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Cancer is a disease which frequently has a poor prognosis. Although multiple
therapeutic strategies have been developed for various cancers, including
chemotherapy, radiotherapy, and immunotherapy, resistance to these treatments
frequently impedes the clinical outcomes. Besides the active resistance driven by
genetic and epigenetic alterations in tumor cells, the tumor microenvironment (TME)
has also been reported to be a crucial regulator in tumorigenesis, progression, and
resistance. Here, we propose that the adaptive mechanisms of tumor resistance
are closely connected with the TME rather than depending on non-cell-autonomous
changes in response to clinical treatment. Although the comprehensive understanding
of adaptive mechanisms driven by the TME need further investigation to fully elucidate
the mechanisms of tumor therapeutic resistance, many clinical treatments targeting the
TME have been successful. In this review, we report on recent advances concerning
the molecular events and important factors involved in the TME, particularly focusing on
the contributions of the TME to adaptive resistance, and provide insights into potential
therapeutic methods or translational medicine targeting the TME to overcome resistance
to therapy in clinical treatment.

Keywords: therapeutic resistance, tumor microenvironment, adaptive resistance, exosome, immunotherapy,
cancer-associated fibroblasts, vasculature system, hypoxia

INTRODUCTION

Cancer is a significant public health problem worldwide, with substantial incidence and mortality
rates (Ferlay et al., 2019). There have been spectacular advances in the development and therapeutic
application of treatment for tumors, including chemotherapy, radiotherapy, targeted therapy,
and immunotherapy over the past several decades (Szakács et al., 2006). However, resistance to
these therapies has been a major obstacle that restricts the effectiveness of cancer treatments and
impacts patient survival (Liu et al., 2018). Therefore, most patients respond to therapies at an early
stage, whereas patients at a later stage frequently display poor clinical outcomes with continuous
treatment (Miller et al., 2019). A broad range of intrinsic mechanisms underlying how cancer
cells escape from the cytotoxicity of tumor therapies have been revealed, including decreased
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drug accumulation, altered drug metabolism, mutated or altered
drug target and enhanced DNA repair capability, as well as
inactivated cell death signaling (Assaraf et al., 2019; Milman
et al., 2019; Valencia and Kadoch, 2019; Zhong and Virshup,
2020). Tumor cell heterogeneity, especially cancer stem-like cells
(CSCs), is another cause leading to various resistance responses
for multiple therapies (Housman et al., 2014; Steinbichler et al.,
2018). Accordingly, multiple studies have addressed intracellular
response, including genetic or epigenetic alterations, for cell
survival under the death pressure induced by therapies (Cheng
et al., 2020; Jiang W. et al., 2020; Long et al., 2020; Wang
et al., 2020). New viewpoints and theories have proposed that
tumor progression, especially when confronted with external
pressure from various therapies, is a dynamic and complicated
process that tightly interacts with the surrounding environment
(Hanahan, 2014).

The tumor microenvironment (TME) is the extracellular
environment in which tumors cells exist, and consists of
carcinogenetic cells, cancer-associated fibroblast (CAFs),
immune cells [including T and B lymphocytes, tumor-associated
macrophages (TAMs), and natural killer cells], the vasculature
system, and the extracellular matrix (ECM; including secreted
cytokine, chemokine, metabolites, and exosomes) (Quail and
Joyce, 2013; Belli et al., 2018). It has been shown that the
non-malignant cells in the TME are not just silent bystanders,
but rather actively boost carcinogenesis by promoting excessive
tumor initiation, malignant progression, metastasis, and
therapeutic resistance (Mantovani et al., 2008; Grivennikov
et al., 2010; Hanahan and Weinberg, 2011; Balkwill et al., 2012;
Hanahan and Coussens, 2012). The transformed cancer cells
are found to interact with stromal cells in the TME, which
contribute extensively to tumor development and resistance.
Additionally, hyperplasia, metabolic remodeling, malignant
proliferation, and inhibition of apoptosis in tumor cells
contribute to hypoxia, oxidative stress, and acidosis within the
TME. These abnormal conditions further modulate the ECM
to induce angiogenesis or mechanical stiffness, and ultimately
result in metastasis and resistance (Schrader et al., 2011; Quail
and Joyce, 2013; Maman and Witz, 2018; Lin et al., 2019). CAFs
induce cancer progression as well as therapeutic resistance
through the secretion of cytokines or chemokines, exosomes,
and ECM remodeling factors (Shiga et al., 2015; Fu et al., 2016).
Macrophages, adipocytes, and fibroblasts in the TME can also act
as a sanctuary for tumor cells to escape immune elimination (Hui
and Chen, 2015). Therefore, combination chemotherapy with
drugs targeting the TME, such as immune cells and angiogenesis,
has had success in clinical trials for overcoming drug resistance
(Correia and Bissell, 2012; Jo et al., 2018).

Accordingly, an interesting concept has been proposed that
the resistance of tumor cells to multiple therapies may be
caused by both active (cell-autonomous) and adaptive (non-cell-
autonomous) mechanisms. While numerous active mechanisms
of therapeutic resistance have been summarized previously,
here, we focus on the adaptive resistance to various therapies
mainly dependent on the TME (Figure 1) (Holohan et al., 2013;
Housman et al., 2014). Furthermore, the complex reciprocity
between tumors and TME and its role in adaptive resistance

is discussed, with a perspective on prospects of overcoming
therapeutic resistance.

TME-DRIVEN ADAPTIVE MECHANISMS
OF THERAPY RESISTANCE

The TME contains a wide variety of cell types including CAFs,
immune cells, and vascular cells embedded in the ECM. The TME
also contains exosomes, metabolites and cytokines that mediate
heterocellular interactions. Moreover, the physical or chemical
features, including hypoxia, acidity, and oxidative stress, all
facilitate tumor progression and resistance.

Cancer-Associated Fibroblasts (CAFs)
Cancer-associated fibroblasts are a prevalent subpopulation of
cells in the tumor stroma (Orimo et al., 2005; Räsänen and
Vaheri, 2010). The conversion from quiescence to activation
of fibroblasts provokes various oncogenic signals that facilitate
tumor cells to escape therapies (Kalluri and Zeisberg, 2006). Co-
culture of prostate tumor cells with CAFs attenuates doxorubicin
cytotoxicity by obstructing DNA damage and suppressing ROS
generation in tumor cells (Cheteh et al., 2017). CAFs may also
be responsible for the resistance of therapy through secreting
chemokines, growth factors, metabolites, and exosomes, causing
resistance and recurrence (Figure 2) (Billottet et al., 2008; Kojima
et al., 2010; Räsänen and Vaheri, 2010; Straussman et al., 2012).
CAF-secreted PAI-1 activates the AKT and MAPK pathways in
a paracrine way to reduce chemotherapy drug-induced DNA
damage, ROS generation, and cell death in esophageal squamous
cell carcinoma (ESCC) (Che et al., 2018). HGF secreted by CAFs
can combine with the MET receptor to activate the PI3K-Akt and
MAPK pathways, which is responsible for the resistance of BRAF
inhibitors or EGFR inhibitors to glioblastoma, colon cancer, and
melanoma (Thomasset et al., 1998; Luraghi et al., 2014; Fiori
et al., 2019). In addition, CAF-derived paracrine signals including
chemoattractant cytokines, metabolites, and exosomes induce the
NF-κB pathway, contributing to tumor cell resistance (Sun et al.,
2012; Chan et al., 2016; Su et al., 2018; Zhang D. et al., 2018).
Treatment with chemotherapeutic drugs upregulates WNT16B
in CAFs, which mitigates the cytotoxic effects of drugs through
the NF-κB pathway in prostate cancer cells (Sun et al., 2012).
Similarly, secreted IL-1β and the constitutively expressed IL-1
receptor associated kinase 4 (IRAK4) induce the activation of
the NF-κB pathway both in CAFs and pancreatic cancer cells,
alleviating the cytotoxicity of gemcitabine in pancreatic tumors
(Zhang D. et al., 2018). IL-6 is another cytokine released by CAFs
that promotes cisplatin resistance through the STAT3/NF-κB
pathway by upregulating CXCR7 in ESCC (Qiao et al., 2018).

