content of the

episodic memory. The episodic memory network to encode

multiple sensorimotor experiences of iCub is realized using a

recently proposed excitatory–inhibitory neural network of

auto-associative memory [47,48]. For modelling purposes, the

memory network consists of 1000 neurons, organized in a

sheet-like structure with 20 rows each containing 50 neurons

(figure 3). Every row is an event in time (related to activation

in object hub, action hub, body hub or reward) and the com-

plete structure as an episode of experience. For example,

being unable to reach a floating object in a jar of water (body

hub state), perceiving a red cylinder (object hub state), drop-

ping it in water (action hub state) and fetching a reward of 15

(end reward). In the future, if the robot perceives the red cylin-

der, the object hub state serves as a partial cue to reconstruct the

full experience. Importantly, in the memory network of 1000

neurons, multiple episodic memories can be represented and

retrieved (approx. 230 episodes [48]). The learning rule to

encode new experiences into the episodic memory network

as well as the neural dynamics to recall an episode from partial

cues is described in Material and methods: §§5.6 and 5.7.
2.3. Learning rules for consolidation and causal
abstraction

In this section, we describe four simple rules for abstraction of

causal relations. Figure 4b gives a flow chart of how in the cur-

rent architecture learning rules are applied when the robot

cumulatively interacts with the world. Figure 4a tabulates

four rules that allow us to compare what has changed between
what has been experienced in the past (recalled by the episodic

memory) and what is happening in the new situation.

Let us consider DProperty as the difference in activity in a

property-specific map when activated bottom-up (through

sensory layer) and when activated top-down through recall

of past experience by episodic memory, and DContradiction

as the difference between the robots anticipation of how an

object might behave (expected reward due to recalled past

experience) and the real observed behaviour. Then the learning

rules are as follows:

2.3.1. Elimination rule
If DProperty ^ :DContradiction, then that property is not

causally dominant. The result is a drastic reduction in the con-

nection strength between the object hub and the associated

property-specific map. For example, by dropping a red cylinder

and a blue cylinder and observing the underlying consequences

(water displacement), the robot infers that the colour of objects is

not a causally dominant property. Results section, episodes 1–2,

shows several scenarios related to the application of this rule.

2.3.2. Growth rule
This rule complements the elimination rule. If DProperty

^DContradiction, then that property is causally dominant.

Contradiction in the robot’s anticipation implies that there

is something new that has not been learnt in the past episodes

of experiences. Results section, episodes 3–4, shows scenarios

related to the application of this rule.

2.3.3. Uncertainly rule
If :DProperty ^ DContradiction, the connection strength

between the object hub and the associated property-specific

map is marginally reduced. This is because in this condition

it is not possible to infer with certainty whether the particular

property is causally dominant or not, unless further experience

is gained by cumulative learning. Results section, episodes

3–4, shows scenarios related to the application of this rule.



object
perception

colour
map

layer 2: object hub word
map

word
input

hubs and
property
specific maps

episodic
memory

‘red’

object activation related to red
object

recalled past experience related to red
object: dropping the object into water
to make the floating ball reachable

partial cue to episodic memory recall of past experience from partial
cue emerging from environment

Figure 3. Link between episodic memory system and hubs – property-specific maps. A memory trace in the episodic memory is organized as a distributed activity in
1000 neurons arranged in a sheet-like structure with 20 rows, each containing 50 neurons. Each row corresponds to activity in either of the hubs at the time the
experience was gained and the whole temporal sequence of an episode of experience. Reconstruction of a complete previously encoded episodic memory trace can
be triggered by a partial cue coming from the environment (e.g. perceiving a red cylinder can generate a partial cue that recalls the past experience of dropping the
red cylinder into water to make a (otherwise unreachable) floating ball reachable). The humanoid robot used in the experiments was developed at Istituto Italiano di
Tecnologia (IIT) through the EU funded project RobotCub (Material and methods: §5.1).
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2.3.4. Status quo rule
If :DProperty ^ :DContradiction, there is nothing new to

learn and the world is behaving the way the robot anticipates

it should, so status quo is retained (no network growth, no

change in connectivity).

The next section presents results from the first episode

of cumulative learning where the robot has no prior experience

and the gradual encoding of new experiences into the episodic

memory, the application of different learning rules and the

ensuing inferences/predictions of the robot under novel

situations.

3. Results from Aesop’s Fable experiments on
iCub Humanoid

Given that the robot is learning cumulatively, this section is pre-

sented in terms of episodes evolving in time. Through results

emerging from every episode of gradual learning, we describe

the interaction between different core elements in the compu-

tational model (property-specific maps, hubs, episodic memory)

and the application of learning rules. Further, every episode

has a common set of underlying computational processes,

(1) bottom-up experience/interaction with the world and hence

activation of various maps (see Material and methods: §§5.2–

5.5); (2) recall of past experiences from memory, if any (see Material

and methods: §§5.6 and 5.7); (3) use of recalled past experiences to

anticipate (see Material and methods: §5.8); and (4) application of

the learning rules based on the anticipation from past experience

and the ensuing real observation. The underlying formal analysis

of steps 1–3 is further explained in the Material and methods

section. The overall sequence is depicted in figure 4b.

