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Abstract

Amyotrophic lateral sclerosis (ALS) is a multi-system disease char-
acterized primarily by progressive muscle weakness. Cognitive
dysfunction is commonly observed in patients; however, factors
influencing risk for cognitive dysfunction remain elusive. Using
sparse canonical correlation analysis (sCCA), an unsupervised
machine-learning technique, we observed that single nucleotide
polymorphisms collectively associate with baseline cognitive
performance in a large ALS patient cohort (N = 327) from the
multicenter Clinical Research in ALS and Related Disorders for
Therapeutic Development (CReATe) Consortium. We demonstrate
that a polygenic risk score derived using sCCA relates to longitudi-
nal cognitive decline in the same cohort and also to in vivo cortical
thinning in the orbital frontal cortex, anterior cingulate cortex,

lateral temporal cortex, premotor cortex, and hippocampus
(N = 90) as well as post-mortem motor cortical neuronal loss
(N = 87) in independent ALS cohorts from the University of Penn-
sylvania Integrated Neurodegenerative Disease Biobank. Our find-
ings suggest that common genetic polymorphisms may exert a
polygenic contribution to the risk of cortical disease vulnerability
and cognitive dysfunction in ALS.
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Introduction

A significant proportion of patients with amyotrophic lateral sclero-

sis (ALS) manifest impairment in cognition consistent with extra-

motor frontal and temporal lobe neurodegeneration, including 14%

also diagnosed with frontotemporal dementia (FTD) (Montuschi

et al, 2015; Beeldman et al, 2016). Comorbid cognitive dysfunction

is a marker of poorer prognosis in this fatal disease and confers risk

for more rapid functional decline, shorter survival, and greater care-

giver burden (Elamin et al, 2013; Hu et al, 2013; Crockford et al,

2018). While linkage analysis and genome-wide association studies

(GWAS) have identified rare causal mutations (Van Deerlin et al,

2008; DeJesus-Hernandez et al, 2011; Renton et al, 2011) and

common risk loci (van Es et al, 2009; Diekstra et al, 2014; van Rhee-

nen et al, 2016; Nicolas et al, 2018; Karch et al, 2018) suggesting

shared genetic architecture between ALS and FTD, whether and

how identified variants relate to phenotypic heterogeneity, including

in cognition, remain largely unexplored.

The genetic landscape of ALS is largely characterized by “appar-

ently sporadic” disease occurring in 90% of patients with no

known family history of ALS and only a small proportion of

approximately 10% of patients having a family history of ALS

(Turner et al, 2017). Known pathogenic mutations (e.g., C9ORF72

(Renton et al, 2011; DeJesus-Hernandez et al, 2011), TARDBP (Van

Deerlin et al, 2008), FUS (Vance et al, 2009), NEK1 (Kenna et al,

2016), SOD1 (Rosen et al, 1993)) have been identified in many

familial cases and in 5–7% of non-familial cases (Umoh et al,

2016); in addition, GWAS have revealed many loci of common

genetic variation that confer risk for ALS and FTD. Indeed, recent

evidence supports a polygenic contribution to disease risk from

common genetic variants (Bandres-Ciga et al, 2019). These include

the largest ALS GWAS to-date which newly identified risk variants

in the KIF5A gene (Nicolas et al, 2018) and genome-wide conjunc-

tion and conditional false discovery rate (FDR) analyses demon-

strating shared genetic contributions between ALS and FTD from

common single nucleotide polymorphisms (SNPs) at known and

novel loci (Karch et al, 2018).

An accumulating body of research suggests that SNPs associated

with risk of ALS and FTD demonstrate quantitative-trait modifi-

cation of patient phenotype. For example, a SNP identified as a risk

locus for ALS and FTD was found to contribute to cognitive decline,

in vivo cortical degeneration in the prefrontal and temporal cortices,

and post-mortem pathologic burden of hyperphosphorylated TAR-

DNA binding protein [43 kDa] (TDP-43) in the middle frontal,

temporal, and motor cortices (Placek et al, 2019). Another study

found that a SNP identified as a risk locus for FTD with underlying

TDP-43 pathology was additionally associated with cognition in

patients with ALS (Vass et al, 2011). Others have recently demon-

strated shared polygenic risk between ALS and other traits (e.g.,

smoking, education) and diseases (e.g., schizophrenia) (Bandres-

Ciga et al, 2019), suggesting that a single variant is unlikely to fully

account for observed disease phenotype modification. However,

there are presently no published studies evaluating polygenic contri-

bution to cognitive dysfunction in ALS.

Here, we employed an unsupervised machine-learning

approach, sparse canonical correlation analysis (sCCA) (Witten &

Tibshirani, 2009), to identify and evaluate a potential polygenic

contribution to cognitive dysfunction in ALS. sCCA has previously

been implemented in many contexts such as genetics (Parkho-

menko et al, 2007; Witten & Tibshirani, 2009), neuroimaging-

behavior studies (Avants et al, 2010, 2014), and neuroimaging-

genetic studies (Hao et al, 2017), including the association of corti-

cal thickness and white matter diffusion to FTD risk SNPs (McMil-

lan et al, 2014). For the first time, we leverage sCCA as a data-

driven tool to facilitate generation of a polygenic risk score. Specif-

ically, sCCA can be leveraged to select variants by employing spar-

sity to identify maximally contributing variants and to assign

corresponding weights based on model contribution with minimal

a priori assumptions. This contrasts with traditional approaches to

constructing polygenic scores that rely on the use of existing

GWAS statistics to select variants and assign weights, which can

be challenging if the original GWAS statistics are based on case–

control associations rather than current neuropsychological

outcome of interest.

We used sCCA to derive a polygenic risk score for cognitive

dysfunction in a large longitudinal cohort of cognitively well-charac-

terized patients with ALS or a related disorder participating in the

Phenotype–Genotype–Biomarker (PGB) study of the Clinical

Research in ALS and Related Disorders for Therapeutic Develop-

ment (CReATe) Consortium. We then evaluated independent

neuroimaging and autopsy ALS patient cohorts from the University

of Pennsylvania Integrated Neurodegenerative Disease Biobank

(UPenn Biobank) (Toledo et al, 2014) to evaluate whether polygenic

risk for cognitive dysfunction also relates to in vivo cortical neurode-

generation and ex vivo cortical neuronal loss and TDP-43 pathology.

We focused our investigation on SNPs achieving genome-wide

significance in the largest published ALS GWAS (Nicolas et al, 2018)

and SNPs identified as shared risk loci for both ALS and FTD (Karch

et al, 2018). We hypothesized that a sparse multivariate approach

would reveal a subset of genetic loci associated with cognitive

dysfunction profiles in ALS in a polygenic manner, and that follow-

up analyses in independent neuroimaging and autopsy cohorts

would converge to characterize quantitative traits associated with

polygenic risk from identified loci.

Results

Heterogeneity of baseline cognitive and motor phenotype in
ALS patients

Smaller-scale studies have shown that ALS patients have impair-

ments in executive function, verbal fluency, and language

domains, but with relative sparing of memory and visuospatial

function (Crockford et al, 2018). The Edinburgh Cognitive and

Behavioral ALS Screen (ECAS) was developed to measure cognitive

function minimally confounded by motor disability and includes

an “ALS-Specific” score that captures impairments in language,

executive function, and verbal fluency domains that are frequently

observed in ALS patients, and an “ALS-Non-Specific” score that

captures less frequently observed impairments in memory and

visuospatial function, in addition to overall performance (ECAS

Total score) (Abrahams et al, 2014). To quantify heterogeneity in

cognitive dysfunction, we evaluated 327 patients with ALS, ALS

with cognitive impairment (ALSci), or a related disorder (ALS-FTD,

primary lateral sclerosis (PLS), progressive muscular atrophy
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(PMA)) participating in the PGB study of the CReATe Consortium

(NCT02327845) (Table 1). We included a spectrum of ALS and

related disorder cases in an effort to account for the possibility that

a subset of PLS or PMA cases may evolve into ALS (Kim et al,

2009) and can have similar cognitive profiles of cognitive dysfunc-

tion to ALS (de Vries et al, 2019). We used linear mixed effects

(LME) to model variability between individuals in baseline perfor-

mance and rate of decline on the ECAS (Total, ALS-Specific, and

ALS-Non-Specific scores, and scores for each individual cognitive

domain), on the ALS Functional Rating Scale—Revised (ALSFRS-

R), and on clinician ratings of upper motor neuron (UMN) and

lower motor neuron (LMN) signs (UMN and LMN burden scores);

each model included covariate adjustment for potential confoun-

ders including age, education, bulbar onset, and disease duration.