Given the pivotal role of CSCs in therapeutic resistance, the
CAFs strengthen stemness as a route of acquired resistance
(Zhao, 2016; Fiori et al., 2017). The IL-6 and IL-8 released
by CD10+GPR77+ CAFs can promote CSCs sustaining
chemotherapy resistance in breast and lung tumors (Su et al.,
2018). Meanwhile, chemotherapy-treated colorectal CAFs
promote the self-renewal of CSCs by increasing the secretion
of interleukin-17A (IL-17A) (Lotti et al., 2013). In addition,
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FIGURE 1 | The main adaptive mechanisms driven by the TME for therapy resistance including CAFs, immune cells, vasculature system, ECM, exosomes, hypoxia,
and acidity. CAFs, cancer-associated fibroblasts; ECM, extracellular matrix.

TGF-β2 secreted by CAFs cooperate with HIF-1α derived from
the hypoxic TME to activate the Hedgehog pathway, which
promotes cancer cell stemness and resistance to chemotherapy
(Tang et al., 2018). Moreover, ELF chemokines secreted by CAFs
are also proven to induce the transformation of tumor cells to
stem cells in breast and pancreatic tumors (Chan et al., 2016).
The secretion of FGF5 by Hedgehog-activated CAFs in mouse
models of breast cancer creates a supportive microenvironment
for cancer cells by fostering a reversible stem-like phenotype.
Indeed, inhibition of Hedgehog signaling by Smo inhibitors can
hinder the transformation toward stemness status to recover the
sensitivity of cancer cells to docetaxel (Cazet et al., 2018).

Furthermore, the complicated crosstalk between CAFs and
tumor cells also contributes to resistance. For example, epithelial
expression of platelet-derived growth factor (PDGF)-CC causes
the CAFs to secrete STC1, IGFBP3, and HGF, which are
responsible for the tamoxifen resistance in breast cancer (Roswall
et al., 2018). To escape tumor treatment, the upregulated
insulin receptor (IR) and insulin-like growth factor (IGF) 1
receptor (IGF1R) in cholangiocarcinoma (CCA) cancer cells
promote the proliferation and activation of CAFs. CAF-secreted
IGF2 provides a feedback pathway with IR/IGF1R to induce
the resistance of cancer cells to erlotinib, a tyrosine kinase
inhibitor (TKI). Hence, an IR/IGF1R inhibitor can improve the
deleterious effect of erlotinib in xenografts models (Vaquero
et al., 2018). Additionally, cancer cell-derived serum components,

such as lysophosphatidic acid (LPA) and proteases, are reported
to stimulate CAFs remodeling for tumor cells survival (Park
et al., 2008; Yarnold and Brotons, 2010; Mantoni et al., 2011;
Calvo et al., 2013). The remodeled CAFs, however, exert
paracrine actions on tumor resistance via secreted growth factors,
including VEGF-A, TGF-β, and various cytokines. CAFs-tumor
cell contact can also activate the NOTCH signaling pathway,
facilitating stroma-mediated radiotherapy (Freund et al., 2010;
Acosta et al., 2013).

In general, the above evidence has shed light on the adaptive
mechanism that CAFs utilize with tumor cells for acquired
resistance in many cancers including lung, breast, prostate,
and glioblastoma. CAFs can interact with various TME factors
including immune cells, tumor cells, and the ECM to participate
in tumor cell resistance. The heterogeneous nature of CAFs
and their multiple functions are interesting potential research
directions as they offer a promising strategy for novel cutting-
edge therapies directed at tumors and the TME.

Immune Cells
The immune cells in the TME mainly consist of B cells, effector
and regulatory T cells, TAMs, myeloid-derived suppressor cells
(MDSCs), natural killer cells (NKs) as well as dendritic cells
(DCs) (Chen F. et al., 2015; Lei et al., 2020). These cells are crucial
for tumorigenesis, exerting either promoting or antagonizing
effects on tumors (Lei et al., 2020). Cytotoxic CD8+ T cells
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FIGURE 2 | Immune system response for resistance in the TME. Scavenging of tumor cells by the immune system is mainly mediated by CTLs which can be
inhibited by cytokines and chemokines secreted by several types of immune cells in the TME. There are also many molecules on the tumor surface which contribute
to exhausting, or even eliminating, anti-tumor immune cells like CTLs. TME, tumor micro-environment; CTLs, cytotoxic T cells.

(CTLs) are the primary lymphocytes for killing tumor cells. They
secrete cytotoxic enzymes including perforin and granzyme, and
can interact with the major histocompatibility complex I (MHC-
I) (Tanaka et al., 1999; Jackaman et al., 2012; Martínez-Lostao
et al., 2015; Wei et al., 2018; Zhong et al., 2020). The involvement
of CTLs in tumor therapeutic resistance is proven by the strong
association between the profile of CTLs in tumors and the
chemotherapy outcomes (Figure 3) (Denkert et al., 2010; Halama
et al., 2011; Chen and Chang, 2019). In ovarian cancer, CTLs
can enhance the immunogenic action of IFN-β to abrogate CAF-
mediated resistance to platinum-based chemotherapy (Wang
et al., 2016). Indeed, the combination of cisplatin with immune
checkpoint inhibitors (ICIs) have been shown to result in better
clinical outcomes (Gandhi et al., 2018; Socinski et al., 2018).
TAMs are one of the most abundant cells detected in solid
tumors and are derived from circulating monocytes. They also
play an important role in controlling the immunosuppressive
mechanisms of the TME, contributing to tumor development and
therapeutic resistance (Solinas et al., 2010; Ruffell and Coussens,
2015; Räihä and Puolakkainen, 2018; Salmaninejad et al., 2019;
Saleh and Elkord, 2020). Evidence implicates TAMs in the
secretion of cytokines including IL-6 and IFN in response to
resistance (Jinushi et al., 2011; Salvagno et al., 2019). Blocking
colony stimulating factor 1 receptor (CSF-1R) signaling to

regulate the polarization status of TAMs has been found to be an
effective way of restoring the sensitivity of cisplatin involving IFN
response (Salvagno et al., 2019). Accordingly, these promising
results have encouraged the evaluation of combination therapy
strategies targeting the immune system for tumor patients.

Growing evidence suggests that immunotherapy has shown
dramatic efficacy in clinical outcomes (Wei et al., 2018;
Cervantes-Villagrana et al., 2020). However, some cancer
patients treated using this approach show limited response
rates due to acquired resistance (O’Donnell et al., 2017;
Sharma et al., 2017). It has been shown that acquired
immune resistance may be achieved by three approaches: (i)
increased levels of immunosuppressive cells and molecules; (ii)
upregulation of immune checkpoints; and (iii) tumor mutation
loads and loss of target antigens. For example, enhanced
recruitment of immunosuppressive cells, such as TAMs and
MDSCs, reduces the sensitivity of immunotherapy and enhances
immunosuppression, leading to acquired resistance (Restifo et al.,
2016; O’Donnell et al., 2017; Sharma et al., 2017). Maj et al.
(2017) have demonstrated that apoptotic Tregs can upregulate
the level of extracellular adenosine which can be correlated
with acquired resistance to anti-PD-L1 mAb treatment in mice
models. Moreover, the compensatory inhibitory mechanism
also contributes to acquired resistance. For instance, increased
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FIGURE 3 | CAFs drive resistance-related paracrine pathways in the TME. CAFs provide an adaptive response for resistance by secreting chemokines, growth
factors, metabolites, and exosomes, which activate various signaling pathways in cancer cells, including PI3K-Akt/MAPK, NF-κB, and STAT3. PI3K-Akt, the
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway; MAPK, mitogen-activated protein kinase pathway; NF-κB, nuclear factor-κB; STAT3,
signal transducer and activator of transcription 3.