3.1. Learning that colour of objects is causally irrelevant
to the Aesop’s Fable task

3.1.1. Episode 1
In the first scenario (figure 5, figure 1a), iCub is issued the

goal to reach the green ball. The motion planning system of
iCub provides the information that the goal is unreachable

(figure 5a). A large heavy red cylinder is available and detected

(figure 6, row 1). Bottom-up sensory streams activate property-

specific maps related to (red) colour, (cylinder) shape, (11.5 cm)

size and (420 g) weight properties leading to the representation

of the object in the object hub. The object hub activity leads

to generation of a partial cue for the recall of any related past

episodes. Since there is no previous experience in the episodic

memory, nothing is recalled (by the episodic memory dyna-

mics: see Material and methods: §5.7), there is no top-down

activity in the object hub (figure 6, row 2) nor any reward

expected. The robot chooses to pick and drop the object into

the jar of water (figure 5b). The object sinks in the water displa-

cing a volume of water of about 365 cm3 enough to make the

floating green sphere reachable (figure 5c). This experience

is encoded into the episodic memory: an unreachable goal

(body hub state), dropping (action hub activity) a large

heavy red cylinder (object hub activity), a volume of water dis-

placed 365 cm3 (reward) and goal realized successfully (body

hub state). Note that this is a rapid one-shot encoding of experi-

ence into memory. This first experience can be recalled in

the future to generate predictions or foster further learning

and abstraction.

3.1.2. Episode 2
The robot is presented with a blue cylinder (different colour)

but of the same size and weight as in episode 1. Bottom-up per-

ception leads to the distributed representation of this object in

the object hub, which is a source of partial cue to the episodic

memory system. Note that the object hub representation

(figure 6, row 3) is partially similar to the object the robot

had interacted with in episode 1 (figure 6, row 1). Based on

the partial cue, the only past experience of the robot with the

red cylinder is recalled (i.e. episode 1: figure 6, row 4). Recall

of past experience is also the source of anticipating the future

rewards. The robot anticipates that the large heavy blue cylin-

der would displace the same amount of liquid (365 cm3) as

recalled from its past experience with the red cylinder. The
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Figure 4. Learning rules. (a) Summarizes the four rules for learning cause – effect relations in a cumulative set-up. (b) A colour-coded flowchart of the complete
loop of information processing within which the learning rules are applied. The loop connects four key processes: (1) robot’s sensorimotor interaction with the world
(green blocks); (2) representation and bottom-up flow of the sensory information in property-specific maps and object hub for recall of past experiences relevant to
what is sensed in now ( pink blocks); (3) top-down flow of recalled information from memory into the object hub, property-specific maps and reward anticipation
(blue blocks) and (4) comparison of bottom-up versus top-down information at the level of property-specific maps, comparison between the anticipated reward and
the reward observed through sensorimotor interaction with the world, and henceforth, application of learning rules (orange blocks). The loop begins with the robot’s
interaction with the world and completes with the application of learning rules (see bottom-left).
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anticipation turns out to be correct once the robot actually drops

the object into water. Note that in this case, there was no contra-

diction between the expected behaviour of the object (reward

hub activity in the recalled past experience) and the observed

behaviour. In sum, there is a change in object property

(colour) that did not cause any contradiction in the expec-

ted behaviour. Elimination rule applies here. Comparing the

bottom-up real experience with the top-down anticipation due

to recall of past experiences from memory (figure 6, rows 3

and 4), and applying the appropriate learning rule (elimination),

the robot learns that colour is not a causally dominant property

as far as the Aesop’s Fable task is concerned.
3.2. Learning that weight is a causally dominant
property

3.2.1. Episode 3
After learning the causal irrelevance of colour, the robot is pre-

sented with a very light cylinder (14 g). Figure 7 (episode 4)

shows the bottom-up and the top-down activations in different

maps. Bottom-up activity leads to recall of episode 1 (as the

shape and the size of the presented object still match that of

the object encoded before: there is partial similarity hence gen-

erating partial cue). A high reward (volume of water displaced)

of 365 cm3 is anticipated as before. However, the real
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Figure 5. Pictorial diagram of the Aesop’s Fable task. (a) Shows the experimental scenario where the robot is assigned the task of reaching a green sphere floating
in a jar of water. The motion planning system of iCub provides the information that the goal is unreachable. (b) Exploring its environment, the robot finds a large
heavy red cylinder and chooses randomly to pick it up and drop it into the jar. (c) The robot observes that dropping the object into jar displaced the water by a
volume of about 365 cm3. Returning to its original goal, the robot finds the green sphere is now reachable, reaches the goal and encodes this experience of ‘making
an unreachable goal reachable’ into episodic memory for recall and re-use in future.
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experience with the light cylinder shows only a small amount

(24 cm3) of water is displaced. A contradiction between the

expected and the observed behaviour has occurred. The

comparison of the bottom-up activity and the reconstructed

top-down activity reveals a difference in weight maps. Note

that the colour map is no longer activated top-down (as it is

causally irrelevant). The Growth rule applies here because a

change in the weight property causes contradiction between

the anticipated and the observed behaviour. Applying the

Growth rule, the new experience is encoded into the episodic

memory which can be recalled next time for better prediction.

