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Abstract: 5-Hydroxymethylcytosine (5hmC) is a functionally active epigenetic modification. We an-
alyzed whether changes in DNA 5-hydroxymethylation are an element of age-related epigenetic
drift. We tested primary fibroblast cultures originating from individuals aged 22–35 years and
74–94 years. Global quantities of methylation-related DNA modifications were estimated by the dot
blot and colorimetric methods. Regions of the genome differentially hydroxymethylated with age
(DHMRs) were identified by hMeDIP-seq and the MEDIPS and DiffBind algorithms. Global levels
of DNA modifications were not associated with age. We identified numerous DHMRs that were
enriched within introns and intergenic regions and most commonly associated with the H3K4me1
histone mark, promoter-flanking regions, and CCCTC-binding factor (CTCF) binding sites. However,
only seven DHMRs were identified by both algorithms and all of their settings. Among them, hypo-
hydroxymethylated DHMR in the intron of Rab Escort Protein 1 (CHM) coexisted with increased
expression in old cells, while increased 5-hydroxymethylation in the bodies of Arginine and Serine
Rich Protein 1 (RSRP1) and Mitochondrial Poly(A) Polymerase (MTPAP) did not change their ex-
pression. These age-related differences were not associated with changes in the expression of any of
the ten-eleven translocation (TET) enzymes or their activity. In conclusion, the distribution of 5hmC
in DNA of in vivo aged human fibroblasts underwent age-associated modifications. The identified
DHMRs are, likely, marker changes.

Keywords: dermal fibroblasts; aging; epigenetic drift; 5-hydroxymethylcytosine (5hmC); regions
differentially hydroxymethylated with age (DHMRs); ten-eleven translocation methylcytosine dioxy-
genase (TET) enzymes

1. Introduction

Skin aging does not shorten life but can significantly reduce its quality. Intrinsic aging
of the skin is associated with a reduced regenerative potential of keratinocytes, thinning
of the epidermis, and atrophy of the dermis resulting from fibroblast senescence and
overexpression of enzymes degrading the collagen matrix [1,2]. An increasing amount of
evidence shows that changes in the function of subcutaneous adipose tissue may be one of
the regulators of skin aging [3].

The epigenome co-regulates activities of the genome without changing its sequence
and undergoes aging-related drift. The role of this phenomenon in aging is crucial, as epige-
netic modifications are subject to environmentally induced changes, and the environment
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seems to be the most important factor affecting the length of life [4,5]. Although most aging-
related changes affecting the epigenome are random, some of them are universal, and sets of
such changes have been used to create epigenetic clocks that predict chronological age with
high accuracy [6–8]. One of the epigenetic modifications, 5-hydroxymethylcytosine (5hmC),
appears during the processes of passive demethylation of 5-methylcytosine (5mC) or ac-
tive demethylation by ten-eleven translocation methylcytosine dioxygenases (TETs) [9,10].
5hmC is not only an intermediate product of demethylation, but mounting evidence points
to its role in the regulation of gene expression. For example, the hydroxymethylation of
promoters and gene bodies is associated with increased expression [11–13]. A proposed
mechanism of such an action of 5hmC is preventing transcriptional repressors from bind-
ing [14]. In addition, 5hmC supports gene activation by engaging Methyl-CpG Binding
Protein 2 (MeCP2), which modifies chromatin structure [15,16]. Therefore, 5hmC and
TETs may affect chromatin accessibility for transcription factors [17]. In contrast to many
studies regarding the association and involvement between DNA methylation and ag-
ing, only limited data have been published with respect to the association between DNA
5-hydroxymethylation and aging. For example, a longitudinal study of DNA isolated
from mouse blood cells showed that the global level of 5hmC decreases with age in these
cells [18]. Similarly, the global level of 5hmC in human blood genomic DNA systematically
decreases as the blood donor’s age increases [19]. In contrast, a significant rise in 5hmC is
observed in the aging mouse cerebellum and liver [20,21].