We confirmed that cognitive and motor performance at baseline

are heterogeneous across individuals (Fig 1A), and correlation

analyses of both baseline and longitudinal rates of change suggest

that heterogeneity in cognition is independent of disability in phys-

ical function or clinical burden of UMN/LMN signs (all R < 0.2;

Fig 1B). Together this establishes the heterogeneity of baseline and

longitudinal cognitive and motor phenotypes within the PGB

cohort.

Table 1. Baseline demographic characteristics of the CReATe PGB cohort.

ALS ALSci ALS-FTD PLS PMA

N 113 166 13 22 13

Sex, Male (%) 61 (54.0) 102 (61.4) 11 (84.6) 11 (50.0) 8 (61.5)

Number of Visits, M (SD) 3.05 (1.41) 3.11 (1.34) 3.00 (1.15) 2.86 (1.28) 3.38 (1.45)

Age at Symptom Onset, M (SD) 54.50 (12.91) 57.56 (12.19) 64.00 (9.11) 49.68 (7.39) 48.08 (15.31)

Symptom Onset to Baseline (years), M (SD) 3.48 (3.73) 3.67 (5.69) 3.62 (2.63) 8.45 (6.12) 7.77 (7.17)

Site of Symptom Onset, N (%)

Bulbar 23 (22.5) 22 (13.7) 4 (33.3) 5 (22.7) –

Bulbar and Limb 4 (3.9) 3 (1.9) – 3 (13.6) –

Bulbar and Other 3 (2.9) 4 (2.5) 1 (8.3) – –

Limb 61 (59.8) 114 (70.8) 3 (25) 13 (59.1) 11 (84.6)

Limb and Other 10 (9.8) 12 (7.5) – 1 (4.5) 1 (7.7)

Other 1 (.88) 6 (3.7) 4 (33.3) – 1 (7.7)

College Education or greater, N (%) 91 (80.5) 105 (63.3) 9 (69.2) 20 (90.9) 10 (76.9)

Mutation Carrier, N (%)

C9ORF72 5 (4.4) 17 (10.2) 3 (20.0) 0 (0.0) 0 (0.0)

C9ORF72 and UBQLN2 0 (0.0) 1 (0.6) 3 (20.0) – –

SOD1 4 (3.5) 4 (2.4) – – –

SQSTM1 1 (0.9) 0 (0.0) – – –

TARDBP 0 (0.0) 1 (0.6) – – –

TBK1 0 (0.0) 1 (0.6) – – –

Baseline ALSFRS-R (0-48), M (SD) 35.98 (6.46) 34.32 (7.44) 35.00 (5.99) 36.50 (5.95) 33.62 (7.83)

UMN Score (0–10), M (SD) 2.84 (1.68) 2.61 (1.67) 2.45 (2.00) 4.54 (1.33) 0.87 (0.73)

LMN Score (0–10), M (SD) 2.29 (1.42) 2.71 (1.50) 2.81 (1.76) 0.59 (0.96) 4.84 (1.93)

ECAS, M (SD)

ALS-Specific (0–100) 88.91 (4.48) 75.51 (10.55) 52.62 (12.07) 87.95 (7.47) 81.62 (11.61)

Language (0–28) 27.55 (0.50) 24.69 (2.90) 21.38 (3.93) 26.82 (1.97) 26.62 (1.26)

Verbal Fluency (0–24) 19.63 (2.45) 14.57 (5.43) 7.83 (5.36) 26.82 (1.97) 16.77 (4.36)

Executive (0–48) 41.73 (3.07) 36.25 (6.39) 24.00 (10.51) 26.82 (1.97) 38.23 (7.50)

ALS-Non-Specific (0–36) 29.29 (3.11) 27.19 (3.97) 19.69 (8.30) 29.73 (2.76) 27.62 (6.31)

Memory (0–24) 17.53 (3.08) 15.71 (3.66) 9.46 (7.15) 17.95 (2.84) 15.69 (6.20)

Visuospatial (0–12) 11.76 (0.49) 11.48 (0.92) 11.08 (1.24) 11.77 (0.43) 11.92 (0.28)

Total (0–136) 118.29 (6.32) 102.69 (12.66) 72.31 (18.53) 117.68 (9.12) 109.23 (16.47)

PGB, Phenotype–Genotype–Biomarker; CReATe, Clinical Research in ALS and Related Disorders for Therapeutic Development; ALS, amyotrophic lateral sclerosis;
ALSci, ALS-cognitive impairment; ALS-FTD, ALS frontotemporal dementia; PLS, primary lateral sclerosis, PMA, progressive muscular atrophy; ALSFRS-R, Revised ALS
Functional Rating Scale; UMN, upper motor neuron; LMN, lower motor neuron; ECAS, Edinburgh Cognitive and Behavioral ALS Screen; M, mean, SD, standard
deviation.
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Multivariate analyses indicate polygenic contributions to
baseline cognitive performance

To identify potential polygenic contributions to cognitive impair-

ment in ALS, we employed sCCA (Witten et al, 2009), an unsu-

pervised machine-learning approach enabling identification of

multivariate relationships between a dataset of one modality (e.g.,

genetic variables including allele dosage of SNPs) and another

modality (e.g., clinical measures of cognitive and motor function).

Traditional CCA identifies a linear combination of all variables

that maximize the correlation between datasets, resulting in an

association of variables from one dataset (e.g., SNPs) and vari-

ables from another dataset (e.g., clinical scores) (Witten et al,

2009). The “sparse” component of sCCA additionally incorporates

an L1 penalty that shrinks the absolute value of the magnitude of

coefficients to yield sparse models (i.e., models with fewer vari-

ables) such that some coefficients are zero, and the variables

associated with them are effectively eliminated from the model.

As a result, variables that contribute little variance to the model

are dropped, resulting in the identification of a data-driven subset

of variables from one dataset that relate to a data-driven subset

of variables from another dataset. Unstandardized regression coef-

ficients resulting from sCCA serve as canonical weights indicating

the direction and strength of the relationships between selected

variables.

We evaluated an allele dosage dataset comprised of 33 SNPs

identified as shared risk loci for both ALS and FTD (Karch et al,

2018), and 12 SNPs identified as risk loci for ALS from the largest

published case–control GWAS (Nicolas et al, 2018), with the latter

chosen to include loci associated with ALS but not specifically with

FTD (Fig 1C). We included the first two principal components from

a PCA conducted in the PGB cohort (Appendix Fig S1) and binary

variables for sex, C9ORF72 repeat expansion status, and other muta-

tion status (e.g., SOD1) in this dataset in an effort to account for

inter-individual genetic differences in population structure, sex, and

mutation status. We then used sCCA to examine the association

between this genetic dataset and a dataset comprised of adjusted

baseline performance on clinical measures of cognitive and motor

performance extracted from the LME models.

After optimizing model sparsity parameters (Fig EV1), we ran

sCCA 10,000 times and employed random bootstrapped subsamples

of 75% of participants in each iteration (Fig EV2). We then calcu-

lated the median canonical correlation between the clinical and

genetic datasets, the median canonical weight for each variable in

the genetic dataset, and the proportion of times (as a percentage)

each variable from the clinical dataset was chosen out of 10,000 iter-

ations. We report percentages rather than median canonical weight

for clinical features because the optimized L1 parameter for the clin-

ical dataset was the most stringent (i.e., 0.1), thus resulting in only

one variable from the clinical dataset being chosen in each of the

10,000 iterations. This differs from other regularization techniques

(e.g., LASSO), as the variable from the clinical dataset was selected

by sCCA modeling in each iteration rather than being experimenter-

selected prior to analysis. Importantly, the use of sCCA also mini-

mizes the necessity for multiple comparison corrections, since all

variables can be tested in a single model, and therefore reduces the

potential of a type II false-negative error common in genomics stud-

ies related to rejection of a true effect due to overly stringent correc-

tion of multiple comparisons.

To assess model performance under the null hypothesis (no asso-

ciation between genetic factors and clinical phenotypes), we simi-

larly ran 10,000 bootstrapped sCCAs using the same L1 and

subsampling parameters and randomly permuted each dataset 100

times in each model iteration. We examined the proportion of times

each variable in the clinical and genetic datasets was selected by

this null model (i.e., achieving a non-zero canonical weight). We

used the null model to define a P value for the true, unpermuted

model by calculating the probability under the null hypothesis of

observing a canonical correlation greater than or equal to the

median canonical correlation under sCCA modeling of the true data.