Further, in this interesting case, activity in the shape map and

the size map showed no change even though there was a

contradiction between the expected and the observed behav-

iour. Hence the Uncertainty rule applies too: as the robot still

has no experience or complete knowledge of the causal rel-

evance of object size or shape. The system partially believes

at this point that shape and size of the object may not be

relevant in causing water displacement.

3.2.2. Episode 4
To see the effect of the rules applied above in terms of map

activity, we proceed to episode 4 where the robot is presented

with another object of same shape and size as in episode 3 but

of a different weight (125 g). As shown in figure 7 (episode 5,
row 1), there is reduced activity of neurons in the object hub

connected to shape and size maps when activated bottom-up

(the effect of Uncertainty rule applied during episode 3).

Both episode 1 and episode 3 are recalled because bottom-up

activity due to shape and size maps (even though reduced)

still matches that of objects encoded into memory previously,

hence generating partial cues. Since there are two recalled

memories anticipating different rewards, the system takes a

property-weighted average of the two recalled rewards as its

anticipation (see Material and methods: §5.8). In this case, the

net anticipated reward is 185 cm3, however, the observed dis-

placement in the volume of water is 121 cm3. The robot sees

a contradiction again and by comparing the bottom-up and

top-down activations in both maps, finds a change in the

weight property. The Growth rule applies; the experience is

encoded into episodic memory to be recalled later contextually

for a better prediction.
3.3. Learning that size is not a causally dominant
property

3.3.1. Episode 5
The robot is presented with a novel object (a small heavy cylin-

der). This time the weight and the shape of the object are the
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episode 1: dropping a large heavy red cylinder (colour = red; shape = cylinder; size = 11.5 cm; weight = 420 g)

episode 2: dropping a large heavy blue cylinder (colour = blue; shape = cylinder; size = 11.5 cm; weight = 420 g)

no contradiction: elimination rule applies here. ‘Colour is not causally relevant in the task’ is learnt. From now onwards, colour
map does not activate object hub bottom-up and object hub does not activate colour map top-down.

object colour map shape map size map weight map object hub reward

Figure 6. Abstracting colour is an irrelevant property in the Aesop’s Fable task. The figure shows neural activity in various property-specific maps, the object hub and
the reward hub for a consecutive sequence of two experiences the robot gains by interacting with two similar objects of different colour. In each episode, the first row
represents the object and the bottom-up activity of all the neural maps and hubs related to sensorimotor information of the object whereas the second row depicts
top-down activity in the maps and hubs due to recalled past episodes. The winning neurons in each network are shown in white (see activity scales on top of the
figure). In episode 1, the bottom-up activity (1st row) does not recall any past experience; hence there is no top-down activity (2nd row). The bottom-up activity in
the object hub and the reward hub during episode 1 is finally encoded into episodic memory. In episode 2, colour of the object is different from the one explored in
episode 1. Upon sensing the new object, the system recalls the experience of episode 1, infers the reward based on it and acts. No contradiction in expected and
observed results is found even though there was change in colour property. Elimination rule applies to colour property; the robot learns that the colour of objects is
irrelevant to the task. From now on, the object hub and the colour map will not activate each other during any bottom-up or top-down information flow.
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same as that of the object in the last experience (episode 4) but

the size (6.7 cm) is different to that of all the objects encoun-

tered before. Bottom-up activity due to shape and weight

maps recalls experience 4 only. The robot expects the reward

should be same as in episode 4, i.e. 121 cm3. This turns out to

be a correct anticipation. The elimination rule applies again

leading to the inference that size is not causally relevant.