Therefore, aging-associated changes in global 5hmC content seem to be cell- and
organ-specific, and it cannot be excluded that some are species-specific. Under such
circumstances, an appropriate model for studying molecular mechanisms of human skin
aging is human skin-derived cell culture. The majority of aging and senescence studies have
been conducted on established cell lines or in vitro-aged cells. However, such cells do not
present the same features as cells aged in vivo [22–24]. As we wished to obtain information
closely reflecting the in vivo state, we used dermis samples from sun-protected skin areas of
people of different ages and primary cultures of fibroblasts isolated from these samples. We
analyzed the global content of cytosine modifications and identified several differentially
hydroxymethylated regions (DHMRs) associated with dermal fibroblast aging.

2. Results
2.1. Cytosine Modifications in the Dermis and Fibroblasts

We first checked levels of 5mC, 5hmC, and further derivatives of demethylation 5-
formylcytosine (5fC) and 5-carboxylcytosine (5caC) in the whole dermis (Supplementary
Figure S1A). We found that they were similar in women and men, so further calculations
were performed for both sexes together. We observed a weak correlation between 5mC and
age (r = 0.29, p = 0.036). Levels of 5hmC, 5fC, and 5caC did not correlate with age (Figure 1).
To confirm this result, we counted the mean fluorescence intensity of 100 nuclei stained for
the presence of 5mC and 5hmC in the dermis samples using a confocal microscope and the
ZEN 2012 version BLUE program (Supplementary Figure S2). This analysis also did not
detect any age-related differences in global 5hmC amounts or the 5hmC/5mC ratio.

In fibroblasts isolated from young and older individuals’ dermis, we did not detect
differences in total 5mC, 5hmC, 5fC, or 5caC content as evaluated by the dot-blot method
(Supplementary Figure S1B and Figure 2A). This result was confirmed by the colorimetric
evaluation of global 5mC and 5hmC, as it also did not reveal age-related differences
(Figure 2B).
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Figure 1. Levels of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine 
(5fC) and 5-carboxylcytosine (5caC) in human dermis. Levels of DNA methylation and 
demethylation derivatives in the dermis evaluated with the dot-blot method. The statistical 
analysis was performed with the Mann–Whitney U-test and Spearman’s correlation test. Purple 
circles: women. Blue triangles: men. 

In fibroblasts isolated from young and older individuals’ dermis, we did not detect 
differences in total 5mC, 5hmC, 5fC, or 5caC content as evaluated by the dot-blot method 
(Supplementary Figures S1B and 2A). This result was confirmed by the colorimetric 
evaluation of global 5mC and 5hmC, as it also did not reveal age-related differences 
(Figure 2B). 

Figure 1. Levels of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine
(5caC) in human dermis. Levels of DNA methylation and demethylation derivatives in the dermis evaluated with the
dot-blot method. The statistical analysis was performed with the Mann–Whitney U-test and Spearman’s correlation test.
Purple circles: women. Blue triangles: men.
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Figure 2. Levels of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine 
(5fC) and 5-carboxylcytosine (5caC) in human dermal fibroblasts. (A). Levels of DNA methylation 
and methylation derivatives in dermal fibroblasts evaluated with the dot-blot method. (B). Levels 
of DNA methylation and hydroxymethylation in dermal fibroblasts evaluated with the 
colorimetric method. The statistical analysis was performed with the Mann–Whitney U-test. 
Young: 22–35 years old. Older: 74–94 years old. 

We also checked the nuclear localization of 5mC and 5hmC and found that they only 
partially overlapped (Figure 3A). Immunostaining of 5hmC with the heterochromatin 
markers MacroH2A histone variant or heterochromatin protein 1 (HP1) showed that, to a 
large extent, 5hmC localization differed from that of the heterochromatin markers (Figure 
3B,C). 
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Figure 2. Levels of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine
(5caC) in human dermal fibroblasts. (A) Levels of DNA methylation and methylation derivatives in dermal fibroblasts
evaluated with the dot-blot method. (B) Levels of DNA methylation and hydroxymethylation in dermal fibroblasts evaluated
with the colorimetric method. The statistical analysis was performed with the Mann–Whitney U-test. Young: 22–35 years old.
Older: 74–94 years old.