We observed that a subset of 29 genetic variables were correlated

with a single clinical variable, achieving a median canonical correla-

tion between the two datasets of R = 0.35 (95% confidence interval:

0.23, 0.42; P = 0.019) (Fig 2, Appendix Fig S2). Over the 10,000

iterations, the most frequently selected clinical variable was the

ECAS ALS-Specific score (percentage of times selected: 37%),

followed by the ECAS Total (29%), Executive Function (17%),

Language (9.5%), Verbal Fluency (2.3%), ALS-Specific (2.2%),

Memory (2%), and Visuospatial (0.34%) scores. The ALSFRS-R and

UMN and LMN burden scores were each selected in < 0.05% of the

model iterations. By contrast, performance of sCCA modeling under

the null hypothesis demonstrated that each clinical variable was

selected in a largely equal percentage of iterations (all variables

ranging 5.9–9.4%), demonstrating that the true sCCA modeling

selected cognitive and not motor features beyond what would be

expected by chance (Fig EV3A).

Of the 29 selected genetic variables, the 12 most highly weighted

were rs1768208 and rs9820623 (MOBP), rs7224296 (NSF), rs538622

(ERGIC1), rs10143310 (ATXN3), rs6603044 (BTBD1), rs4239633

(UNC13A), rs2068667 (NFASC), rs10488631 (TNPO3), rs11185393

(AMY1A), rs3828599 (GPX3), and sex. Twenty-seven of the 29

genetic variables selected were SNPs, and 85% of model-selected

SNPs (23/27) were shared risk loci for ALS and FTD (Karch et al,

2018). Modeling under the null hypothesis revealed that each

genetic variable achieved a largely equal median weight, and thus,

there were no stronger model contributions from any subset of

genetic variables (Fig EV3B). The association of genetic variables

most frequently with the ECAS ALS-Specific score suggests poly-

genic contribution to impairment in domains of cognition frequently

impaired in patients with ALS (e.g., language, verbal fluency, and

◀ Figure 1. Clinical and genetic heterogeneity in the CReATe PGB cohort.

A Differences in baseline performance and rate of decline on each clinical measure for each participant; the heatmap indicates each participant’s standard deviation
(SD) from the group mean.

B Spearman’s correlations between baseline performance and rate of decline for all clinical measures.
C Allele dosage or binary status for each genetic variable for each participant.
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executive function), that are also the most impaired domains of

cognition observed in FTD.

To evaluate whether our observed sCCA model was impacted by

inclusion of patients with disorders related to ALS (i.e., PLS, PMA),

we compared the median weights for genetic features and the

percentage of times selected for clinical features from sCCA model-

ing using the entire CReATe PGB cohort (i.e., with PLS and PMA

included) to those obtained from sCCA modeling using a subset of

the CReATe PGB cohort that excluded patients with PLS and PMA.

sCCA modeling that excluded patients with PLS and PMA resulted

in the most frequent selection of the ECAS Total, ALS-Specific, Exec-

utive Function, and Language scores, similar to results obtained in

the entire cohort (Appendix Fig S3A). Furthermore, sCCA modeling

that excluded patients with PLS and PMA resulted in the same selec-

tion of genetic variables as in sCCA modeling of the entire cohort

and achieved similar direction and strength of weights

(Appendix Fig S3B). This demonstrates that the inclusion of disor-

ders related to ALS does not potentially confound our observations.

Polygenic score captures baseline cognition as well as
longitudinal rate of cognitive decline, but not motor decline

Next, we investigated potential polygenic contributions to rate of

decline in cognitive and motor performance in the PGB cohort.

Investigation of baseline performance may only capture differences

at a single (somewhat arbitrary) point in time, but not differences in

the trajectory of performance over time.

To evaluate association with longitudinal performance, we first

calculated a weighted polygenic score (wPRS) by computing a sum

of allele dosage for each individual genetic variable multiplied by

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

Canonical Weight

YES

NO

Selected by Model

Figure 2. Sparse, polygenic relationship between clinical and genetic variation in ALS.

Variable selection and median canonical weight strength from bootstrap sCCA modeling in the CReATe PGB cohort. See Table EV1 for additional detail on genetic
variants.
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their median canonical weights from sCCA modeling. We also calcu-

lated an unweighted polygenic risk score (uPRS) by computing a sum

of allele dosage for each individual genetic variable selected from

sCCA modeling. Spearman rank-order correlations between the wPRS

and adjusted baseline estimates of the four clinical features selected

in 10% or more of the 10,000 iterations (e.g., ALS-Specific, Total,

Executive Function, and Language scores from the ECAS) using

family-wise error (FWE) correction resulted in correlation values

similar to the median canonical correlation observed from sCCA

modeling (e.g., for ECAS ALS-Specific: rs(329) = �0.34,

P = 5.0 × 10�9) (Fig 3A), suggesting construct validity. We observed

no statistically significant relationship between the uPRS and adjusted

baseline estimates of performance on ALS-Specific, Executive Func-

tion, Language, and ECAS Total scores (all P values > .2).

We then conducted Spearman’s rank-order correlations between

the wPRS and adjusted rate of decline on each clinical measure of

cognitive and motor performance using FWE correction. To obtain

adjusted rates of decline, we extracted individual slope estimates

from prior LME (see above) for the 277 individuals (85%) from the

PGB cohort with 2 or more observations on the ECAS, ALSFRS-R,

and UMN and LMN burden scores. We observed significant negative

relationships between the wPRS and adjusted rate of decline on

ECAS ALS-Specific (rs(277) =�0.21, P = 5.3 × 10�3), ALS-Non-

Specific (rs(277) = �0.19, P = 0.016), and Total scores (rs(277) =

�0.26, P = 8.1 × 10�5; Fig 3B), but not on the ALSFRS-R or UMN

and LMN burden scores (all P > 0.9). We observed no statistically

significant relationship between the uPRS and adjusted rate of

decline on any clinical measure (all P values > .9). These findings

suggest polygenic contribution using sCCA-derived weights to the

rate of cognitive—but not motor—decline from the SNPs associated

with risk of ALS or joint risk of ALS and FTD that were included in

this analysis.

In post hoc analyses, we investigated whether SNPs also contribute

individually to rate of decline on clinical measures (Fig EV4). We

conducted LME modeling of the original longitudinal data to investi-

gate fixed effects of each of the 45 SNPs on each of the 11 clinical

measures (i.e., all ECAS scores, ALSFRS-R, and UMN and LMN

burden scores), independently. We did not observe any effects that

survived corrections for multiple comparisons. However, we observed

that the SNPs achieving the five largest median weights from boot-

strapped sCCA modeling (rs1768208, rs538622, rs10143310,

rs7224296, and rs9820623) also independently related to performance

on the ECAS ALS-Specific and Total scores (all uncorrected P < 0.05).

We also conducted post hoc analyses to investigate whether the

inclusion of SNPs in high linkage disequilibrium (LD) influence the

magnitude and direction of the wPRS we re-ran bootstrapped sCCA

analyses using 10,000 iterations excluding the 5 SNPs in high LD

(i.e., based on the cutoff of R2 > 0.5) and recalculated the wPRS in

the PGB cohort. This revealed a strong linear relationship between

both wPRS models (Pearson’s R = 0.90 (95% CI: 0.87, 0.91),

P < 2.2 × 10�16; Appendix Fig S4), and thus, LD of a subset of SNPs

is unlikely to be a driver of our observed polygenic associations.

Polygenic score associates with cortical thinning in the
UPenn Biobank

Cognitive dysfunction in ALS, including performance on the ECAS,

has previously been attributed to sequential disease progression

rostrally and caudally from the motor cortex (Lul�e et al, 2018) and

to advancing disease stage (Crockford et al, 2018). To evaluate the

neuroanatomical basis for polygenic contribution to cognitive

performance in patients with ALS, we applied the wPRS score

derived in the CReATe PGB cohort to an independent cohort of

patients with ALS from the UPenn Biobank. We used voxel-wise

in vivo measures of reduced cortical thickness (in mm3) to quantify

cortical neurodegeneration. Cross-sectional measurements of corti-

cal thickness were derived from T1-weighted magnetic resonance

imaging (MRI) in 90 patients with ALS and 90 age, sex, and educa-

tion-matched healthy controls who were recruited for research from

UPenn (Table 2). Nonparametric modeling using 10,000 random

permutations revealed extensive reduction of cortical thickness

bilaterally in the frontal and temporal cortices of patients relative to

controls (threshold-free cluster enhancement, FWE corrected

P < 0.05) (Table EV3, Appendix Fig S5).