Through rapid encoding of novel episodic events and

gradual assimilation of causal relations into memory, the

robot has learnt many things so far: colour of objects does

not affect the amount of water they displace nor does the size

of the objects; weight of the objects determines how much

fluid is displaced; and heavier objects displace more water

than lighter objects. The learning process continues, more

episodes follow as shown in the electronic supplementary

material, figure F1. Whenever the robot faces a contradiction

between its expectation and real observation, the new experi-

ence is encoded. At the same time, for properties that show

no change (like shape) even during contradiction, the certainty

of their irrelevance keeps increasing. At the same time, the

robot can anticipate the behaviour of a wide range of objects

with different sizes, colours and weights.
Interestingly, the cumulative learning of causal relations

(e.g. weight of objects effects the amount of water they dis-

place), enables the system to infer what different objects can

afford in the context of a sought goal, as depicted in figure 8

where iCub infers that dropping a heavy object will make the

target reachable while a light object will not, thus making intel-

ligent choices similar to corvids [1] and children [6]. For

example, in [5], the authors report that through experience

over several trials of dropping objects in water, Eurasian jays

learn to choose sinking objects instead of floating objects to

retrieve otherwise inaccessible food rewards (analogous to the

green ball that is the goal of the robot). Similarly, in [6] children

are either trained or motivated to try and drop stones into water

to retrieve a floating reward and hence learn the causal nature of

the task over multiple trials (analogous to the way iCub learns

by exploring with different objects over multiple experiences).

3.4. For causal learning, order of experiences does
not matter

A feature of the proposed framework is that for the learning

rules to abstract the causal knowledge, the order in which



episode 3: dropping a large light cylinder (colour = red; shape = cylinder; size = 11.5 cm; weight = 14 g)

episode 4: dropping a large cylinder of unfamiliar weight (colour = red; shape = cylinder; size = 11.5 cm; weight = 125 g)

contradiction: growth rule applies. ‘Weight is a casually dominant property in the task’ is learnt. Episodic memory grows to
encode this new experience. Uncertainty rule applies too. The system learns that shape and size of objects may be irrelevant to

the task, but is not certain yet. (see below)
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Figure 7. Abstracting weight is a dominant property and size is irrelevant. Similar to figure 6, this figure shows neural activity in various property-specific maps, the
object hub and the reward hub for two more episodes. In episode 3, an object of a different weight (14 g) is presented. Bottom-up activity leads to the recall of the only
episode stored in memory (episode 1) and hence the anticipated reward is that achieved in episode 1. However, upon interaction with the object, the robot observes a
contradiction in anticipated and observed rewards. Comparison of top-down and bottom-up activity in different maps shows the weight property has changed. Growth
rule applies; the robot learns that weight is a causally dominant property and encodes this new experience into memory. Uncertainty rule also applies. Shape map and
size map showed no change; hence connectivity between the hub and these maps is marginally reduced. In episode 4, another novel object of a different weight (125 g)
is presented. The corresponding bottom-up object activity recalls the encoded two experiences of the past from episodic memory. The net anticipated reward is calculated
using a weighted averaging of both the rewards corresponding to the two memories. Anticipation does not turn out to be accurate. Growth rule applies. Hence this
episode is also encoded into memory to allow better anticipation in future. Uncertainty rule applies too to shape and size properties.
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experiences are acquired does not matter. Figure 9 depicts the

results of cumulative learning when objects are presented in

a different order than that discussed so far through episodes

1–5 (also see electronic supplementary material, figure F1).

The figure plots the amount of causal knowledge about the

object properties learnt by the robot against time as new objects

are explored successively. Initially when nothing is known,

causal knowledge related to each property is zero. After inter-

action with a range of objects, a property is known to be

dominant or irrelevant (represented by 1); or the robot may

not be certain about the causal relevance of a property and

this uncertainty is represented by a number between 0 and 1.

Causal learning of different object properties occurs at different

times; for example, in episodes 1–5 discussed before, causal
learning of the irrelevance of colour is learnt in just the

second experience, whereas in figure 9 this knowledge is

abstracted in the fourth experience in order (using object 8).

However, the amount of causal knowledge upon interaction

with a set of objects is the same, even if the objects are explored

in different orders. Plots for four (randomly generated) orders

of presentation of objects showing the same end-results are

provided in the electronic supplementary material, F1–F4.

3.5. Growing experience paves way for better prediction
(towards inferring the Archimedes’ principle)

Since the computational framework implementing episodic

memory enables recall of contextual past episodes, the
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Figure 8. Causal inference in goal-directed tasks. (a) The green ball (goal) is unreachable. Two objects are present in the scene (blue and red cylinder). (b) Recalling
past experiences, the robot infers/simulates the consequences of exploiting them and (c) chooses the heavier blue object with the prediction that the water displaced
would make the ball reachable. The figure illustrates, how past experiences are opportunistically exploited in novel situations to modify the present environment and
make it more conducive towards realization of one’s internal goals: a central feature of goal-oriented reasoning. The humanoid robot used in the experiments was
developed at Istituto Italiano di Tecnologia (IIT) through the EU funded project RobotCub (Material and methods: §5.1).
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Figure 9. For causal learning, order of experiences does not matter. Plots the growing causal knowledge regarding four properties (colour, shape, size and weight)
in the system versus the objects explored over increasing time. The plot corresponds to a different order in which objects are explored than the order discussed in the
text (from episodes 1 – 5) and figures 6 and 7. Causal knowledge in the system regarding each property at any given time is either Unknown meaning nothing is
known about the causal effect due to the property (depicted by 0 in the plot); or has been learnt to be Dominant or Irrelevant (depicted by 1); or the system
expects the property to be Likely Irrelevant (by a certainty value between 0 and 1). Learning rules that apply when a new object is explored are indicated in each
column using letters G, U, E, S; G stands for Growth rule, U for Uncertianty rule, E for Elimination rule and S for status quo rule. As learning progresses, weight
becomes known as a dominant property, colour and size properies are eliminated and the system is still not certain about the effect of shape but the certainty that
it is likely causally irrelevant keeps increasing. Thus, the system has attained same amount of causal knowledge as attained in the order discussed in the text, even
though the individual episodes in which causal relevence of a property is known varied in temporal order of experience.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160310