We also checked the nuclear localization of 5mC and 5hmC and found that they only
partially overlapped (Figure 3A). Immunostaining of 5hmC with the heterochromatin
markers MacroH2A histone variant or heterochromatin protein 1 (HP1) showed that,
to a large extent, 5hmC localization differed from that of the heterochromatin markers
(Figure 3B,C).
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Figure 3. Immunofluorescence staining for the presence of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 
and heterochromatin markers in human fibroblasts. (A). Immunostaining for the presence of 5mC and 5hmC. (B). Co-
localization of 5hmC and MacroH2A histone variant. (C). Co-localization of 5hmC and heterochromatin protein 1 (HP1). 

2.2. Age-Related Differential 5-Hydroxymethylation in Fibroblasts 
The lack of age-related differences in the quantity of global 5hmC does not exclude 

age-related changes in 5hmC distribution. Therefore, using two different algorithms but 
with the same set of DNA window sizes (wide, approximately 450 bp and narrow, 
approximately 50 bp) and statistical methods, we searched for age-related differentially 
hydroxymethylated regions (DHMRs) in DNA isolated from fibroblasts of five young and 
five older individuals.  

A DiffBind analysis performed for the wide window identified 190 DHMRs, 
including 102 that were hyper- and 88 that were hypo-hydroxymethylated, while the 
analysis of the narrow window identified 186 DHMRs, including 97 hyper- and 89 hypo-
hydroxymethylated (Figure 4, Supplementary Table S1). Eighty-five regions were 
common to both windows. The MEDIPS analysis of the wide window identified 161 
DHMRs, including 83 hyper- and 78 hypo-hydroxymethylated, and the analysis of the 
narrow window identified 228 DHMRs, including 121 hyper- and 107 hypo-
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Figure 3. Immunofluorescence staining for the presence of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), and
heterochromatin markers in human fibroblasts. (A) Immunostaining for the presence of 5mC and 5hmC. (B) Co-localization
of 5hmC and MacroH2A histone variant. (C) Co-localization of 5hmC and heterochromatin protein 1 (HP1).

2.2. Age-Related Differential 5-Hydroxymethylation in Fibroblasts

The lack of age-related differences in the quantity of global 5hmC does not exclude
age-related changes in 5hmC distribution. Therefore, using two different algorithms
but with the same set of DNA window sizes (wide, approximately 450 bp and narrow,
approximately 50 bp) and statistical methods, we searched for age-related differentially
hydroxymethylated regions (DHMRs) in DNA isolated from fibroblasts of five young and
five older individuals.

A DiffBind analysis performed for the wide window identified 190 DHMRs, includ-
ing 102 that were hyper- and 88 that were hypo-hydroxymethylated, while the anal-
ysis of the narrow window identified 186 DHMRs, including 97 hyper- and 89 hypo-
hydroxymethylated (Figure 4, Supplementary Table S1). Eighty-five regions were common
to both windows. The MEDIPS analysis of the wide window identified 161 DHMRs, includ-
ing 83 hyper- and 78 hypo-hydroxymethylated, and the analysis of the narrow window
identified 228 DHMRs, including 121 hyper- and 107 hypo-hydroxymethylated (Figure 4,
Supplementary Table S1). Sixty-seven regions were common to both windows.

DiffBind narrow (50 bp) windowDiffBind wide (approx. 450 bp) window

DiffBind RPKM

MEDIPS wide (approx. 450 bp) window MEDIPS narrow (50 bp) window

MEDIPS rhms

DiffBind RPKM

MEDIPS rhms

Figure 4. Cont.
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Figure 4. Heatmaps of age-associated differentially hydroxymethylated regions (DHMRs) in the DNA of human fibroblasts
obtained from young (n = 5, 22–35 years) and older (n = 5, 74–94 years) individuals. The 5-hydroxymethylcytosine (5hmC)
distribution was analyzed using hMeDIP-seq. RPKM: reads per kilobase million, rhms: relative hydroxymethylation score.