After identifying regions of reduced cortical thickness in patients

with ALS, we investigated whether the wPRS derived from sCCA

modeling in the CReATe PGB cohort contributed to the magnitude

of reduced cortical thickness in the independent UPenn Biobank

neuroimaging cohort. Nonparametric modeling using 10,000

random permutations with adjustments for potential confounds in

age, disease duration, and scanning acquisition revealed that a

higher wPRS (i.e., greater risk) associated with greater reduction of

cortical thickness in regions including the orbital prefrontal cortex,

anterior cingulate cortex, premotor cortex, lateral temporal cortex,

and hippocampus that survived uncorrected P value of 0.01 and a

cluster extent threshold of 10 voxels (Fig 4A; Table EV3). The

frontal and temporal lobe cortical regions identified in this analysis

are known to support the domains of cognitive dysfunction charac-

terized by the ECAS (Lul�e et al, 2018). We observed no statistically

significant relationship between the uPRS and cortical thickness in

any region. These findings provide a potential neuroanatomical

basis for the observed polygenic relationships between the wPRS

and baseline cognitive performance and rate of decline and are

consistent with prior associations of cortical neurodegeneration with

cognitive dysfunction in patients with ALS (Agosta et al, 2016).

Polygenic score associates with neocortical neuronal loss in the
UPenn Biobank

To complement these in vivo neuroanatomical data, we also

explored whether polygenic risk for cognitive dysfunction associ-

ated with post-mortem anatomical distribution of neuronal loss

and TDP-43 pathology. We assessed the magnitude of neuronal

loss and TDP-43 pathological inclusions on an ordinal scale in

tissue sampled from the middle frontal, cingulate, motor, and

superior/middle temporal cortices and from the cornu ammonis 1

(CA1)/ subiculum of the hippocampus in 87 autopsy cases from

the UPenn Biobank with confirmed ALS due to underlying TDP-

43 pathology (Table 2; Table EV4). We conducted ordinal logistic

regression with covariate adjustment for age at death and disease

duration and found that as patients’ wPRS increases, their odds

of greater neuronal loss in the motor cortex also increases

(OR = 1.98; 95% CI: 1.01, 3.96; uncorrected P = 0.049; Fig 4B);

older age at death and longer disease duration were not found to

statistically significantly influence these odds (uncorrected

P > 0.05). We observed no statistically significant associations
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between the wPRS and neuronal loss in any other region, or

between the wPRS and TDP-43 pathology in any region (all P

values > 0.1; Fig EV5 and Appendix Fig S6). We also observed

no statistically significant associations between the uPRS and

neuronal loss or TDP-43 pathology in region (all P values > 0.19,

uncorrected). These findings suggest that polygenic risk for cogni-

tive dysfunction is associated with the neuroanatomical distribu-

tion of neuronal loss in ALS cases at end-stage disease.

Discussion

In this study, we evaluated polygenic contributions to cognitive

dysfunction in patients with ALS by employing machine learning.

We identified polygenic risk for cognitive dysfunction from genetic

variables associated with risk of ALS and FTD, which we further

investigated through quantitative-trait evaluations of two indepen-

dent ALS cohorts with in vivo neuroimaging and post-mortem

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

ALS−Specific ECAS Total Executive Function Language

−1 0 1 2 −1 0 1 2 −1 0 1 2 −1 0 1 2

−4

−2

0

−4

−2

0

2

−4

−2

0

2

−4

−2

0

2

wPRS

A
dj

us
te

d 
B

as
el

in
e

A

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

ALS−Specific ALS−Non−Specific ECAS Total

−1 0 1 2 −1 0 1 2 −1 0 1 2

−4

−2

0

−4

−2

0

2

−4

−2

0

2

wPRS

R
at

e 
of

 D
ec

lin
e

B

Figure 3. wPRS correlates with cognitive performance on the ECAS in the CReATe PGB cohort.

A, B Scatterplots showing that the wPRS correlates with (A) adjusted baseline performance on the ECAS ALS-Specific, Total, Executive Function, and Language scores,
and (B) rate of decline on the ALS-Specific, ALS-Non-Specific, and Total scores.
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neuropathology data. Our results indicate a polygenic contribution

to the presence and rate of decline of cognitive dysfunction in

domains specifically impaired in ALS. Converging evidence from

these independent cohorts further demonstrates the generalizability

of polygenic contribution to biologically plausible associations

including reduced in vivo cortical thickness and post-mortem cortical

neurodegeneration in the prefrontal, motor, and temporal cortices.

These findings contribute novel evidence in support of the polygenic

contribution to cognitive dysfunction and cortical disease burden in

ALS and provide further detailed phenotypic evidence for genetic

overlap between ALS and FTD. Below, we highlight clinical, biologi-

cal, and methodological implications for our observations.

Our findings add to an increasing body of evidence for a genetic

contribution to phenotypic variability in ALS and support the idea

that polygenic variation accounts for a portion of variability in

cognitive dysfunction and cortical disease burden in ALS. While

cognitive dysfunction has been more frequently linked to genetic

mutations causally associated with ALS, such as C9ORF72 repeat

expansions (Byrne et al, 2012), studies examining individual SNPs

have demonstrated quantitative-trait modification of cognitive

performance and cortical disease burden (Vass et al, 2011; Placek

et al, 2019). However, mounting evidence suggests that there are

polygenic, rather than single allele, modifiers of disease risk and

phenotype in ALS and related neurodegenerative diseases (Bandres-

Ciga et al, 2019). Our observation of polygenic association between

27 SNPs and the ECAS ALS-Specific score, a combined measure of

executive, language, and verbal fluency domains most commonly

affected in ALS, is consistent with the idea of polygenic contribution

to phenotypic variability in ALS. Notably, our observed polygenic

association in the CReATe PGB cohort appears specific to cognitive

variability: We demonstrate relative independence of cognitive

performance and motor disease severity (i.e., UMN or LMN burden

scores, functional performance on the ALSFRS-R) and observe no

evidence for polygenic association with motor disease severity. This

suggests that, in this study, polygenic risk for cognitive dysfunction

does not appear to be confounded by motor disease severity.

The majority (85%) of the 27 SNPs selected by our machine-

learning modeling for association with cognitive dysfunction are

shared risk loci for ALS and FTD (Karch et al, 2018). The selection

frequency of these ALS and FTD risk variants outweighed the selec-

tion of ALS-only risk variants, emphasizing the contribution of

genetic overlap between ALS and FTD to polygenic risk associated

with cognitive dysfunction in ALS. SNPs in or near the MOBP, NSF,

ATXN3, ERGIC1, and UNC13A genes were among those with the

strongest model contributions (i.e., with the largest canonical

weights). Our group has previously shown that SNPs mapped to

MOBP, including rs1768208, relate to regional neurodegeneration in

sporadic FTD and to shorter survival in FTD with underlying tau or

TDP-43 pathology (Irwin et al, 2014; McMillan et al, 2014). Our

group has also demonstrated that rs12608932 in UNC13A relates to

in vivo prefrontal cortical thinning, post-mortem frontal cortical

burden of TDP-43 pathology, and executive dysfunction (Placek

et al, 2019). rs538622 near ERGIC1, originally identified as a shared

risk locus for ALS and FTD, has also previously been demonstrated

to contribute to quantitative-trait modification in ALS by relating to

reduced expression of the protein BNIP1 in ALS patient motor

neurons (Karch et al, 2018). Other top-weighted variants near NSF

and ATXN3 indicate potential biological plausibility: rs10143310 is

found near ATXN3 which encodes a de-ubiquitinating enzyme, and

polyglutamine expansions in ATXN3 cause spinocerebellar ataxia—

type 3 (Burnett et al, 2003); rs7224296 near NSF tags the MAPT H1

haplotype (Yokoyama et al, 2017) and is associated with increased

risk for FTD syndromes including progressive supranuclear palsy

and corticobasal degeneration (Ferrari et al, 2017), as well as

Alzheimer’s and Parkinson’s diseases (Desikan et al, 2015).

Table 2. Demographics for independent neuroimaging (A) and
autopsy (B) amyotrophic lateral sclerosis (ALS) and healthy control
cohorts from UPenn Biobank.

A. Neuroimaging Cohort

ALS Healthy Control

N (Male) 90 (50) 90 (38)

Diagnosis, N (%)

ALS 54 (60.0)

ALSci 14 (15.60)

ALS-FTD 22 (24.40)

Age at MRI in Years, M (SD) 58.60 (11.10) 61.09 (11.77)

Education in Years, M (SD) 15.22 (3.12) 15.89 (2.55)

Disease Duration in Years, M (SD) 2.49 (1.88) –

Mutation Carrier, N (%)

C9ORF72 13 (14.44) –

SOD1 1 (1.11) –

VCP 1 (1.11) –

Site of Symptom Onset, N (%)

Bulbar 22 (24.44) –

Limb 60 (66.67) –

Cognitive 7 (7.78) –

ALSFRS-R, M (SD) 34.18 (7.46) –

B. Autopsy Cohort

N (Male) 87 (48)

Diagnosis, N (%)

ALS 80 (91.95)

ALSci 5 (5.74)

ALS-FTD 2 (2.30)

Age at Death Years, M (SD) 63.83 (10.25)

Disease Duration at Death in Years, M (SD) 4.22 (3.43)

Mutation Carrier, N (%)

C9ORF72 15 (17.24)

Site of Symptom Onset, N (%)

Bulbar 23 (26.44)

Limb 59 (67.82)

Cognitive 3 (3.45)

Respiratory 1 (1.15)

Unknown 1 (1.15)

M, Mean; SD, standard deviation; ALSci, ALS-cognitive impairment; ALS-FTD,
ALS with frontotemporal dementia.