10
system becomes endowed with a great power of anticipa-

tion. For novel objects of different colours and sizes (i.e. the

causally irrelevant properties) the robot can easily recall the

past episode and predict accurately if an object of the same

weight (i.e. the causally dominant property) has been explored
before. However, in cases when the system is presented

an object of a weight never experienced before, all the past

experiences (due to the same shape) will be recalled and a

weighted averaging of the rewards expected due to these

past experiences can be used as an estimate of net anticipated
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Figure 10. Towards inferring Archimedes’ principle. (a) Shows a plot with three curves against the objects of different weights that are explored successively over
time: a blue curve indicating the volume of water predicted by the robot that will get displaced (i.e. reward) by dropping the object into water; a red curve
indicating the volume of water that was displaced as observed by the robot after it dropped the object into water; a green curve indicating the calculated
volume of water displaced using Archimedes’ principle. The blue curve approaches closer to the red and green curve as more and more objects are explored
indicating the robot’s prediction comes close to the physical law, i.e. the Archimedes principle. Note that the order of objects is the one described to explain
the learning process in the text and electronic supplementary material, figure F1 and does not include the objects that have the same weight values as those
explored before (for such objects prediction is accurate). (b) A plot of decreasing error in the predicted displacement in the volume of water by dropping an
object and actual calculated displacement using Archimedes’ principle. Four curves corresponding to four different orders in which the objects were presented
to robot for exploration. In all sequences of exploration, the prediction approaches closer to reality as newer experiences are gained over time.
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reward. As the number of experiences with objects of different

weights increases, the accuracy in the prediction of reward

increases significantly. Figure 10a shows a plot of the increas-

ing accuracy in prediction of the reward (i.e. the volume

of water displaced by an object when dropped into water).

The plot shows three curves: the blue curve corresponds to

the reward value predicted by the robot for the object to be

dropped into water; the red curve corresponds to the reward

observed by the robot after the object is dropped into water

and the green curve corresponds to the volume of water displa-

ced measured using the physical law, i.e. Archimedes’

principle. As is obvious from the graph, over the growing

number of experiences, the anticipated volume (blue curve)

approaches closer and closer to the observed volume

(red curve) and calculated volume (green curve), i.e. the

Archimedes’ principle. In figure 10b, we plot the error in pre-

diction, which is the difference between the reward value

predicted by the system and the calculated reward value

using the Archimedes’ principle, against the number of experi-

ences as they grow in time for four different orders of
presentation of objects (discussed before). The results clearly

show error in prediction rapidly decreasing in all cases.
4. Discussion
A humanoid robot infers Archimedes’ principle, sowhat? Firstly,

an ensuing significance of this work is in the application domain

particularly in the context of applied cognitive robotics. Any pur-

poseful action of a robot situated in a physical environment is

only possible if it is able to abstract and exploit the underlying

causal relations between objects in the environment and its

own actions. From a practical perspective, artificial agents,

robots endowed with this ability have a critical cognitive edge

while acting, assisting in unstructured spaces that are abound

with diverse physical relations. In particular, the framework

has significant utility in a range of day-to-day object-manipu-

lation tasks such as pushing, pulling, lifting, inserting, rotating,

learning to classify/use different objects as appropriate tools to

realize goals, both in the case of an assistive robotic companion
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in a domestic environment or an industrial assembler platform

for manufacturing. Consider that even today, almost all assem-

bly tasks that have been automated are specific solutions to

well-defined problems (like single-purpose systems and not

general-purpose systems), with minimal learning capability

fromcumulativesensorimotorexperiencesanduseofsuchknowl-

edge in novel unexperienced situations. Automated industrial

assembly technology still predominantly uses detailed infor-

mation about objects, with detailed assembly action sequences

to be executed on them to achieve the necessary reliability, accu-

racy of task goals. Even minute disturbances in the work-cell of

a robot, introduction to novel objects or even small variations of

the same task can easily lead to failures. Thus, this lack of learning

and cognitive flexibility increasesthe cost of assemblysystems and

consequently of products produced by industry.