CD4+TIM-3+ and CD8+TIM-3+ T cells in lung tumor biopsies
has been related with resistance to anti-PD-1 mAb in both
humans and mice (Koyama et al., 2016). Similarly, increased
TIM-3 on CTLs has been reported in HNSCC following
treatment with anti-PD-1 mAb (Shayan et al., 2017). The
alteration of neoantigens may be another reason for acquired
resistance, as manifested by the fact that loss of CD19 causes
resistance following CD19-CAR-T cell therapy (Shalabi et al.,
2018). Interestingly, the latest studies implicate that the serine
protease inhibitor SerpinB9 (Sb9), expressed in CAFs, MDSCs,
and TAMs, can promote tumor cell proliferation by combining
with granzyme B (GrB) leading to resistance to immunotherapy
(Mangan et al., 2017; Jiang L. et al., 2020; Yin et al., 2020).

Vasculature System
Numerous studies have shown that the responsiveness of tumors
to therapy is affected by the vasculature system. Mechanically,
the vasculature influences drugs transportation and sensitivity
by controlling the supply of nutrients and oxygen, ultimately
regulating tumor cell survival (Galmarini et al., 2000). The
vasculature transports nutrients and oxygen, as well as other
growth factors, to both normal and tumor tissue, and removes
waste products following cellular metabolism, which can be
involved in tumor relapse, metastasis, and resistance. Vessels
in tumors are observed to be convoluted, branched, and

dilated, with excessive loops compared with normal tissues
(Jain, 1988). In some cases, vessels cannot be transformed into
capillaries, arterioles, or venules. Moreover, vessel walls are often
discontinuous or absent compared with normal tissues leading
to varying degrees of leakiness in different tumors (Benjamin
et al., 1999; Carmeliet and Jain, 2000; Hashizume et al., 2000;
Yonenaga et al., 2005; Trédan et al., 2007). Accordingly, blood
flow in tumors becomes chaotic and variable (Carmeliet and
Jain, 2000). In the tumor vascular network, the viscosity and
geometric resistance of blood is increased, and the pressure
between arterioles and venules is depressed (Sevick and Jain,
1989; Trédan et al., 2007). Further, in normal tissues, pressure is
reduced via the lymphatic network. However, lymph vessels are
found to be lacking or have reduced functionality in solid tumors
compared with normal tissues, leading to higher interstitial
pressure (Leu et al., 2000; Stohrer et al., 2000; Heldin et al., 2004;
Trédan et al., 2007). This higher interstitial pressure can suppress
the transportation and distribution of larger biological molecules,
and diverts blood away from the center toward the periphery of
the tumor (Salnikov et al., 2003; Heldin et al., 2004). Interestingly,
even in the same tumor, the rate of blood flow or morphology of
vessels may vary with space and time (Gillies et al., 1999; Vaupel,
2004). These aberrant vasculature systems, and the dimensional
compression of vessels caused by the excessive proliferation of
tumor cells, reduce the rate of blood flow and impair the nutrition
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and oxygen supply to the tumor tissues (Padera et al., 2004). The
insufficient supply of nutrients and oxygen as well as clearance
of metabolic waste creates an acidic and hypoxic TME, which
promotes therapeutic resistance (Tatum, 2006).

Further, the synergistic effect of various cell types in the
TME, such as pericytes, endothelial cells, and bone marrow-
derived progenitors, is the basis of tumor angiogenesis, which
is reported to be sensitive to oxygen levels (Weis and Cheresh,
2011; Semenza, 2013). Mesenchymal stem cells (MSCs), TAMs,
and CAFs all promote tumor angiogenesis by releasing various
angiogenesis-related ligands. For instance, increased VEGFA is
associated with poor prognosis in metastatic tumors such as
lung, colon, and renal cell carcinomas (Hegde et al., 2013;
Lee and Wu, 2015).

The delivery of drugs is also compromised by these aberrant
vasculature systems (Durand, 2001). The infiltration gradient
in the spatial distance from vascular components to tumor
lesions is related to the distribution of drugs from the tissues
to cancer cells. Microvascular density (MVD) is an important
index for the clinical outcomes of carcinomas of the lung, breast,
and liver (Trédan et al., 2007; Ariotti et al., 2015; Yuan et al.,
2015). Growing evidence indicates that VEGF receptor inhibitor
resistance is mainly caused by proangiogenic factors, suggesting
that combination with anti-angiogenic agents may improve
clinical outcomes compared with VEGF receptor inhibitors alone
(Flaherty et al., 2015). In addition, the chemokine CXC motif
ligand receptor (CXCR7) is reported to promote angiogenesis
by increasing ERK1/2 phosphorylation (Yamada et al., 2015).
Interestingly, the CXCL12-CXCR7 complex has been shown to
mediate pro-angiogenesis, tumor growth, lung metastasis, and
resistance (Yamada et al., 2015; Sun, 2016). Accordingly, anti-
angiogenesis may be an affective therapy by specifically targeting
tumor blood vessels.

Extracellular Matrix (ECM)
The ECM consists of fibrous protein (such as laminin,
elastin, and collagen), proteoglycans, water, and microelements,
weaving a complex fiber-based network to provide structural
support and regulate cellular activities, including proliferation,
communication, and adhesion (Watnick, 2012; Martino et al.,
2014; McAndrews et al., 2015; Korneev et al., 2017; Walker et al.,
2018). In tumors, both the composition and physical or chemical
properties of the ECM are different, depending on the tumor
tissue, resident cells, tumor staging, and therapeutic strategies
(Shree et al., 2011; Correia and Bissell, 2012; Watnick, 2012;
Klemm and Joyce, 2015; Sato et al., 2016; Korneev et al., 2017;
Jo et al., 2018; Senthebane et al., 2018; Walker et al., 2018).
The ECM contributes to tumor resistance by influencing drug
delivery, facilitating the escape from immune surveillance, and
manipulating the transmembrane signaling transduction process.

Drugs are usually transported to the tumor issues by the
pressure of blood circulation through interstitial areas. In this
process, drugs need to cross the physical and biochemical barriers
of the TME. The desmoplastic stroma has been found to be a
barrier responsible for drug resistance by impeding the delivery
of anti-cancer drugs and affecting vascular systems in tumors
(Olive et al., 2009). In interstitial spaces, the organization of

the ECM has been found to increase fluid pressure due to the
barriers of the tumor mass, significantly suppressing the efficacy
of drug delivery (Correia and Bissell, 2012; Maeda and Khatami,
2018). Moreover, excessive proliferation of cancer cells promotes
fluid flux from the neoplasms toward the surroundings which
impedes drug transportation (Chen Y. et al., 2019). Indeed, drug
delivery efficiency has been demonstrated to be inhibited in the
3D cultured spheroids compared with the 2D monolayer owing
to the density of the ECM cells (Jo et al., 2018). Furthermore,
tumor cells within the collagen I matrix display obvious resistance
when cells are exposed to 5-fluorouracil/oxaliplatin (Kanazawa
et al., 2017; Jo et al., 2018; Matsunuma et al., 2019).

Besides influencing drug delivery, the ECM also plays an
essential role in controlling cytokine activity, of which TGF-β is
the most important. TGF-β induces the recruitment of fibroblasts
to the tumor site and transformation to CAFs by regulating ECM
matrix degradation (Itoh et al., 2017; Paauwe et al., 2018; Purcell
et al., 2018). In addition, TGF-β along with HIF-1 can induce
lysyl oxidase (LOX) which orchestrates ECM stiffness by inducing
cross-linked collagen (Dauer et al., 2018; Zhao et al., 2018). ECM
stiffness, in turn, can activate the TGF-β signaling pathway to
form a bridge in the basement membrane and contribute to
tumor cell evasion (Upagupta et al., 2018; Najafi et al., 2019).
Indeed, genomic and transcriptomic analysis have demonstrated
that the activated gene sets in response to TGF-β signaling
are involved in regulating various pathophysiological processes
including EMT, wound healing, angiogenesis, and dissemination
(Hugo et al., 2016). On the other hand, TGF-β can regulate
immune response by orchestrating the crosstalk of multiple cell
types in the TME, including CAFs, lymphocytes, and endothelial
cells (Korneev et al., 2017; Chakravarthy et al., 2018; Kesh et al.,
2020). TGF-β can inhibit the proliferation and differentiation of
anti-tumor T cells by increasing the expression of CD25 and
Foxp3 (Löffek, 2018). Moreover, TGF-β induces the secretion
of monocyte chemoattractant protein-1 (MCP-1) to upregulate
the expression of mesenchymal markers and chemotactic factors
(CCL-2, 7, 8, 13), which are associated with anti-PD-1 immune
resistance (Díaz-Valdés et al., 2011; Sawa-Wejksza and Kandefer-
Szerszeń, 2018).