ª 2020 The Authors EMBO Molecular Medicine 13: e12595 | 2021 9 of 18

Katerina Placek et al EMBO Molecular Medicine



While the mechanism of polygenic contribution to cognitive

dysfunction in ALS requires further investigation, we speculate

based on our findings that identified SNPs may contribute to

neuroanatomical disease burden. The wPRS derived from the

observed multivariate genotype–phenotype correlation in the

CReATe PGB cohort showed robust relationships in independent

cohorts from the UPenn Biobank to both in vivo cortical thinning

and post-mortem cortical neuronal loss. Higher polygenic risk

related to in vivo cortical thinning in the orbital prefrontal cortex,

anterior cingulate cortex, premotor cortex, lateral temporal cortex,

and hippocampus in a neuroimaging cohort, and to post-mortem

neuronal loss in sampled tissue from the motor cortex in an autopsy

cohort. We speculate that the relationship to motor cortex only in

the neuropathology cohort may reflect two sources of sampling dif-

ferences. First, clinical characteristics differed across cohorts: 9% of

the autopsy cohort had premorbid diagnoses of ALS-FTD or ALSci

and 29% of the neuroimaging cohort were diagnosed with ALS-FTD

or ALSci. Thus, the autopsy cohort likely had less frontal and

temporal cortex neuronal loss relative to motor cortex neuronal loss.

Second, the differences across analyses may reflect different scales

of resolution in which neuroimaging data are analyzed at 2 mm3

resolution across the entire cortex while neuropathological data are

sampled at approximately 6 lm. We are aware of these issues and

more recently have begun to increase tissue sampling including

bilateral hemisphere (Irwin et al, 2018; Giannini et al, 2019), more

extensive brain regions (Irwin et al, 2016a), performing digital

immunohistochemistry analyses (Irwin et al, 2016b; Giannini et al,

2019), and whole hemisphere post-mortem neuroimaging using 7T

MRI. Thus, future studies will be able to address these sampling dif-

ferences as our autopsy cohort continues to grow and our technical

0.0 3.99

A

B

Figure 4. Reduced cortical thickness and greater cortical neuronal loss relates to higher wPRS in independent validation cohorts.

A ALS patients from the UPenn Biobank neuroimaging cohort with higher wPRS exhibited greater reduction of cortical thickness in the orbital prefrontal cortex, anterior
cingulate cortex, premotor cortex, lateral temporal cortex, and hippocampus. The heatmap indicates the associated T-statistic for each voxel, with light blue
representing the highest value.

B Magnitude of motor cortex neuronal loss in ALS cases from the UPenn Biobank is associated with higher wPRS. The central bands indicate the median, the box
indicates the interquartile range (IQR) between the first and third quartiles, and the upper and lower whiskers indicate the largest or smallest value no further than
the IQR multiplied by 1.5. Each data point in the boxplot represents a unique case.
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methods continue to improve. Anatomically, these findings are

largely consistent with prior in vivo structural imaging studies of

neurodegeneration associated with cognitive dysfunction and with

post-mortem investigations of cortical thinning in ALS (Prudlo et al,

2016; Lul�e et al, 2018). Thus, in addition to indicating

polygenic contribution to cognitive dysfunction in ALS, our findings

suggest a possible mechanism of observed findings via disease

pathophysiology.

Beyond the potential biological mechanism of identifying poly-

genic contributions to ALS disease heterogeneity, we additionally

suggest that sCCA may provide a tool for defining polygenic factors

of disease risk. While sCCA has been widely applied to genotype–

phenotype studies (Witten & Tibshirani, 2009), including

neuroimaging-genetic studies (McMillan et al, 2014; Hao et al,

2017), we are unaware of prior applications using sCCA to define a

polygenic score based on rich clinical phenotypic and biomarker

data. Traditional approaches to the generation of polygenic scores

include using data from established, typically case–control GWAS,

but practical considerations involve the selection of how many vari-

ants to include in a model and how to define the weights of an

appropriate statistical model (Sugrue & Desikan, 2019). Critically,

rather than an arbitrary selection of variants and their weights, the

sparsity parameter of sCCA facilitates an unsupervised, data-driven

method to select the number of variants to include and also provides

data-driven canonical weights to define the statistical model. The

positive or negative direction of model-derived weights is potentially

biologically informative, and could reflect “risk” (i.e., positive

weight) or “protective” (i.e., a negative weight) effects. We evalu-

ated the wPRS using model-derived weights relative to a uPRS-

derived created by computing an unweighted sum of allele dosages

for each genetic variable. Our observation that the uPRS did not

relate to cognitive or clinical performance in the CReATe PGB

cohort or to neuroimaging or neuropathology in the UPenn

Biomarker cohorts suggests that that the weights derived from sCCA

meaningfully define the relationship between genetic variation and

quantitative phenotypic differences in the CReATe PGB and UPenn

cohorts with regard to cognitive performance and disease neuroa-

natomy. Further investigation is needed to clarify the relationships

between model-selected SNPs and model-derived canonical weights

from both biological (e.g., some SNPs and/or genes may contribute

more strongly to risk factors) and mathematical (e.g., weights may

be constrained by minor allele frequency) perspectives. While our

sCCA modeling selected 27 SNPs in addition to sex and C9ORF72

mutation status and we used model-derived weights to calculate a

wPRS, we are unable to determine in the current study what the

collective contribution of these SNPs are to modifying cognitive

phenotypes. For example, these could be additive in nature, such

that increased risk allele dosage increases risk for impaired cogni-

tion, or the selected SNPs could act independently in disease modifi-

cation. Post hoc investigation of independent SNP effects on

longitudinal cognitive performance revealed that the SNPs achieving

the five largest median weights from bootstrapped sCCA modeling

also relate to longitudinal cognitive performance; however, these

effects did not survive correction for multiple comparisons. By its

nature, this post hoc investigation considered each SNP as indepen-

dent from other SNPs and each clinical measure as independent

from other clinical measures and thus did not account for more

complex collective contribution of SNPs to cognitive phenotypes. As

often is the case, future functional studies are required to identify

the mechanistic relationship between SNP associations and cogni-

tive phenotype. Nonetheless, our results support the consideration

of sCCA as a promising method to identify collective combinations

of SNPs and cognitive phenotypes and to direct research efforts

toward model-selected variants.

Several limitations should be considered in the present study.

Here, we focus our analysis on a relatively small set of SNPs

selected a priori from previous large-scale GWAS based on

genome-wide association with ALS (Nicolas et al, 2018) or shared

risk between ALS and FTD (Karch et al, 2018). Other genetic vari-

ants not included in the present study may also contribute to

cognitive dysfunction in ALS and related disorders, and future

genome-wide analyses or broad genotype selection strategies (e.g.,

targeted pathways) are necessary to elucidate discovery of novel

genetic contributions to cognition that have not been identified

through prior case–control studies. While we focus on ALS and

FTD risk variants and demonstrate that the inclusion of related

disorders (i.e., PLS, PMA) does not confound our observed cogni-

tive and genetic associations, future work should also incorporate

variants associated with risk for disorders related to ALS and

specifically test the application of polygenic associations within

PLS and PMA. However, such larger scale studies will require vali-

dation in independent cohorts, many of which are lacking the rich

phenotype data needed to identify cognitive dysfunction. We

derived a wPRS from sCCA modeling to further investigate poly-

genic associations with longitudinal cognitive and motor perfor-

mance, and with in vivo and post-mortem cortical disease burden

in independent ALS cohorts from the UPenn Biobank. While we

define our polygenic score from sCCA using adjusted estimates of

baseline cognitive and motor performance, future work using

longitudinal data as the starting point to define polygenic associa-

tions may further elucidate genetic risk for cognitive dysfunction

in ALS. However, our finding that polygenic risk associated with

baseline cognitive dysfunction also relates to longitudinal cognitive

decline in the CReATe PGB cohort as well as to relevant cortical

disease anatomy in independent cohorts from the UPenn Biobank

suggests its relevance to longitudinal cognitive phenotypes in ALS.