Several recent roadmaps, for example, H2020 Factories of

the Future [49], are emphasizing the need to alleviate this

lacuna in order to bring in greater flexibility, autonomy instead

of automation in the assembly chains. The ability to swiftly

and cumulatively learn by interacting, abstract underlying

cause–effect relations and exploiting such knowledge in

novel situations as explored in this article is a critical functional

repertoire in this direction. Some preliminary work in porting/

validating the framework in real-world industrial assembly is

already underway [44] reporting significant advantages, for

example, 15 min to switchover/learn a new assembly task

with new objects compared to more than 3 h with the indus-

trial benchmark [50,51]. Finally, the acquired knowledge of

cause–effect relations can also be exploited to infer potential

consequences of others’ actions on objects (for example, an

interacting partner: human or another robot) in a joint goal situ-

ation (for example, actor 1 picks up a fuse, the goal is to insert

into an appropriate fuse holder to assemble a fuse box). Studies

from embodied cognition support the perspective that under-

standing others’ actions may be conceived as an internal

simulation that entails the re-use of our own ability to act in

order to functionally attribute meaning to the actions of

‘others’, and on the way, recycling some of the same cortical/

computational substrates the enable us to act ourselves [52].

While the framework has recently been ported to an industrial

setting for tasks like object assemblies [44], the future extensions

to the work will include robotic applications to a broader range

of industrial and domestic tasks. At the same time, effective

human–robot cooperation is of emerging interest in several

applied domains, offering a strong potential scope for further

extension of the research explored in this article.

While the applied perspective is appealing, how animals are

able to learn and exploit object affordances and causal structure

in their environments through cumulative learning experiences

is a fundamental question in cognition. In this context, our

work takes the topic of affordances from the level of object–

action to the level of property–action, in line with emerging

studies from neurosciences, mainly, the distributed property-

specific organization of sensorimotor knowledge in the neo

cortex and the brain’s DMN, which emphasizes a shared cortical

basis for recalling the past and simulating the future. Further, the

implicit advantage is that the learnt property–action relations

can be effortlessly generalized to a domain of objects for which

a cognitive agent need not have any past experience/learning

but, nevertheless, share the property. We must mention that

this is not a new concept in psychology. Rather, it is best

reflected in the writings of psychologist William James [53]

where he illustrated the different uses of a book (a thing that
gives knowledge, a paper weight, an instrument to swat a mos-

quito) based on one’s immediate goals. Our work in this

context both brings together emerging trends in neurosciences

as well as concepts from psychology to provide a neutrally

plausible computational basis for causal learning and inference

mechanisms in both natural and artificial agents. Work is

ongoing to mirror advanced experiments on the Aesop’s

Fable such as the U-tube task and provide a computational

basis for differences observed in corvids and children in

these experiments [1,6]. At the same time, we believe further

research in this direction has the potential to provide a bio-

inspired and embodied framework for reasoning by analogy

(attributing causality to a novel class of objects based on

what has been learnt and experienced in the past).

A central feature of the proposed architecture is that it shares

the same neural substrates (property-specific maps and hubs)

during both top-down and bottom-up information flows.

A bulk of studies surrounding embodied cognition provides

direct evidence for this [52,54,55]. However, it is not clear why

the neural substrates should be shared and what are the compu-

tational advantages. Our work clearly demonstrates that

such kind of sharing simplifies the comparison between what

has been experienced in the past (i.e. reconstructed through

memory) with what an embodied agent is presently experien-

cing, since both top-down and bottom-up information are

brought down to a common platform (i.e. the shared neural sub-

strate: property-specific maps and hubs), thereby triggering

mechanisms for abstraction and inference. In this context, this

is a computational emulation of cognitive dissonance [56], but

at the same time taking into account more recent accounts of

the underlying neuroanatomical basis and cortical interactions

that give rise to such mechanisms [36,48,57]. Further emerging

studies from neurosciences point to a homologous cortical net-

work in rats, corvids and humans underlying such functions

(see, [58] for a review). In this context, this article provides a

similar brain-guided framework to enable cognitive robots to

exhibit similar behaviours while learning cumulatively and

realizing their goals. The property-specific organization of con-

ceptual information and the learning rules applied herein are

domain agnostic, independent of the task at hand. The same

learning rules and the property-specific conceptual organiz-

ation have been employed in a simpler model to test learning

of property–action relations in a task of pushing [59] where

the robot cumulatively learns and abstracts causally dominant

properties that influence the motion of various objects when

forces are exerted on them. For example, the robot learns that

large cylinders move faster than large cubes when pushed.

Small cylinders move even faster than large ones. Interestingly,

in an embodied framework this brings in the power to make

transitive inferences (such as small cubes should move faster

than larger ones) without any need for symbolic processing.