Among the multiple TME factors that impact cancer cell
therapy resistance, cell adhesion to the ECM has been considered
as a key determinant (Eke and Cordes, 2015). In particular,
cell adhesion-mediated drug resistance depends on interactions
between integrins and ECM components such as collagen,
fibronectin, and laminin (Grivennikov et al., 2010; Hanahan and
Weinberg, 2011; Korneev et al., 2017; Arneth, 2019; Cassim
and Pouyssegur, 2019). Integrin-mediated resistance has been
reported to influence chemical drugs, radiotherapy, and targeted
therapies such as TKIs (Goel et al., 2013; Seguin et al., 2014).
It has been reported that the treatment of fibronectin or
collagen-deficient ECMs with cisplatin increases the sensitivity
of tumor cells by about 40% (Senthebane et al., 2018). The loss
of integrin subunits, such as αvβ3 or αvβ5, can significantly
restore the sensitization of glioblastoma and breast tumor cells
to radiotherapy (Cao et al., 2006; Belli et al., 2018). The silencing
of the αv subunit also increases the efficacy of oxaliplatin in
colon tumor cells (He et al., 2009; Cruz da Silva et al., 2019).
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Additionally, the over-expression of β1 integrin significantly
inhibits cell death in hepatocellular carcinoma exposed to
etoposide, cisplatin, or docetaxel (Zhang et al., 2002, 2019;
Ogawa et al., 2008). Mechanically, integrins transmit the signals
in the microenvironment into intracellular pathways through
focal adhesion kinase (FAK) and integrin-linked kinase (ILK)
(Eke and Cordes, 2015). The complexes of FAK, ILK, cortactin,
and cysteine-histidine-rich 1 as well as parvin α have been
reported to inhibit the outcome of radiotherapy (Eke and Cordes,
2015). Integrin β1 regulates the dephosphorylation of FAK to
protect tumor cells resistant to radiotherapy in a JNK-dependent
manner on HNSCC and PDAC in vitro and in vivo (Goel et al.,
2013; DeRita et al., 2019). Blocking the α5β1 subunit reduces
the resistance to ellipticine and temozolomide dependent on
p53 mutation status in glioblastoma cells (Martinkova et al.,
2010; Fujita et al., 2020). Upregulated α4 integrin is responsible
for the resistance in AML and esophageal cancer cells via
the PI3K/Akt pathway (Layani-Bazar et al., 2014; Chen and
Chang, 2019; Cruz da Silva et al., 2019). Additionally, a few
findings suggest that the NF-κB or ILK-RhoB pathways may
be involved in integrin-mediated resistance (Monferran et al.,
2008; Ahmed et al., 2013). The ECM proteoglycan, versican,
can impact immune surveillance evasion along with hyaluronan
by increasing the expression of inflammatory cytokines such
as IL-6, TNFα, and NF-κB (Kang et al., 2017; Gordon-Weeks
and Yuzhalin, 2020; Wight et al., 2020; Gamradt et al., 2021).
Taken together, the complexity of the ECM in composition

and structure as well as heterogeneity still needs to be further
understood for therapeutic purposes.

TME-Derived Exosomes
Exosomes or extracellular vesicles (EVs) with sizes of 40 to
100 nm, originating from large multivesicular bodies (MVBs),
mediate cell-to-cell communication by transferring biologically
active cargo, including DNAs, RNAs, proteins, and metabolites
(Schneider and Simons, 2013; Sun, 2016; Mashouri et al.,
2019). Exosomes have been demonstrated to be crucial signaling
mediators in the TME, participating in tumorigenesis, metastasis,
TME remodeling, angiogenesis, and therapeutic resistance
(Figure 4) (Luga et al., 2012; Yoshizaki et al., 2013; Jeppesen et al.,
2014; Sung et al., 2015; You et al., 2015; Paolillo and Schinelli,
2017; Wang X. et al., 2018; Zeng et al., 2018; Mashouri et al.,
2019; Steinbichler et al., 2019; Yang E. et al., 2020). For example,
exosomes have been found to control metabolic reprogramming
(Yang E. et al., 2020). Exosomes can also scavenge unfavorable
molecules in normal cells. Cancer cells hijack exosomes for the
efflux of anti-cancer drugs, resulting in drug resistance (Safaei
et al., 2005). Thus, drug-resistant ovarian carcinoma cells exhibit
an enhanced exosomal export of cisplatin together with putative
transporters MRP2, ATP7A, and ATP7B (Safaei et al., 2005).

Exosomes and their cargos can also promote the drug
resistance of target cells (Shedden et al., 2003; Corrado
et al., 2013). Exosomes extracted from resistant breast and

FIGURE 4 | Exosomes transfer therapy resistance between resistant cells and sensitive cells. Exosomes containing cargo, such as proteins and non-coding RNAs,
that are related to pro-survival, anti-apoptosis, and drug-efflux factors, can promote the acquisition of resistance in tumor cells by modulating various processes,
including the reduction of intracellular drug concentrations, induction of EMT, activation of anti-apoptotic pathways, alteration of critical survival signal transduction
pathways, and modulation of the immune system.
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prostate cancer cells have been shown to contain MDR1/P-
gp transporters, conferring resistance to drug-sensitive tumor
cells (Levchenko et al., 2005; Corcoran et al., 2012; Lv et al.,
2014). miR-155 in exosomes has been reported to induce chemo-
resistance by increasing the FOXO-3a, TGF-β, and C/EBP-
β-mediated expression of EMT markers (Du and Shim, 2016;
Crow et al., 2017; Lobb et al., 2017; Wang et al., 2019). Notably,
exosomes isolated from triple-negative breast cancer cells can
induce drug resistance on non-tumorigenic breast cells by
modulating the PI3K/AKT, MAPK, and HIF1A pathways (Ozawa
et al., 2018). Additionally, lymphoma exosomes carrying CD20
shield target cells form an antibody attack via the complement
consumption of therapeutic anti-CD20 antibodies, leading to
evasion of humoral immunotherapy (Aung et al., 2011).

Intriguingly, exosomes also promote therapeutic resistance by
facilitating the intricate crosstalk between tumor cells and non-
tumor cells within the TME. RNAs within exosomes derived
from stromal cells activate the pattern recognition receptor
RIG-I and downstream STAT1 signaling, which facilitates the
growth of resistant tumor cells (Boelens et al., 2014). Exosomes
secreted by TAMs transfer miR-21 to gastric cancer cells, which
activates the PI3K/AKT signaling pathway and suppresses cell
apoptosis to confer resistance (Zheng et al., 2017). Meanwhile,
TAMs can directly deliver mRNAs to enhance the expression
of CDK6, mTOR, STAT3, and β-catenin, leading to cisplatin
resistance in BCa cells (Wu et al., 2020). In another example,
exosomes released from CAFs strengthen the chemo-resistance
of pancreatic cancer cells and colorectal cancer cells by activating
β-catenin and the Snail pathway (Richards et al., 2017; Ren et al.,
2018).

Collectively, exosomes can cause tumor cells to acquire
resistance by various pathways, including the reduction of
intracellular drug concentrations, induction of EMT, activation
of anti-apoptotic pathways, alteration of critical survival signal
transduction pathways, and modulation of the immune system
(Mashouri et al., 2019; Steinbichler et al., 2019; Dai et al., 2020).