Next, we compared the DHMRs identified by both algorithms with the same window
size. Only 14 DHMRs were common for the wide window, and only 12 DHMRs were
common for the narrow window despite very similar analysis settings (Figure 5).

Only seven DHMRs were identified by both MEDIPS and DiffBind analyses and for
both window sizes. These regions were associated with CHM (Rab Escort Protein 1), RHCE
(Rh Blood Group CcEe Antigens), LINC00683 (Long Intergenic Non-Protein Coding RNA
683), LINC01927 (Long Intergenic Non-Protein Coding RNA 1927), GPR132 (G Protein-
Coupled Receptor 132), RSRP1 (Arginine and Serine Rich Protein 1), RHD (Rh Blood Group
D Antigen), OTOF (Otoferlin) and MTPAP (Mitochondrial Poly(A) Polymerase) genes.
All were situated within genes, mostly in introns (Figure 6).

To verify whether the presence of hyper- or hypo-hydroxymethylated DHMRs corre-
sponded to differences in expression of their associated genes, we performed a real-time
PCR analysis. Blood type-related genes were not analyzed, as they are not expressed in
dermal fibroblasts. Instead, we analyzed the expression of TMEM50A (Transmembrane
Protein 50A), which was identified by the GREAT tool [25] as a gene associated with the
highest number of DHMRs. CHM expression was higher in older than younger individuals
(p = 0.003) (Figure 7). No age-associated differences were observed in the expression of
RSRP1, MTPAP, or TMEM50A. We did not detect OTOF mRNA.

We annotated the identified DHMRs with regard to the presence of CpG islands,
genic features, histone marks, and regulatory features. In all analyses, most DHMRs were
situated in introns or intergenic regions. H3K4me1 was the most common histone mark
associated with the DHMRs. Promoter-flanking regions and CCCTC-binding factor (CTCF)
binding sites were the most common regulatory features.

The statistical analysis of the DiffBind-identified DHMRs showed that they were
significantly enriched in intergenic regions and were mostly hypo-hydroxymethylated
compared with random regions generated from all regions hydroxymethylated in fibrob-
lasts. In addition, CTCF-binding sites were enriched among hypo-hydroxymethylated
DHMRs identified in the wide window analysis. In turn, all MEDIPS-identified DHMRs
were enriched in exon, intron-exon, and exon-intron boundaries and enhancers. A separate
analysis of hypo- and hyper-hydroxymethylated MEDIPS-identified DHMRs showed that
hyper-hydroxymethylated DHMRs were significantly enriched in introns and intron-exon
boundaries (Figure 8). However, none of these enrichments passed the FDR correction.
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Figure 5. Age-associated differentially hydroxymethylated regions (DHMRs) identified by DiffBind and MEDIPS with the same window size. (A) Venn diagram and (B) Heatmaps of
DHMRs identified by a narrow window analysis. (C) Venn diagram and (D) Heatmaps of DHMRs identified by a wide window analysis. RPKM: reads per kilobase million, rhms: relative
hydroxymethylation score.
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Figure 6. Age-associated differentially hydroxymethylated regions (DHMRs) in human fibroblasts common for all analyses.
(A) Venn diagram of overlapping DHMRs. (B) Heatmap of overlapping DHMRs and their associated genes. RPKM: reads
per kilobase million, rhms: relative hydroxymethylation score.
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94 years).
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Figure 8. Enrichment analysis of age-associated differentially hydroxymethylated regions (DHMRs). The statistical analysis
was performed with Fisher’s exact test and the LOLA package. Results are presented for p-values without the false discovery
rate (FDR) correction.