Previous critique of polygenic scores argue that three factors limit

their use in clinical and prognostic settings: (i) calculation based

on GWAS-defined odds ratios for univariate risk loci; (ii) undue

influence by population variance; and (iii) predominant use of

samples of European ancestry (Wald & Old, 2019; Duncan et al,

2019). In an attempt to mitigate these potential confounds, we

based our computation of a wPRS on model-selected parameters

derived from an analysis including all genetic variants and, in

addition, covariates for genetic mutation status and sex in an effort

to account for multivariate genetic relationships. We also included

the first two principal components in our model from a PCA

conducted in the CReATe PGB cohort in an effort to account for

differences in population substructure (Price et al, 2006). While

we used the first two principal components in an effort to account

for population substructure, this is a complex issue to resolve and

future studies with more diverse cohorts to investigate potential

substructure bias are necessary. The current investigation utilized

existing data from natural history studies that were predominantly

comprised of individuals of European ancestry; however, increased

representation of diverse racial and ethnic groups in future
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investigations of polygenic risk for cognitive impairment in ALS is

necessary in order to ensure generalizability to diverse popula-

tions.

Our analyses focused on the investigation of genetic contribution

to cognitive dysfunction in ALS, yet it is well established that behav-

ioral impairment is also part of the ALS spectrum disease (Lillo

et al, 2010). We assessed patient performance on specific domains

of cognition using the ECAS, which includes a measure of social

cognition counted toward the domain of executive function. Behav-

ioral impairment on the ECAS is assessed through caregiver report

(Abrahams et al, 2014), and the vast majority of neuropsychological

assessments of behavior in neurodegenerative disease are based on

physician or caregiver report (Simon & Goldstein, 2019). With this

in mind, we chose to focus our investigation on the analysis of

patient-completed assessments of cognition and motor function.

Future research incorporating assessments of behavior is necessary

to investigate polygenic risk for behavioral dysfunction in ALS and

related disorders and to determine whether loci included in our

calculated polygenic risk score additionally confer risk for behav-

ioral dysfunction. Although the current study demonstrates converg-

ing, multimodal evidence for polygenic risk, replication in

additional cohorts with larger sample sizes that allow for robust

cross-validation is warranted. Notably, machine-learning methods

have the tendency to over-fit data and produce estimates that do not

generalize to different datasets. However, alternative datasets for

ALS that contain detailed genotyping and cognitive phenotyping are

currently lacking and the CReATe PGB cohort represents the largest

of its kind. In the absence of an alternative dataset to minimize

over-fitting, we employed a bootstrapping procedure and generated

a final sCCA model based on median weights across permutations

rather than selecting a single “top model”. We additionally demon-

strate converging, multimodal evidence for polygenic risk in inde-

pendent neuroimaging and neuropathology biomarker cohorts in an

effort to provide corroboration that we are detecting a true biologi-

cal signal. However, future research is necessary to determine the

predictive potential and generalizability of our proposed polygenic

risk score in ALS patients. We furthermore hope that this demon-

stration motivates the collection of additional genotyping data and

longitudinal cognitive evaluation using the ECAS in additional large-

scale patient cohorts.

With these limitations in mind, our research demonstrates

converging clinical, neuroimaging, and pathologic evidence for

polygenic contribution to cognitive dysfunction and cortical

neurodegeneration in ALS. These findings should stimulate further

investigation into polygenic risk for cognitive disease vulnerability

in ALS and suggest their importance in prognostic consideration and

treatment trials. More broadly, this work provides insight into

genetic contribution to heterogeneous phenotypes in neurodegener-

ative disease and supports evidence for polygenic architecture in

these conditions.

Materials and Methods

Participants: CReATe consortium

Participants consisted of 339 individuals clinically diagnosed by a

board-certified neurologist with a sporadic or familial form of

amyotrophic lateral sclerosis (ALS), amyotrophic lateral sclerosis

with frontotemporal dementia (ALS-FTD), progressive muscular

atrophy (PMA), or primary lateral sclerosis (PLS) who were enrolled

and evaluated through the CReATe Consortium’s Phenotype–Geno-

type–Biomarker (PGB) study. All participants provided written

informed consent. The PGB study is registered on clinicaltrials.gov

(NCT02327845) and the University of Miami Institutional Review

Board (IRB) (the central IRB for the CReATe Consortium) approved

the study. This study entails participant blood DNA samples avail-

able for genetic screening and longitudinal evaluation at regularly

scheduled visits (ALS, ALS-FTD, and PMA: 0 (baseline), 3, 6, 12,

and 18 months; PLS: 0 (baseline), 6, 12, 18, and 24 months). A

subset of 155 CReATe PGB cases were previously included in the

replication cohort of the ALS case–control GWAS (Nicolas et al,

2018). Participants were evaluated at each visit using the ALSFRS-R

(Cedarbaum et al, 1999) and alternate versions of the Edinburgh

Cognitive and Behavioural ALS Screen (ECAS) (Abrahams et al,

2014) designed for longitudinal use. Presence of ALS with cognitive

impairment (ALSci) was assessed at baseline using the ECAS

according to established criteria (Strong et al, 2017), operationalized

as baseline performance on Executive Function, Verbal Fluency, or

Language subscores at or below normative cutoff scores (Abrahams

et al, 2014). UMN and LMN burden scores were calculated from a

detailed elemental neuromuscular examination by summing within

and across each spinal region resulting in a score ranging from 0

(none) to 10 (worst). Site (e.g., limb, bulbar) and date of motor

symptom onset were recorded for each participant. We excluded

nine individuals with missing or incomplete data that precluded

subsequent analysis and, in an effort to avoid confounds associated

with clear outliers, three individuals with extreme values at baseline

on the ECAS Visuospatial Score (i.e., > 5 standard deviations from

group mean), resulting in a total of 327 participants. Of the nine

excluded individuals with missing or incomplete data, one had no

genotyping data available, one had no information for UMN burden

score, and seven had no information for date of motor symptom

onset. All patients and controls participated in an informed consent

procedure approved by an IRB convened at the University of Penn-

sylvania or University of Miami, in which all studies conformed to

the principles set out in the WMA Declaration of Helsinki and the

Department of Health and Human Services Belmont Report.

Genotyping: CReATe consortium

Peripheral blood mononuclear cell DNA was extracted using the

QIAamp DNA Blood Mini Kit Qiagen #51106 and quantified using

the Quant-iT dsDNA Assay Kit (Life Technologies cat#Q33130). The

DNA integrity was verified by agarose gel electrophoresis (E-Gel,

Life Technologies, cat#G8008-01). Unique samples were barcoded

and whole genome sequencing (WGS) was performed at the Hudso-

nAlpha Institute for Biotechnology Genomic Services Laboratory

(Huntsville, Alabama) (HA) using Illumina HiSeq X10 sequencers to

generate approximately 360 million paired-end reads, each 150 base

pairs (bp) in length. Peripheral DNA was extracted from participant

blood samples and screened for known pathogenic mutations asso-

ciated with ALS and related diseases.

Screening included repeat-primed polymerase chain reaction

(PCR) for C9ORF72 repeat expansions and WGS curated and vali-

dated via Sanger sequencing for pathogenic mutations associated
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with ALS and/or FTD in ANG, CHCHD10, CHMP2B, FUS, GRN,

hnRNPA1, hnRNPA2B1, MAPT, MATR3, OPTN, PFN1, SETX, SOD1,

SPG11, SQSTM1, TARDBP, TBK1, TUBA4A, UBQLN2, VCP (see

Table 1 for participant mutation status). The PGB study also

includes patients with hereditary spastic paraplegia (HSP) that were

excluded in the current analysis, but we additionally screened indi-

viduals for pathogenic mutations in 67 additional genes associated

with HSP and 7 genes associated with distal hereditary motor

neuropathy, and all cases were negative for pathogenic mutations in

these genes.

Whole genome sequencing (WGS) data were generated using

paired-end 150 bp reads aligned to the GRCh38 human reference

using the Burrows–Wheeler Aligner (BWA-ALN v0.7.12) (Li &

Durbin, 2010) and processed using the Genome Analysis Toolkit

(GATK) best-practices workflow implemented in GATK v3.4.0

(McKenna et al, 2010). Variants for individual samples were called

with HaplotypeCaller, producing individual variant call format files

(gVCFs) that we combined using a joint genotyping step to produce

a multi-sample VCF (pVCF). Variant filtration was performed using

Variant Quality Score Recalibration (VQSR), which assigns a score

to each variant and a pass/fail label and evaluated this in the

context of hard filtering thresholds (minimum genotype quality

(GQ) ≥ 20, minimum mean depth value (DP)≥ 10). Variant annota-

tion was performed using variant effect predictor (VEP) (Hunt et al,

2018) and in-house pipelines including non-coding variant allele

frequencies from Genome Aggregation Database (gnomAD) (Kar-

czewski et al, 2020). In-house scripts were used to identify false

positives resulting from paralogous mapping or/and gaps in the

current human genome assembly. VCFs were further decomposed

prior to analyses using the Decompose function of Vt (Tan et al

2015). In an attempt to account for population substructure, we

additionally derived the first two principal components scores for

each in the CReATe PGB cohort using principal components analysis

(PCA) implemented using Eigenstrat (Price et al, 2006).