Finally, the work presented emphasizes that reasoning and

learning always have to go hand in hand and grow cumulatively

and continuously during the lifetime of a learner, be it any natu-

ral or artificial cognitive agent. While more experience drives

better reasoning and inconsistencies in reasoning drive new

learning. This interesting aspect of the cumulative development

and living in uncertainty is highlighted and explored in this

article, through the playful Aesop’s Fable scenario, where at

every moment the robot is acting with partial knowledge

because not everything is known and not everything has been

experienced, and culminates in approximately inferring the

Archimedes principle!
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5. Material and methods
5.1. Icub, the Humanoid platform
The iCub is a small humanoid robot of the dimensions of a

3.6-year-old child and designed by the RobotCub consortium

(http://www.robotcub.org), a joint collaborative effort of

11 research groups in Europe, Japan and the USA. iCub was devel-

oped to serve as a test-bed for research into embodied cognition.

The robot is open-source, with the hardware design, software

and documentation all released under the GPL license. A copy of

the license can be found at http://www.robotcub.org/icub/

license/gpl.txt. The robot has 53 actuated degrees of freedom:

seven in each arm, nine in each hand, six in the head (three for

the neck and three for the cameras), three in the torso/waist and

six in each leg.

5.2. Sensory processing
5.2.1. Colour
The colour of objects is analysed by a colour segmentation module

based on Markov random fields [60] which returns a triad of RGB

values. These triad forms the input to the colour map.

5.2.2. Shape
At the level of the concept system, information related to object

shape is passed as 120-bit vector unique for each shape (like an

abstract identifier of the object). In this way, the complexity of

shape analysis is abstracted from the concept system.

5.2.3. Size
Size-related information is organized into in a map coding for

magnitude (the maximum length of the object across any axes in

Cartesian space: e.g. S1) and proportion (i.e. the ratio of the maxi-

mum length with respect to lengths in the other two axes, e.g. S2).

S3 relates to orientation that is not a property of the object itself but

rather is relative to the frame of reference of the observer. This kind

of organization of size-related information is partly inspired by

recent evidence related to representation of magnitude in the par-

ietal cortex [61]. There are several advantages of this scheme in

terms of inferring what can be done with different objects that

may be indistinguishable through colour or shape (e.g. consider

a green cuboid and a green stick: both have same shape and

colour; what distinguishes them is the abstract magnitude and pro-

portion: the former can be used to build a stack the latter as a tool to

pull an unreachable reward). However, in the context of this paper,

since only cylinders of varying lengths (but same radius)

were used, only the map coding for magnitude was employed in

the framework.

5.2.4. Word
Word information is the input directly via the teacher typing on

the keyboard and converted into vectors on the basis of letter

usage frequencies in the English language [47]. From an appli-

cation perspective, this incorporation of little linguistics (that is

grounded in sensorimotor experience of the learner) endows

the architecture with a measure of user friendliness allowing

easy interaction.

5.2.5. Weight
Weight of the objects is estimated from measures of torques in

force/torque sensors of iCub specifically those for the right arm.

5.3. Associating names/words with object properties
Associations between different perceptual properties such as object

colours (or shapes) and their names (given by the user) are learnt
through temporal coincidence. That is, if neurons in different self-

organizing maps are concurrently active (within a temporal

window), then they become associated to each other through

object hub using the dual-dyad connectivity (red arrows in

figure 1). Practically, this is accomplished by presenting the robot

with an object having the property that is to be learnt (say green

colour). The object property (e.g. colour) is analysed bottom-up by

the sensory layer resulting in an output vector that is fed to the cor-

responding SOM (e.g. colour map). In the same temporal window of

integration, the teacher inputs the name or word (e.g. word ‘green’)

for the corresponding property, which serves as input to the word

SOM. As a result, there is some neuronal activity in each of the

two maps. The net activity in the property-specific maps and the

word map forms the bottom-up input to the object hub. The dual-

dyad connectivity matrices between the maps and the object hub

are randomly initialized at the start. The learning rule to connect

SOMs with the object hub is: if the net activity due to a neuron i
and a neuron j winning in the colour and word SOMs, respectively,

manages to activate a neuron k in the object hub, make Wik ¼ 1 and

Wjk ¼ 1.

5.4. Self-organizing map learning procedure
The SOM learning process uses standard methods as discussed

in previous work [62,63]. In short, it can be accomplished in

two steps:

1. Find the neuron i that shows maximum activity for the incom-

ing sensory stimulus St at time t. This also implies that neuron

i’s sensory weights si such that ksi � S2
t k have the smallest

value, among all neurons existing in the respective SOM at

that instance of time.

2. Adapt the sensory weights of the winning neuron in a Hebbian

fashion by bringing the sensory weights si of the winner i closer

to the stimulus St. This simply has the effect that in future

instances, the neuron i actively codes for the particular sensory

stimulus St. In this way, neurons in different property-specific

maps that have sensory weights closest to the incoming input

sensory vector start representing these signals.