Finally, we annotated the identified DHMRs to genes and looked for pathways po-
tentially affected by aging-related changes in the 5hmC level. An analysis with the false
discovery rate (FDR) correction did not reveal any enriched pathways. However, to reduce
the risk of a false-negative result, we also performed an analysis without this correction.
We then found enrichment in pathways involved in GTPase activity and signaling as well
as other fibroblast-related pathways. However, we also found enrichment in pathways not
related to fibroblast functions (Figure 9).
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Figure 9. Biological processes most significantly associated with genes linked with age-associated differentially hydrox-
ymethylated regions (DHMRs). The overrepresentation test of the Gene Ontology pathways was performed with the
ClusterProfiler Package. Results are presented for p-values without the FDR correction.

2.3. Age-Related Differences in TET Expression in the Dermis and Fibroblasts

5hmC is a product of either passive demethylation of 5mC or active demethylation by
TET1, TET2, and TET3. Therefore, we evaluated these enzymes’ expression and showed
that TET1 and TET3 mRNA levels were higher in the entire dermis of women than in men
(p < 0.0001 and p = 0.03), but TET2 mRNA was similar between the sexes. No age-related
differences were observed in the mRNA expression of any of the TET enzymes either in
the entire tested group or in men or women separately (Supplementary Figure S3A–C).
The TET2 protein level was not associated with age. We did not evaluate the TET1 or TET3
proteins’ expression because specific signals in the dermis were too low, despite using three
different anti-TET1 and two anti-TET3 antibodies. In contrast, the levels of these proteins
were high in the epidermis (Supplementary Figure S3D–F).

No age-related differences were observed in the expression of TETs either at the
mRNA or protein levels in primary fibroblasts (Supplementary Figure S4). In addition,
no significant differences in the activity of TET enzymes were detected (Supplementary
Figure S5).

We did not observe correlations between 5mC, 5hmC, 5fC, or 5caC and the expression
of any of the TET enzymes in either the entire dermis or fibroblasts.

3. Discussion

This study showed that global levels of DNA demethylation products do not change in
the intrinsically aging sun-protected human dermis or in in vivo aging human fibroblasts.
However, the global level of 5hmC was estimated with the dot-blot and colorimetric meth-
ods, both widely used but not adapted to detect subtle changes, which could, therefore,
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be overlooked. Nevertheless, the distribution of 5hmC in DNA of fibroblasts changed
with age. We identified several differentially hydroxymethylated sites; approximately half
of them were hyper, and half were hypo-hydroxymethylated. This finding agrees with
data regarding single differentially hydroxymethylated CpG sites in human bone marrow
mesenchymal stem cells, which are almost as often hyper- as hypo-hydroxymethylated
in cells of older donors [26]. However, contrasting data were obtained by other authors
with regard to global 5hmC changes. The aging of human peripheral blood mononu-
clear cells is associated with a significant decrease in global 5hmC [27]. Accumulation of
5caC and hypo-hydroxymethylation in DNA was also detected in a longitudinal study in
mice [18]. In turn, evidence indicates that aging is associated with an increase in global
5hmC levels in the human cerebrum and cerebellum, as well as in the mouse hippocam-
pus [28,29]. In contrast, others have not reported aging-related changes in the mouse
brain [30]. Based on these and other data, we hypothesized that aging-related changes in
global DNA 5-hydroxymethylation are cell- and tissue-specific.

Changes in hydroxymethylation result not only from passive but also from active
DNA demethylation, and aging-associated changes in the global amount of 5hmC can
be related to changes in expression of the TET enzymes catalyzing active demethylation.
We did not detect such changes in the human dermis or dermal fibroblasts. In contrast,
other authors have reported that TET2 expression is lower in full-thickness skin of older
mice than in the skin of younger animals, while the expression of TET1 is similar [31].
Older age is associated with lower TET1 and TET3 mRNA levels in human blood cells [27].
Moreover, some researchers have shown that TET1 and TET2 mRNA levels are lower
in the hippocampus of aged mice than their young counterparts, whereas others have
claimed that there are no age-related TET1, TET2, or TET3 mRNA changes in this brain
structure [28,30,32]. Based on limited data, we hypothesized that age-related changes in
TET expression are also cell- and tissue-specific, especially that these enzymes are not
uniformly expressed (https://www.proteinatlas.org). It is also plausible that the inconsis-
tent results regarding global content of DNA demethylation derivatives and expression of
TETs are a result of imperfect methodology or different study designs. Another issue is
that no correlation was detected between the global content of 5hmC and the expression
of either TET [27,28] in our study and other studies. At least two explanations can be
presented for this observation. First, not only the level of expression but also the activity
of each of the TET enzymes, which depends on many factors, as well as the availability
of the necessary co-factors, can play a role in this phenomenon [33–36]. Second, all three
TETs produce 5hmC, but none of them prevail to the extent of allowing detection with
available methodology.