Hypoxia, Acidity, and Oxidative Stress
The abnormal vasculature and heavy requirement for oxygen in
tumors create a chronic or diffusion-limited hypoxia and acid
environment (Bussink et al., 2003; Heldin et al., 2004; Milosevic
et al., 2004; Gargiulo et al., 2019; Zaidi et al., 2019). The hypoxic
environment of tumors leads to a decreased supply of nutrients
such as glucose and essential amino acids (Lee et al., 2014; Tan
et al., 2015; Ma et al., 2020). Moreover, tumor cells prefer to
undergo glycolysis rather than oxidative metabolism which often
converts glucose to lactate for the production of ATP, resulting in
sequential acidic microenvironments (Dang and Semenza, 1999;
Singh et al., 2017; Moloney and Cotter, 2018). Furthermore, a
decreased capability of removing these acidic products results in
low interstitial pH, another feature of solid tumors (Tran et al.,
2016; Singh et al., 2017). These hypoxic and acidic conditions will
induce aberrant activation of oncogenic pathways and genetic
instability, contributing to tumor development and resistance
(Li and Sun, 2018). For example, hypoxia in tumors increases
the expression of multiple genes associated with angiogenesis
and cell survival by activating HIF-1, a basic helix-loop-helix

transcription factor (bHLH) (Pouysségur et al., 2006; Chen and
Sang, 2016; Petrova et al., 2018; Lee et al., 2020). Serving as an
oxygen sensor, HIF-1 may promote the expansion of tumor cell
populations and alteration of biochemical metabolites involved in
a resistant phenotype in response to hypoxia. It has been shown
that hypoxia reduces sensitivity to p53-mediated apoptosis and
promotes chemotherapeutic resistance in tumor cells (Kinoshita
et al., 2001; Holle et al., 2016; Ritter, 2017). In solid tumors, the
activation of major oncogenic signaling pathways such as Ras
and PI3K/AKT, and the silencing of tumor suppressors LKB1,
PTEN, and TSC2/1 can activate HIF-1, contributing to resistance
(Shaw et al., 2004; Shackelford et al., 2009). Stabilization of
HIF-1α through interaction with Hsp90/Hsp70 also facilitates
cell survival under stress conditions (Luo et al., 2010; Taipale
et al., 2010). Additionally, HIF-1α can cooperate with CAF-
secreted TGF-β2 to induce GLI2 signaling cancer stem cells,
leading to enhanced stemness and chemotherapy resistance
(Tang et al., 2018).

Mechanically, HIF-1 activation induces the transcription
of genes that facilitate pathophysiological alterations related
to resistance, including the suppression of apoptosis and the
induction of drug efflux and metabolism (Warfel and El-Deiry,
2014; Xia et al., 2018). Apoptosis may be a major factor in
cell death induced by chemo- or radio- therapies (Krakstad and
Chekenya, 2010; Mohammad et al., 2015; Zhao et al., 2015).
Interestingly, HIF-1α has been found to both inhibit proapoptotic
proteins, including TRAIL, and activate anti-apoptotic proteins,
such as survivin, c-myc, STAT3, and TCF4, to promote the
survival of tumor cells under chemo- or radio- therapies (Pei
et al., 2010; Rohwer et al., 2010; Nishimoto et al., 2014; Zhao
et al., 2016). HIF-1α also influences sensitivity to therapy through
regulation of genes related to metabolic pathways (Lu et al., 2011;
Meijer et al., 2012; Huang et al., 2013). HIF-1α can upregulate
GLUT-1 to promote glycolysis, leading to increased intracellular
ATP, pyruvate, and lactate levels (Meijer et al., 2012), while
the suppression of HIF-1α results in a reduced glucose uptake,
decreased lactate production, and increased oxygen species
(ROS), which contribute to the enhanced efficacy of radiotherapy
(Meijer et al., 2012). Hypoxia has been reported to promote
temozolomide (TMZ) resistance in glioblastoma multiforme
(GBM), through the activation of HIF-1α and NF-κB, followed
by upregulated expression of Bcl-xL (Kitange et al., 2009; Chen
W.L. et al., 2015). Transient hypoxia has also been found to cause
an increase in dihydrofolate reductase and P-glycoprotein, which
contributes to the resistance of drugs targeting topoisomerase
II (Kovacic and Osuna, 2000; Gray et al., 2005). Interestingly,
oxygen concentration may affect the efficacy of the anti-cancer
drugs doxorubicin and mitomycin C, by delivering electrons to
the oxygen (Brown and Wilson, 2004; Trédan et al., 2007; Yang
G. et al., 2020).

Acidity in the TME has been demonstrated to affect the
efficacy of various therapies. It can influence the transport of
chemical drugs across the membrane due to the pH gradient
caused by the acidic extracellular pH and near neutral or
alkaline intracellular pH in tumors (Gerweck et al., 2006; Trédan
et al., 2007). Hence, drugs with an acidic dissociation constant
of 7.5–9.5 may show a significantly reduced rate of uptake,
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such as vincristine, mitoxantrone, doxorubicin, and vinblastine
(Cowan and Tannock, 2001; Gerweck et al., 2006; Trédan et al.,
2007; Zhou et al., 2019). Therefore, the cytotoxicity of these drugs
is suppressed, resulting in a resistant phenotype (Raghunand
et al., 2003; Trédan et al., 2007; Stepka et al., 2020). However,
the concentration of some weakly acidic drugs including
cyclophosphamide and chlorambucil may be increased in the
neutral intracellular region (Gerweck et al., 2006; Trédan et al.,
2007). Moreover, an acidic TME also alters the cellular proteome,
cellular metabolism, and signaling pathways, facilitating stemness
and drug resistance in cancer cells. The acidosis induces SOX2
expression by inhibiting vitamin D receptor (VDR)-mediated
transcription, resulting in drug resistance (Hu et al., 2020).
Enhanced lactate uptake and oxidation-induced lactic acidosis
foster the resistance to uprosertib, a pan-Akt inhibitor, in
colon cancer cells (Barnes et al., 2020). Moreover, the acidic
environment induces the activity of p-glycoprotein (pGP) by
activating p38 signaling, leading to multi-drug resistance in rat
prostate cancer cells (AT1) (Sauvant et al., 2008). Clearly, the
acidity of the TME must be considered when designing the
delivery of drugs to obtain maximal therapeutic effect.

Oxidative stress is another feature of the TME, which is caused
by the overproduction of reactive oxygen species (ROS) from
both tumor cells and non-malignant cells in the TME. Oxidative
stress plays a pivotal role in tumor progression, particularly
through immune cell suppression. ROS downregulates the anti-
tumor functions of effector immune cells that are recruited
to the tumor site, notably T lymphocytes and natural killer
(NK) cells which mediate anti-tumor immunity. MDSCs have
been found to inhibit T cell proliferation to promote colorectal
cancer cell proliferation by increasing ROS levels (OuYang et al.,
2015; Weinberg et al., 2019). ROS and peroxynitrite in MDSC
trigger the nitration of the TCR/CD8 complex which inhibits
its interaction with pMHC, contributing to T cell tolerance and
tumor escape (Nagaraj et al., 2007). ROS generated from NOX2-
sufficient myeloid cells inhibits the NK cell-mediated clearance
of malignant cells, facilitating the metastasis of melanoma cells
(Aydin et al., 2017). The NK cells residing in the tumor core or
primed by IL-15 exhibit higher thiol densities that can prevent
other lymphocytes from ROS within the TME (Yang Y. et al.,
2020). High levels of ROS following TCR and CD28 stimulation
enhance Treg cell-mediated tumor immunosuppression and
attenuate anti-tumor T cell responses by stabilizing SENP3 (Yu
et al., 2018). In conclusion, oxidative stress acts as an important
mediator of anti-tumor immunity. Achieving targeted oxidative
stress could be a potential strategy to improve the efficacies of
existing immunotherapy treatment.

Heterocellular Metabolic Interactions
Growing evidence has demonstrated that disordered metabolism
in the TME plays a crucial role in malignancy, metastasis, and
immune resistance. The impact of metabolism on immune-
resistance is mainly caused by two aspects: a reshaped
immunosuppressive TME from tumor metabolic stress and
immune-inhibiting metabolites generated by tumor cells.