5.5 Network dynamics of object hub – property-specific
maps

Let N be the number of neurons in a SOM or a hub. Let hi be the

activity of the ith neuron in the provincial hub and xprop be

the activity of a neuron in any of the property-specific SOMs

connected to the object hub (in this case word, colour, shape, size

and weight SOMs). Let Wprop,hub encode the connections bet-

ween the property-specific maps and the object hub. Wprop,hub is a

NOjectHub � (Ncolourþ Nshapeþ Nsize þ Nweightþ Nword) matrix,

learnt as explained in the main text (see the Results section). Its trans-

pose encodes backward connectivity from the hub to individual

maps. The network dynamics of hub neurons is governed by:

thub
_hi ¼ �hi þ (1� b)

X
i,j

(Wprop,hubxprop þ b � (topdown)):

ð5:1Þ

Topdown indicates activity due to recalled memory from the past.

b¼ 0 means that the system operates only on real sensory input,

whereas b¼ 1 indicates the system is modulated top-down only.

The dynamics of neurons in the property-specific maps is given by:

tprop _xi ¼ �xprop þ (1� b)Sprop þ b
X

i,j
(Whub,prophhub), ð5:2Þ

where

Sprop ¼
1ffiffiffiffiffiffiffiffiffiffi
2prs

p eð�(si�s)2=2s2
s Þ:

A detailed description of this process and implementation can be

found in [45].

http://www.robotcub.org
http://www.robotcub.org
http://www.robotcub.org/icub/license/gpl.txt
http://www.robotcub.org/icub/license/gpl.txt
http://www.robotcub.org/icub/license/gpl.txt
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5.6. Encoding new experiences in episodic memory
New experiences gained by the robot are learnt by updating con-

nections between the neurons in the episodic memory network

in the following way. Let Vnew be a one-dimensional vector

representing the activity of N (N ¼ 1000, here) neurons shown as

a 20 � 50 matrix. Let T denote the connectivity matrix between

the N neurons that represents the strength of the connection

between any neuron i to any neuron j. Since there are 1000 neurons,

the dimensionality of T is 1000� 1000. T is a null matrix to start

with as nothing is known. Consider that a new episode represented

by activity Vnew has to be stored in the memory network. This is

done by updating all the connections Ti,j between the N neurons,

using a simple Hebbian rule summarized below:

If Vi ¼ 1 and Vj ¼ 1, then make Ti,j ¼ 1 (regardless of what its

value was before);

Else, make no change to Ti,j.

A detailed description can be found in [48].

5.7. Remembering past experiences from partial cues
The network dynamics to recall past experiences from partial cues

is given in equation (5.3). Vk is the activity in the Kth neuron

(a subset of neurons in the 50 � 20 neural episodic memory layer
will be active based on the partial cue or initial condition). T is

the connectivity matrix between the neurons learnt when the

episodes of experiences are encoded in the network.

trel
_Vk ¼ �Vk þ

XN

j¼1

Tk;jVj þ Iinhib,

Iinhib ¼ gð�ain þ b
X

k

VkÞ

and gðiÞ ¼ 0, if ði , 0Þ, else, gðiÞ ¼ i:

9>>>>>>>=
>>>>>>>;

ð5:3Þ

Iinhib is the current coming from the inhibition network that

is modelled as a single neuron. The function of the inhibitory net-

work is to keep the excitatory system from running away, to limit

the firing rate of the excitatory neurons. At low levels of excitation,

the inhibitory term generally vanishes. For all experiments, ain was

chosen as 30, trel as 1000 andb as 3.5. For further details, refer to [48].
5.8. Computation of anticipated reward in case of
multiple recalled memories

Let n be the number of top-down object hub activities recon-

structed that cause top-down activity in maps. For each

reconstruction i, we define:
pi ¼
value of the dominant property corresponding to the winner neuron in the self organizing map

maximum value of the dominant property learnt by the self organizing map

and ri ¼ reward value corresponding to object hub activity:
Then for a bottom-up object hub activity with the corresponding

property fraction px, the anticipated reward is given by:

R ¼ px

P

Xn

i¼1
1� k px � pik �

ri

pi

� �

where

P ¼
Xn

i¼1
1� k px � pik

Data accessibility. A short video clip of the experiments with the
humanoid is provided in the electronic supplementary material.
A complete set of videos documenting the cumulative learning, with
audio from the software listing different critical events (as described
in flowchart in figure 4) is available in a YouTube channel, Re-enacting
the Aesop’s Fable on iCub humanoid: https://www.youtube.com/
playlist?list=PLIfoHEM1gr24EniCzBuUxZ2tqNpQA8QQm. An open-
source Cþþ software implementation of the proposed framework is
available from the iCub SVN repository accessible at https://svn.code.
sf.net/p/robotcub/code/trunk/iCub/contrib/src/morphoGen/.
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