Despite the failure to detect changes in the global amount of 5hmC, we detected
changes in the distribution of this DNA modification. Because our additional goal was
to verify if different methods of analyzing the same raw data yield the same or divergent
results, we searched for differentially hydroxymethylated regions using two different
algorithms. We showed that only about 10% of the DHMRs were identified by both
DiffBind and MEDIPS when the same or similar settings and the same statistical methods
were used. This result points to the critical role of selecting the proper algorithm and
settings for the hydroxymethylation analysis. Moreover, the lack of a standardized method
may make it difficult or even impossible to compare results between laboratories.

We showed that DHMRs were mostly located in intergenic regions and introns of
dermal fibroblasts and were most commonly associated with promoter-flanking regions,
CTCF-binding sites, and the H3K4me1 histone mark. A DiffBind analysis showed that
hypo-hydroxymethylated DHMRs were significantly enriched in intergenic regions and
CTCF-binding sites compared to the randomly generated regions. In turn, MEDIPS identi-
fied significantly enriched hyper-hydroxymethylated DHMRs in introns and intron–exon
boundaries. None of these enrichments have passed the FDR correction. An analysis
of individual CpG sites in bone marrow mesenchymal stem cells obtained from eleven
young and six older patients showed that 1631 sites were differentially hydroxymethylated,
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and such sites were preferentially located in intergenic regions, but, when located in the
gene, they were preferably present in gene bodies than in promoter regions. Moreover,
differentially hydroxymethylated cytosine residues were associated with the active histone
mark H3k4me1 [26], which was supported by our findings. These authors also found
a significant association with enhancers.

Some of the identified DHMR-associated genes are expressed ubiquitously, while the
expression of others is restricted to particular tissues or organs, including or excluding
fibroblasts. Moreover, they are involved not only in pathways related to fibroblast function
but also in other pathways. Therefore, we hypothesized that the identified DHMRs should
be treated as aging markers rather than functional indicators of the direction of aging-
related changes in skin fibroblasts. To further support our hypothesis, we analyzed the
expression of DHMR-associated genes identified by both algorithms and all settings that
should be active in fibroblasts. We found that the 5hmC level was lower in the intron of the
CHM gene, while this gene expression was higher in older than in younger individuals.
As previously published data indicate that 5hmC level is increased in gene bodies of
actively transcribed genes, our results regarding CHM were not in agreement with these
data [11]. In addition, no age-associated difference in expression of RSRP1 and MTPAP was
observed, while 5-hydroxymethylation in their bodies increased in old cells, a constellation
also not in agreement with previous data [11]. Finally, the expression of TMEM50A
associated with the highest number of DHMRs was also similar in young and old cells.
However, in this case, DHMRs identified in silico as potentially interacting with this
gene were located quite distantly and may not have had an actual effect on its activity.
Alternatively, the effects of many DHMRs could abolish each other. Therefore, further
experiments are needed to determine the kind of functional consequences that occur due
to hydroxymethylation changes.

Our study had some limitations. First, global DNA modification levels were assessed
by the dot blot and colorimetric methods, which are not precise, and slight differences
could go unnoticed. Second, we compared cultures from only five young and five older
donors in our search for DHMRs. However, it should be emphasized that our model had
two advantages. First, we studied human, not animal cells. Second, the cells originated
from young and age-advanced individuals and were cultured for a limited time; therefore,
they more closely resembled the aging of a living human cells than cultures aged in vitro,
which are commonly used in aging studies.