From the WGS data, we extracted 45 hypothesized variants from

WGS that previously achieved genome-wide significance for associa-

tion with ALS (Nicolas et al, 2018) or joint association with ALS and

FTD (Karch et al, 2018). Proxy loci were genotyped (LD R2 > 0.80)

when genetic data were not available for previously published loci

(see Table EV1 for a complete list). One locus, rs12973192, was

common to both references, and another locus (rs2425220 (Karch

et al, 2018)) was excluded from analysis due to high level of miss-

ingness across samples; no LD proxy was identified. We then used

PLINK software (Purcell et al, 2007) to recode participant genotypes

according to additive genetic models (e.g., 0 = no minor allele

copies, 1 = one minor allele copy, 2 = two minor allele copies),

since the dominant or recessive nature of the loci included in this

study remains unknown. An assessment of LD revealed that 5 of

our 45 hypothesized SNPs were in high LD with one another

(D’>0.8; Table EV2), but we included these high LD SNPs in our

investigation since sCCA is able to accommodate highly correlated

features (Witten et al, 2009).

Linear mixed effects modeling of the ECAS and clinical measures

We conducted linear mixed effects modeling of performance on the

ECAS, ALSFRS-R, and UMN and LMN burden scores using the nlme

package in R. Each model was fit using maximum likelihood. In

addition to the ECAS Total Score, we analyzed Executive Function,

Language, Verbal Fluency, Memory, and Visuospatial subscores and

ALS-Specific and ALS-Non-Specific summary scores each as depen-

dent variables to analyze patient performance in separate cognitive

domains and in clinically grouped cognitive domains. Fixed effects

included age at baseline visit (in years), lag between age of symp-

tom onset and age at baseline visit (in years), college education

(yes/ no), bulbar onset (yes/ no) and visit time-point (in months),

and we included individual-by-visit time-point as a random effect.

This allowed us to obtain adjusted estimates of baseline perfor-

mance (i.e., intercept) and rate of decline (i.e., slope) per individual,

having regressed out potential confounding variables as fixed

effects.

We conducted Spearman’s rank-order correlations between base-

line performance and rate of decline using FWE correction for multi-

ple comparisons (see Fig 1B).

In addition to the linear mixed effects models described above,

we also conducted a second series of linear mixed effects models to

investigate fixed effects of each of the 45 SNPs on each of the 11

clinical measures (i.e., all ECAS scores, ALSFRS-R, and UMN and

LMN burden scores), independently; this resulted in a total of 495

models. We again used the nlme package in R and each model was

fit using maximum likelihood. In addition to each SNP, we included

age at baseline visit (in years), lag between age of symptom onset

and age at baseline visit (in years), college education (yes/ no),

bulbar onset (yes/ no) and visit time-point (in months) as fixed

effects, and we included individual-by-visit time-point as a random

effect.

Sparse canonical correlation analysis

We conducted sparse canonical correlation analysis (sCCA) to select

a parsimonious linear combination of variables that maximize the

correlation between two multivariate datasets using the PMA pack-

age in R (Witten et al, 2009). The first dataset comprised scaled

intercepts from each clinical variable per participant (i.e., adjusted

baseline performance on the ALSFRS-R, UMN, and LMN assess-

ments, and ECAS). The second comprised minor allele counts per

individual for each of the 45 SNPs (e.g., 0 = no minor allele copies,

1 = one minor allele copy, 2 = two minor allele copies), binary vari-

ables for sex (0 = female, 1 = male), C9ORF72 repeat expansion

status (0 = noncarrier, 1 = carrier), and other mutation status

(0 = noncarrier, 1 = carrier) and, in an effort to account for poten-

tial population differences in population substructure, we also

included the raw estimates for the first two principal components

per participant derived from a PCA conducted in the CReATe PGB

cohort; this method has previously been demonstrated to account

for the majority of population structure (Price et al, 2006).

We assumed standard (e.g., unordered) organization of each

dataset and selected regularization parameters for the sCCA analysis

using a grid search of 100 combinations of L1 values between 0

(most sparse) and 1 (least sparse) in increments of 0.1. We selected

the combination of L1 values yielding the largest canonical correla-

tion of the first variate for subsequent analysis, as similarly reported

(Xia et al, 2018).

Using these L1 parameters, we ran 10,000 bootstrap sCCAs and

in each iteration employed randomly generated subsamples

comprising 75% of the PGB cohort. We calculated the median
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canonical correlation for sCCA and the median canonical weights

for each variable across all iterations. We utilized the median in

these estimates rather than the maximum or mean value in an effort

to avoid bias from outliers and to increase the reliability and repro-

ducibility of model estimates.

We next investigated model performance under a null hypothesis

(i.e., no association between clinical and genetic datasets) by using

randomly permuted data. Using the same L1 parameters, we again

ran 10,000 bootstrap sCCAs and in each iteration employed

randomly generated subsamples of 75% of participants; however, in

each iteration, we randomly permuted each dataset 100 times using

the randomizeMatrix function from the picante package in R. We

calculated a P value by reporting the probability under the null of

observing a canonical correlation greater than or equal to the

median canonical correlation under sCCA modeling of the true data.

We also examined the proportion of iterations each variable was

selected by the model (i.e., achieving a non-zero canonical weight).

Polygenic risk score

We used the output of sCCA modeling to calculate a wPRS for each

individual. A wPRS for each individual in the PGB cohort, and in

the neuroimaging and autopsy UPenn Biobank cohorts, was

constructed by multiplying allele dosage or binary coding at each

genetic variable by its median canonical weight from sCCA model-

ing and summing across all values.

To investigate construct validity, we first conducted Spearman’s

rank-order correlations between the wPRS and adjusted estimates of

baseline performance (i.e., LME-derived intercepts) on the most

frequently selected clinical measure(s) selected from sCCA.

Then, to investigate longitudinal performance associated with

the wPRS, we conducted Spearman’s rank-order correlations

between the wPRS and adjusted rates of decline (i.e., LME-derived

slopes) on all clinical measures using FWE correction. We restricted

this analysis to participants in the CReATe PGB cohort with data at

2 or more time-points (N = 277 out of 327 participants), or 84.7%

of the cohort.

Participants: UPenn Biobank neuroimaging cohort

We retrospectively evaluated 90 patients with ALS and 90 healthy

controls matched for age, sex, and education from the UPenn

Biobank who were recruited for research between 2006 and 2019

from the Penn Comprehensive ALS Clinic and Penn Frontotemporal

Degeneration Center (Table 2) (Toledo et al, 2014). Inclusion crite-

ria for ALS patients consisted of the following: lack of participation

in the CReATe PGB cohort, complete genotyping at the 45 analyzed

SNPs, screening for genetic mutations (e.g., C9ORF72, SOD1), white

non-Latino racial and ethnic background (population diversity is

known to influence allele frequencies across individuals), disease

duration from symptom onset < 2.5 standard deviations from

respective group means (to avoid confounds associated with clear

outliers), and T1-weighted MRI. All patients were diagnosed with

ALS by a board-certified neurologist (L.E., L.M., M.G., D.I.) using

revised El Escorial criteria (Brooks et al, 2000) and assessed for ALS

frontotemporal spectrum disorder using established criteria (Strong

et al, 2017); those patients enrolled in research prior to 2017 were

retrospectively evaluated through chart review. All ALS patients and

controls participated in an informed consent procedure approved by

an IRB convened at UPenn, in which all studies conformed to the

principles set out in the WMA Declaration of Helsinki and the

Department of Health and Human Services Belmont Report.

Participants: UPenn Biobank autopsy cohort

We evaluated brain tissue samples from 87 ALS autopsy cases iden-

tified from the UPenn Biobank (Toledo et al, 2014) who were diag-

nosed by a board-certified neuropathologist (J.Q.T., E.B.L.) with

ALS due to TDP-43 pathology using immunohistochemistry (Neu-

mann et al, 2006) and published criteria (Mackenzie et al, 2011);

this cohort included 20 patients from the ALS neuroimaging cohort.