Cancer cells usually exhibit high rates of glycolysis and
aggressive depletion of amino acids such as tryptophan, arginine,

and glutamine compared with normal cells. Tumor metabolic
stress modulates the metabolic properties of malignant cells,
which in turn influences nutrient shortage, oxygen competition,
and acidity in the TME to create an immune-resistant
environment (Martinez-Outschoorn et al., 2017). It is known
that the demand for nutrients is especially high in TME, and
this nutrient competition can impair the anti-cancer immune
response. For example, the competition of carbohydrates can
inhibit the anti-tumor effect of cytotoxic T cells by inducing
the expression of immunosuppressive cytokines and immune
checkpoint inhibitors (Wu et al., 2021). The restriction of glucose
supplies due to the high rates of glycolysis in tumor cells impairs
the anti-tumor function of CD4+ T cells, possibly by blocking
the secretion of IFN-γ (Chang et al., 2015; Ho et al., 2015).
Similarly, L-arginine deprivation has been found to inhibit anti-
tumor immunity by inducing MDSC infiltration or suppressing
the toxicity of IFN-γ. L-arginine depletion also promotes the
immune evasion of cancer cells by elevating the tumoral level
of PD-L1 (Morrow et al., 2013; Fletcher et al., 2015; Hugo
et al., 2016; Prima et al., 2017; Kim et al., 2018; Jiang Z.
et al., 2020). Tryptophan is another crucial amino acid that
contributes to the anti-tumor immune response by regulating the
kynurenine metabolic pathway (Jiang Z. et al., 2020; Xie et al.,
2020). Indoleamine 2,3-dioxygenase (IDO), an essential enzyme
of the tryptophan metabolic pathway, controls the production of
kynurenine which exerts immunosuppressive effects by inducing
differentiation of T cells and reduces immunogenicity (Wang
et al., 2015; Ramapriyan et al., 2019). Both inhibitory immune
cells such as MDSCs, DCs, and M2 macrophages as well as tumor
cells can express IDO (Ramapriyan et al., 2019). Cancer cells have
also been found to reduce tryptophan levels in TME to inhibit
immune response (Ramapriyan et al., 2019). Besides glucose
and amino acid metabolic pathways, lipid-related metabolism
also plays an essential regulatory role in immunosuppressive
function (Kamphorst et al., 2013). Obesity induces a desmoplastic
TME by promoting inflammation and TAN infiltration, leading
to impaired response to chemotherapy in PDAC. Reversal of
obesity-aggravated desmoplasia by blocking the angiotensin-
II type-1 receptor (AT1) improves response to chemotherapy.
Meanwhile, cholesterol depletion can also recover the cytotoxic
effect of chemical agents on PDAC and HCC (Guillaumond et al.,
2015; Incio et al., 2016). Fatty acids have also been demonstrated
to determine the cell fate of T cells and CD8+ effector T cells
(O’Sullivan et al., 2014).

In addition, a variety of tumor metabolites have been
reported to promote immune evasion. Glutamine is the most
abundant amino acid in the TME, playing an essential role
in anabolic growth and metastasis (Pusch et al., 2017; Zhang
et al., 2017). Recent research has demonstrated that glutamine
metabolism can impair anti-cancer immune response (Zhang
et al., 2017; Oh et al., 2020). Glutamine blockade causes increased
glucose and glutamine levels in the TME, inducing MDSCs
apoptosis, promoting their differentiation toward the M1 type,
and sensitizing resistant tumor cells to immunotherapies (Zhang
et al., 2017; Leone et al., 2019; Oh et al., 2020). Adenosine,
the breakdown production of ATP, can active the adenosine-AR
pathway to escape from the killing effects of the immune system
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by reducing the response of NK cells, M1 macrophages, and
CD8+ effector T cells. In addition, methylglyoxal (MG), a side-
production of glycolysis, is an immunosuppressive metabolite
that promotes tumor cell growth and resistance (Nokin et al.,
2017; Antognelli and Talesa, 2018; Antognelli et al., 2019; Oh
et al., 2020). The high concentration of methylglyoxal in the TME
derived from MDSCs leads to the accumulation of methylglyoxal
in T cells, contributing to anti-tumor evasion (Baumann
et al., 2020). DMBG (N-N-dimethylbiguanide) can recover the
sensitivity of immunotherapy-resistant tumor cells by removing
the glycation activity of methylglyoxal (Baumann et al., 2020).
Another molecule that can establish an immunosuppressive TME
is lactate, a product of glycolysis and glycogenolysis (Gabrilovich
et al., 2012; Mantovani et al., 2017; Pucino et al., 2017; Tong
et al., 2018; García-Cañaveras et al., 2019). Lactate induces
the development of MDSCs, polarization of macrophages into
an immunosuppressive phenotype, maturation of DCs, and
inhibition of effector T cells, thereby promoting immune evasion
(Husain et al., 2013; Brand et al., 2016; Laoui et al., 2016; Angelin
et al., 2017; Morrot et al., 2018). Furthermore, lactate can control
CAFs to produce growth factors including hyaluronan (Wu et al.,
2017; Apicella et al., 2018; Feichtinger and Lang, 2019).

Collectively, tumor cells reshape their metabolism adaptively
which leads to the remodeling of the TME. The heterocellular
metabolic interactions create an immunosuppressive TME,
which subsequently enhances tumor proliferation and immune-
therapy resistance. Thus, targeting tumor cell metabolism or
metabolites in the TME should have great potential for recovering
immunotherapy resistance.

The Epithelial Pathway in Response to
TME
It is well known that tumor initiation and progression rely
on bidirectional communications between tumor cells and
the associated environment. Several signaling pathways in
tumor cells, including Akt, mTOR, STAT3, and Notch, may
be responsible for the altered tumor environment exposed
to tumor therapies (Figure 5). Surprisingly, tumor cells can
adaptively inhibit oncogenic AKT, which induces the secretion
of inflammatory molecules such as IL-6/8 and extracellular
vehicles (EVs) to restrict the damage induced by therapy (Salony
et al., 2016). Thus, suppression of AKT signaling can increase
drug resistance in tumor cells (Manning and Cantley, 2007).
Moreover, mTOR acts as a vital protein to regulate cell growth
both in physiological and pathological conditions (Guri and
Hall, 2016). It has been shown that the secretome in the TME
can activate mTOR signaling after treatment. Blocking mTOR
signaling can restore the sensitivity of several anti-tumor drugs
including crizotinib, vemurafenib, and erlotinib (Obenauf et al.,
2015). Additionally, the ATM-TRAF6-TAK1 axis related with
DNA damage may be involved in these processes (Zhang B.
et al., 2018). Surprisingly, some metabolites in the TME, such
as the lactate, have been reported to activate the mTOR pathway
through glutamine metabolic pathways, inducing the resistance
to VEGF inhibitors (Allen et al., 2016).

In addition, the STAT3 pathway can rapidly respond to
cytokines, including L-1β and IL-6 released from neutrophils,
TAMs, and CAFs in the TME (Samavati et al., 2009; Kim et al.,
2016). Activated STAT3 induces resistance by promoting EMT,
increasing anti-apoptotic signaling, and regulating miRNAs
and exosomes (Yin et al., 2017; Wang L. et al., 2018).
For example, STAT3 can promote the secretion of exosomes
by upregulating Rab, which induces platinum resistance in
ovarian tumors (Dorayappan et al., 2018). In addition, activated
STAT3 can regulate the delivery of drugs by triggering vascular
abnormalities (Nagathihalli et al., 2015). Notch is another crucial
adaptive signaling pathway responsible for the TME-induced
chemotherapy resistance of tumor cells (Meurette and Mehlen,
2018). Exosomes derived from the stroma deliver Jag1, a Notch
ligand, activate the Notch pathway to trigger resistance in breast
tumor cells (Boelens et al., 2014). CAFs also can release IL-6 to
activate the Notch pathway in breast tumor cells (Studebaker
et al., 2008). Induction of Notch3 is also relevant to CSCs
transformation in liver cancer (Lin et al., 2017). Accordingly,
these signaling pathways response to TME may be potential
targets from a therapeutic perspective.

TARGETING THE TUMOR
MICROENVIRONMENT FOR THERAPY

Multiple preclinical studies implicate the TME as a potential
therapeutic target (Jin and Jin, 2020). For instance, multiple
strategies of combined therapy related to the TME have shown
interesting potential (Table 1). In the TME, tumor cells usually
hijack CAFs, ECM, the immune system, hypoxia, and acidosis-
related pathways to escape immune surveillance. For example,
dysregulated immune signaling pathways have been proven to
impair several processes including antigen presentation and T
cell infiltration. Thus, targeting the TME might have the potential
ability to reverse the resistance of tumor cells.

Targeting Cancer-Associated Fibroblasts
Given the critical role of CAFs, the most abundant cell type
in the TME, in therapeutic resistance of tumor cells, emerging
evidence supports targeting protumorigenic CAF functions as
a promising approach for tumor therapy (Truffi et al., 2020).
For example, conophylline is used to treat refractory pancreatic
cancers by suppressing CAF activity and the proliferation and
secretion of cytokines (Zhen et al., 2017; Umezawa et al.,
2018; Ishii et al., 2019). The cell surface markers GPR77 and
CD10, specifically expressed in CAFs, are involved in chemo-
resistance in lung and breast cancer (Vaquero et al., 2018).
Treatment with inhibitors of these molecules is a breakthrough in
overcoming resistance. For example, using a GPR77-neutralizing
antibody to selectively inhibit CAFs is an effective way to
restore the sensitivity of drugs. Another strategy is to inhibit the
activation of protumorigenic pathways in CAFs. Inhibition of
Hedgehog signaling in CAFs successfully enhances the effect of
docetaxel chemotherapy in TNBC patients (Cazet et al., 2018).
In addition, reversing activated CAFs into a dormant state is
also an effective therapeutic strategy. The VDR is considered to

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 March 2021 | Volume 9 | Article 641469

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-641469 February 24, 2021 Time: 17:2 # 11

Wu et al. TME in Adaptive Resistance

FIGURE 5 | The main signaling pathways responsible for therapeutic resistance mediated by the tumor environment. Tumor cells can adaptively inhibit oncogenic
AKT, which induces the secretion of inflammatory molecules such as IL-6/8, and EVs to restrict damage during therapy. The ATM-TRAF6-TAK1 axis related with
DNA damage may also be involved in resistance. Some metabolites, such as lactate, in the TME have been reported to activate the mTOR pathway through
glutamine metabolic pathways, inducing resistance to VEGF inhibitors. In addition, the STAT3 pathway may also rapidly respond to cytokines, promoting the
secretion of exosomes, by upregulating Rab and increasing anti-apoptotic signaling in the TME. IL-6 and exosomes derived from the stroma deliver Jag1, Notch
ligand, and Notch3 activate the Notch pathway to trigger resistance.

be a targeted molecule that regulates the transcriptional process
to activate CAFs in pancreatic cancer (Yamashita et al., 2012).
Interestingly, compared with gemcitabine alone, the synergistic
effect of gemcitabine and a VDR ligand suppresses fibrosis and
inflammation, and restores the sensitivity of gemcitabine by
increasing tumor uptake, thereby improving the survival rate
to 57% (Yamashita et al., 2012; Yang et al., 2016). Studies have
also found that nanoparticles loaded with a secreted sTRAIL can
reduce the activation of CAFs in pancreatic cancers (Yang et al.,
2016). Currently, some clinical trials targeting CAFs are being
implemented. The agent RO6874281 is an interleukin-2 variant

targeting FAP that is being evaluated for its clinical benefit in
combination with atezolizumab, gemcitabine, or vinorelbine in
the treatment of advanced tumors. The synergistic treatment of
RO6874281 with trastuzumab or cetuximab in patients with head
and neck cancer or breast tumors is also in clinical trials.

Targeting the Extracellular Matrix
Blocking the communication between tumor cells and their
environment by targeting adhesion molecules, proteolytic
enzymes, and ECM components has been demonstrated as
an efficient strategy for tumor therapy (Pickup et al., 2014;
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TABLE 1 | Combination therapies against cancer used in recent clinical trials.

Conventional
drug

Combination therapy Cancer targeted

Statin Targeted therapy such
as erlotinib, sorafenib,
fulvestrant, aromatase
inhibitors, anti-HER2

NSCLC, HCC,
ESCA, and breast

cancer

Radiotherapy GBM

Chemotherapy such as
topotecan, zoledronate,
bendamustin, and
capecitabine

TNBC, pediatric
solid and CNS

tumor, rectal cancer

Metformin Targeted therapy such
as lanreotide,
toremifene, trametinib,
gefitinib, and lapatinib

NSCLC, CRC,
TNBC, LAML,

UCEC and
melanoma, kidney

cancer, breast
cancer

Radiotherapy HNSCC, CESC,
lung cancer

Chemotherapy such as
docetaxel, oxaliplatin,
temozolomide,
gemcitabine, and
paclitaxel

ESCA, PDAC,
GBM, and prostate

cancer, breast
cancer

Aspirin Targeted therapy such
as osimertinib

NSCLC

Immunotherapy such
as atezolizumab,
avelumab,
bevacizumab, and
ipilimumab

HNSCC, TNBC,
and OV

Celecoxib Targeted therapy such
as gefitinib,
depsipeptide,
toripalimab

ESCA, CRC,
HNSCC, NSCLC,

OV, and breast
cancer

Radiotherapy NSCLC

Chemotherapy such as
docetaxel, cisplatin,
paclitaxel, and
methotrexate

NSCLC, GBM,
TNBC, CRC, and

PDAC

Immunotherapy such
as nivolumab

NSCLC

Hirata and Sahai, 2017). For example, suppression of the
integrin-mediated bidirectional transmitting signals between
cells and ECM has been used to prevent therapeutic resistance
(Kechagia et al., 2019). Blocking the activity of β1 integrin
with monoclonal antibody AIIB2 can significantly increase
the outcome of HER2-targeting agents as well as radiotherapy
(Park et al., 2008; Weigelt et al., 2010; Hirata and Sahai, 2017).
The antagonist of integrin α4β1 and α4β7, natalizumab, has
been proven to recover the sensitivity of chemotherapy drugs
in malignant tumors, including acute lymphoblastic leukemia
(AML) and ovarian tumor (Podar et al., 2011; Hsieh et al.,
2013; Scalici et al., 2014; Hirata and Sahai, 2017). Matrix
metalloproteinases (MMPs), one of the major ECM components,
function as proteases to detach cancer cells out of the ECM,
participating in tumor development, metastasis, and resistance
(Najafi et al., 2019). Several agents targeting MMPs have

been developed for treating advanced carcinomas including
incyclinide, JNJ0966 for MMP-9, and the antibody Fab 3369 for
MMP-14 (Ling et al., 2017; Scannevin et al., 2017).

TGF-β signaling is another pathway which mediates
communication between tumor cells and their ECM. Therefore,
anti-TGFβ drugs, including neutralizing antibodies, ligand traps,
small-molecule kinase inhibitors, and antisense oligonucleotides
(AONs), are a potential strategy for improving therapeutic
efficacy. Blocking TGF-β by 1D11, a TGF-β neutralizing
antibody, can improve the intra-tumoral penetration of
both chemotherapeutic drugs and nanotherapeutic agents by
normalizing the tumor interstitial matrix, thereby resulting in a
better control of tumor growth (Liu et al., 2012). Galunisertib
(LY2157299), an oral small-molecule inhibitor of TβRI, sensitizes
colorectal cancer cells to RTK inhibitors (Brunen et al., 2013;
Colak and ten Dijke, 2017). Blockade of TGF-β has been found
to promote the anti-tumor activity of CD8+ T cells, thereby
reversing the resistance to a PD-1/PD-L1 blockade in the TME
(Chen et al., 2018). Moreover, TGF-β blockade by expressing
dominant-negative TGF-β receptor II enhances the efficacy
of TCR gene therapy against advanced cancers (Bendle et al.,
2013). Both fresolimumab, a pan-TGF-β neutralizing antibody,
and LY3022859, an anti-TβRII IgG1 monoclonal antibody,
exhibited anti-tumor activity in a phase 1 clinical trial for
various cancers (Colak and ten Dijke, 2017). TβR inhibitors,
including LY2157299 and PF06952229, have being tested in
clinical trials for patients with advanced or drug-resistant cancers
(NCT03685591) (Liu et al., 2021).