During life, all patients were diagnosed with ALS by a board-certi-

fied neurologist (L.E., L.M., M.G., D.I.) using revised El Escorial

criteria (Brooks et al, 2000) and assessed for ALS frontotemporal

spectrum disorder using established criteria (Strong et al, 2017);

those patients enrolled in research prior to 2017 were retrospec-

tively evaluated through chart review. Inclusion criteria consisted of

the following: lack of participation in the CReATe PGB cohort,

complete genotyping at the 45 analyzed SNPs, screening for genetic

mutations (e.g., C9ORF72, SOD1), white non-Latino racial and

ethnic background (population diversity is known to influence allele

frequencies across individuals), disease duration from symptom

onset < 2.5 standard deviations from respective group means (to

avoid confounds associated with clear outliers), and brain tissue

samples from the middle frontal, motor, cingulate, and superior/

temporal cortices, and the cornu ammonis 1 (CA1)/ subiculum of

the hippocampus for analysis of neuronal loss and TDP-43 pathol-

ogy. Nine individuals were missing neuronal loss or TDP-43 pathol-

ogy data for at least one sampled region (Table EV3).

Genetic screening and SNP genotyping: UPenn biobank

DNA was extracted from peripheral blood or frozen brain tissue

following the manufacturer’s protocols (Flexigene (Qiagen) or

QuickGene DNA whole blood kit (Autogen) for blood, and QIAsym-

phony DNA Mini Kit (Qiagen) for brain tissue). All patients were

screened for C9ORF72 hexanucleotide repeat expansions using a

modified repeat-primed PCR as previously described (Suh et al,

2015). Of the remaining individuals, we evaluated family history

using a three-generation pedigree history, as previously reported

(Wood et al, 2013). For cases with a family history of the same

disease, we sequenced 45 genes previously associated with neurode-

generative disease, including genes known to be associated with

ALS (e.g., SOD1 (Rosen et al, 1993) and TBK1 (Freischmidt et al,

2015). Sequencing was performed using a custom-targeted next-

generation sequencing panel (MiND-Seq) (Toledo et al, 2014) and

analyzed using Mutation Surveyor software (Soft Genetics, State

College, PA).

DNA extracted from peripheral blood or cerebellar tissue samples

was genotyped for each case using the Illumina Infinium Global

Screening Array through the Children’s Hospital of Philadelphia

(CHOP) Center for Applied Genomics Core according to manufac-

turer’s specifications. PLINK (Purcell et al, 2007) was then used to

remove variants with < 95% call rate, Hardy–Weinberg equilibrium

(HWE) P value < 10�6 and individuals with > 5% missing geno-

types. Using the remaining genotypes from samples passing quality
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control, we performed genome-wide imputation of allele dosages

with the Haplotype Reference Consortium panel (r1.1) (McCarthy

et al, 2016) on the Michigan Imputation Server (Das et al, 2016) to

predict genotypes at ungenotyped genomic positions, applying strict

pre-phasing, pre-imputation filtering, and variant position and

strand alignment control.

Neuroimaging processing and analyses

High-resolution T1-weighted MPRAGE structural scans were

acquired for neuroimaging participants using a 3T Siemens Tim Trio

scanner with an 8-channel head coil, with T = 1,620 ms,

T = 3.09 ms, flip angle = 15°, 192 × 256 matrix, and 1 mm3 voxels.

T1-weighted MRI images were then preprocessed using Advanced

Normalization Tools (ANTs) software (Tustison et al, 2014). Each

individual dataset was deformed into a standard local template

space in a canonical stereotactic coordinate system. ANTs provide a

highly accurate registration routine using symmetric and topology-

preserving diffeomorphic deformations to minimize bias toward the

reference space and to capture the deformation necessary to aggre-

gate images in a common space. Then, we used N4 bias correction

to minimize heterogeneity (Tustison et al, 2010) and the ANTs Atro-

pos tool to segment images into six tissue classes (cortex, white

matter, cerebrospinal fluid, subcortical gray structures, brainstem,

and cerebellum) using template-based priors and to generate proba-

bility maps of each tissue. Voxel-wise cortical thickness was

measured in millimeters (mm3) from the pial surface and then trans-

formed into Montreal Neurological Institute (MNI) space, smoothed

using a three sigma full-width half-maximum Gaussian kernel, and

downsampled to 2 mm isotropic voxels.

We used randomise software from FSL to perform nonparamet-

ric, permutation-based statistical analyses of cortical thickness

images from the UPenn Biobank neuroimaging cohort. Permutation-

based statistical testing is robust to concerns regarding multiple

comparisons since, rather than a traditional assessment of two

sample distributions, this method assesses a true assignment of

factors (e.g., wPRS) to cortical thickness compared to many (e.g.,

10,000) random assignments (Winkler et al, 2014).

First, we used randomise set to 10,000 permutations to identify

reduced cortical thickness in ALS patients relative to healthy

controls. We constrained this analysis using an explicit mask

restricted to high probability cortex (> 0.4) and reported clusters

that survive P < 0.05 threshold-free cluster enhancement (Smith &

Nichols, 2009) corrected for FWE.

Next, we again used randomise set to 10,000 permutations to iden-

tify regions of reduced cortical thickness associated with wPRS in ALS

patients, constraining analysis to an explicit mask defined by regions

of reduced cortical thickness in ALS patients relative to controls (see

above). The statistical model for this analysis included covariate

adjustment for age, disease duration, and scanner acquisition. We

report clusters that survive uncorrected P < 0.01 with a cluster extent

threshold of 10 voxels; we employ an uncorrected threshold to mini-

mize the chance of type II error (not observing a true result).

Neuropathology processing and analyses

The extent of neuronal loss and of phosphorylated TDP-43 intra-

neuronal inclusions (dots, wisps, skeins) in sampled regions from

the middle frontal, cingulate, motor, and superior/middle temporal

cortices, and the CA1/ subiculum of the hippocampus were

assessed on an ordinal scale: 0 = none/rare, 1 = mild, 2 = moder-

ate, 3 = severe/numerous. All neuropathological ratings were

performed by an expert neuropathologist (J.Q.T., E.B.L.) blinded

to patient genotype. We conducted ordinal logistic regression using

the MASS package in R to investigate whether extent of neuronal

loss rated using hematoxylin and eosin (H&E) and burden of TDP-

43 pathology rated using mAbs p409/410 or 171 (Lippa et al,

2009; Neumann et al, 2009) immunohistochemistry differed

according to wPRS, with covariate adjustment for age and disease

duration at death.

Data availability

All R software code generated to perform the reported analyses has

been deposited online (https://github.com/pennbindlab/Polygenic

ALSCognitive). Please review the associated README file for details

of data access. Briefly, associated datasets can be obtained as

follows:

The Clinical Research in ALS and Related Disorders for Thera-

peutic Development (CReATe) Consortium Phenotype–Genotype–

Biomarker (PGB) study data will be deposited at the NIH-

supported Data Management and Coordinating Center (DMCC) and

the Database of Genotypes and Phenotypes (dbGaP) using proce-

dures outlined by the Rare Disease Clinical Research Network

(RDCRN) of the National Institutes of Health (NIH). As detailed in

the patient consent process, “Only researchers with an approved

study may be able to see and use your information. . .. Only de-

identified data, which does not include anything that might directly

The paper explained

Problem
Cognitive dysfunction is often observed in patients with amyotrophic
lateral sclerosis (ALS), a progressive neuromuscular disease linked clin-
ically, pathologically, and genetically to frontotemporal dementia
(FTD). Many sources of common genetic variation associated with ALS
and FTD have been identified, but polygenic contribution of these
sources to cognitive dysfunction and corresponding cortical disease
vulnerability in ALS has not yet been explored.

Results
We used a machine-learning approach to identify a subset of
common genetic variants that relate to cognitive dysfunction in a
large cohort of patients with ALS and related disorders. A polygenic
risk score (PRS) created from the subset of common genetic variants
using machine-learning results related to more severe brain atrophy
in the frontal and temporal lobes in independent cohorts of ALS
patients.

Impact
Polygenic architecture may underlie risk for cognitive disease vulnera-
bility in ALS and related disorders, and machine-learning approaches
provide a novel strategy for PRS generation. This is important not only
for future research on genetic contribution to patient symptoms and
disease progression, but also for prognostic consideration and clinical
trial planning.
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identify you, will be shared with study investigators and approved

investigators from the general scientific community for research

purposes”. If you would like to access this data, please contact the

CReATe Consortium at ProjectCReATe@miami.edu for a data

request form.

De-identified raw T1-weighted MRI and voxel-wise cortical thick-

ness images will be made available to researchers through an

approved request pending review by the Penn Neurodegenerative

Data Sharing Committee. To request access, please complete the

following online data request form: https://www.pennbindlab.c

om/data-sharing.

The statistical code and neuropathological data from this publica-

tion have been deposited to Github: https://github.com/pennb

indlab/PolygenicALSCognitive.

Expanded View for this article is available online.
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