However, some studies suggest that targeting the ECM has
limited outcomes in advanced malignancies such as GBM,
melanoma, and prostate tumors, suggesting that different tumors
with different extracellular matrices can exhibit different results
(Eisele et al., 2014; Stupp et al., 2014; Hirata and Sahai,
2017). Therefore, further investigation and clinical trials are
necessary to ensure treatment using ECM-targeting strategies are
effective and safe.

Targeting the Immune System
As mentioned above, the immune system in TME dramatically
affects the response of tumors to various treatment approaches.
Therefore, multiple strategies based on targeting the immune
system have been used to tackle cancers: (i) inhibiting the
recruitment of macrophages to tumor tissues; (ii) blocking the
differentiation of macrophages toward TAMs; (iii) enhancing
the anti-tumor activity of the immune system (Joyce, 2005;
Tsai et al., 2014; Roma-Rodrigues et al., 2019). Several
studies indicate that combination treatment using conventional
therapies and immunotherapy achieves satisfactory clinical
outcomes. Indeed, the combination of chemotherapy drugs
and immune checkpoint inhibitors (ICIs) has shown a better
result compared with chemotherapy alone (Ridker et al., 2017;
Tulotta and Ottewell, 2018). Consistently, targeting CTLs with
pembrolizumab enhances the clinical efficacy of cisplatin in
drug-resistant patients (Ridker et al., 2017). These promising
results have prompted a series of clinical studies to validate this
combination therapy strategy. The suppression of MDSCs by
anti-CSF-1R neutralizing antibodies or small molecule inhibitors
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has been shown to reduce tumor growth and metastasis
(Noy and Pollard, 2014; Szebeni et al., 2016; Ridker et al., 2017).
Immune checkpoint molecules in NKs were also reported to
be potential targets for immunotherapy (Cao et al., 2020).
To date approximately 174 clinical trials involving CTLA-4
and 750 involving PD-1 and its receptor PD-L1 have been
reported (as reviewed in Boohaker et al., 2018; Darvin et al.,
2018; Chen T. et al., 2019). A combination with blocking
antibodies against CTLA-4 and PD-1 results in significantly
higher response rates and improved survival in patients with
metastatic melanoma (Wolchok et al., 2013; Horvat et al., 2015;
Larkin et al., 2015; Robert et al., 2015). Moreover, Kineret, an IL-
1 receptor antagonist that is often used for rheumatoid arthritis,
has exhibited promising results for breast cancer patients (Tulotta
and Ottewell, 2018). The anti-IL-1 antibody canakinumab, which
is often used for inflammatory diseases, has shown improved
clinical outcomes in lung cancer (Ridker et al., 2017). More
recently, canakinumab has been proposed for the treatment
of highly aggressive tumors NSCLC and triple negative breast
cancer (Houriet et al., 2017; Dhorepatil et al., 2019; Paz-Ares
et al., 2019; Schenk et al., 2019; Sehested et al., 2019). In
addition, combining traditional therapies with immune therapies
has shown potential to reverse resistance (Patel and Minn, 2018;
Gomez et al., 2020). For example, the combination of HMTs with
immune therapy has shown efficacy for various cancer in pre-
clinical studies (Zingg et al., 2017; Patel and Minn, 2018; Gomez
et al., 2020). Treatment with EZH2 inhibitor and antibodies
blocking CTLA-4 was reported to reverse immunosuppressive
effects and significantly improve survival in preclinical models
(Zingg et al., 2017). Moreover, DNMTi or HDACi treatment was
reported to sensitize resistant cancer cells in mouse models of
melanoma and lung adenocarcinoma (Chiappinelli et al., 2016;
Strick et al., 2016; Zheng et al., 2016; Stone et al., 2017). The
combination of HDACis, DNMTis, anti-CTLA4, and anti-PD1
together showed significantly improved rates of survival, with
75% of mice with tumors being cured (Kim et al., 2014; Zheng
et al., 2016). Thus, targeting the immune system, especially in
combination with traditional chemotherapy to promote survival
and reverse resistance, may prove to be a safe and effective
strategy for multiple types of tumors, benefitting more patients.

Targeting Hypoxia and Acidosis
As mentioned above, low oxygen pressure and acidosis
conditions in the TME dramatically affect a tumor’s response to
treatment. Therefore, it is rational to manipulate hypoxia and
acidosis conditions in the TME to hinder tumor progression
(Paolicchi et al., 2016; Roma-Rodrigues et al., 2019). Accordingly,
topotecan, an inhibitor of HIF-1α, has been used to cure
advanced tumors including ovarian and small cell lung cancers
(Roma-Rodrigues et al., 2019). Topotecan has also been used in
a clinical study for the treatment of refractory advanced solid
neoplasms expressing HIF-1α. Additionally, several clinical trials
based on intervention against hypoxia are underway, including
the evaluation of everolimus, which downregulates HIF-1α, in
combination with lenvatinib in renal cancer (NCT01206764),
as well as an evaluation of the metformin outcomes in tissue

oxygenation of head and neck cancer (NCT03510390) (Roma-
Rodrigues et al., 2019). The acidified environment has been
considered to protect tumor cells from chemotherapy by affecting
the concentration of drugs (Kolosenko et al., 2017). Hence,
recent clinical trials have focused on alteration of the acidification
environment by targeting carbonic anhydrases, a family of
enzymes that regulate the pH of active cells/tissues in tumors
(Supuran, 2018). For example, the synergistic treatment of
acetazolamide, a carbonic anhydrase inhibitor, with radiotherapy
has been tested in lung cancer (NCT03467360) while the
combination of acetazolamide and temozolomide has also been
trialed for brain cancer (NCT03011671).

DISCUSSION

In this review, we have summarized the current insights into how
the TME regulates cancer resistance to therapies. The adaptive
resistance to cancer treatment driven by the TME may play a vital
role in tumor recurrence and metastasis. Therefore, a variety of
approaches targeting the TME have been developed to reverse
resistance to radiotherapy, chemotherapy, and immunotherapy
(Xu et al., 2015; Zhang et al., 2015; Hu et al., 2017; Tan et al.,
2018; Bhat et al., 2021). Hijacking the TME to increase drug
delivery has also been demonstrated to enhance the efficacy of
chemotherapeutic drugs (Fang et al., 2018; Amini et al., 2019).
Although a large number of studies have shown the successful
application of manipulating the TME to overcome resistance,
there are several key questions that still need to be resolved.
Firstly, the mechanisms underlying adaptive and non-adaptive
resistance need further investigation in a real TME. To date, most
of the studies have been based on resistant cells in vitro, which
excludes the factors in the TME that may be vital for acquired
resistance in vivo. Co-culture of tumor cells with other types of
cells within the TME and tumor-microenvironment-on-a-chip
(TMOC) models can only partially mimic the real TME. More
studies should be conducted using appropriate mouse models,
or the use of human organoids isolated from patient biopsies,
to fully understand the role of TME adaptive and non-adaptive
resistance (Papapetrou, 2016; Mazzarella and Curigliano, 2018;
Vlachogiannis et al., 2018). Secondly, since the TME changes
dynamically during the development and treatment of tumors,
understanding and monitoring the factors that influence the
therapeutic effects of targeting the TME is necessary to improve
patient safety and survival outcome. Lastly, some drawbacks of
targeting the TME, such as immune-related side-effects, may lead
to the cessation of treatment (Liu et al., 2017; García-Aranda
and Redondo, 2019). Hopefully, as our understating of intrinsic
biology of the TME is improved, we will be more capable of
preempting or reversing cancer therapy resistance.
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