In conclusion, we showed for the first time that aging of human dermis and dermal
fibroblasts is not associated with marked changes in global amounts of 5mC-derived
intermediates of demethylation or expression of TET enzymes. However, aging was
associated with a significant change in the distribution of 5-hydroxymethylcytosine in
genomic DNA. Whether or not the identified DHMRs have functional consequences or are
marker changes requires further investigation.

4. Materials and Methods
4.1. Dermis Samples

Skin samples were obtained from the sun-protected suprapubic or groin areas of
67 individuals (36 women and 25 men, 22–94 years) undergoing elective surgery due to
reasons unrelated to this project, such as hernia or plastic surgery. All skin donors were
free of local and systemic diseases that could affect the skin condition.

4.2. Fibroblast Isolation and Cell Culture

Dermis samples from eight young (Y, 22–35 years) and seven older (O, 74–94 years) in-
dividuals were processed according to a previously published protocol [37], with
modifications—samples were digested with dispase II (Sigma-Aldrich, St. Louis, MO,
USA) at 4 ◦C, overnight, and then digested with collagenase IV (Sigma-Aldrich) at 37 ◦C,
overnight. Cells from passages 4 and 5 were used in all experiments [38].
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4.3. TET Activity Assay

Nuclear extracts were isolated from dermal fibroblasts using the EpiQuik Nuclear
Extraction Kit II (EpiGentek, Farmingdale, NY, USA). The TET activity assay was performed
with the colorimetric Epigenase 5mC-Hydroxylase TET Activity/Inhibition Assay Kit
(EpiGentek) according to the manufacturer’s instructions. Absorbance at 450 nm and
655 nm (reference) was read in the Epoch microplate spectrophotometer (BioTek, Winooski,
VT, USA).

4.4. Isolation of DNA and Dot-Blot Evaluation of Global DNA Modifications Content

Approximately 100 mg of the dermis was homogenized in the TissueLyser II (Qia-
gen, Hilden, Germany) in PBS at 4 ◦C, then digested with proteinase K (EurX, Gdańsk,
Poland) for 16 h at 55 ◦C. DNA was isolated using the Tissue DNA Purification Kit (EurX).
DNA was also isolated from primary fibroblast cultures using the Sherlock AX isolation kit
(A&A Biotechnology, Gdynia, Poland).

DNA (100 ng) was denatured in 0.4 M NaOH and 10 mM EDTA for 10 min at 100 ◦C,
neutralized with 2 M ammonium acetate, applied to a nitrocellulose membrane on the
Bio-Dot instrument (Bio-Rad, Hercules, CA, USA), and UV-crosslinked. Dot-blots were
blocked and then incubated with anti-5mC (1:2000, Abcam, Cambridge, UK) anti-5hmC,
anti-5fC, or anti-5CaC antibodies (1:10,000, Active-Motif, La Hulpe, Belgium). Incubation
with an anti-ssDNA antibody served as a loading control (1:1000, Enzo, New York, NY,
USA). Next, the blots were washed in TBST and incubated with an appropriate secondary
antibody. Signals were detected using the enhanced chemiluminescent (Bio-Rad) and
GeneGnome Chemiluminescence imaging systems (Syngene, Cambridge, UK). The quan-
titative analysis was performed using Image Studio™ Lite software (LI-COR, Lincoln,
NE, USA).

4.5. Colorimetric Evaluation of Global 5mC and 5hmC Content

Global 5mC level was measured with the colorimetric Methylated DNA Quantification
Kit (Abcam), and 5hmC level was measured with colorimetric Global DNA Hydroxymethy-
lation Assay Kit (Abcam) according to the manufacturer’s protocols. DNA (100 ng) from
each fibroblast culture was used in each test. Absorbance at 450 nm was evaluated using
the Epoch Microplate Spectrophotometer (Bio Tek).

4.6. Isolation of Proteins and Immunoblot

For total protein isolation, a 100 mg dermis sample was homogenized in 500 µL RIPA
buffer supplemented with a protease inhibitor mix (Roche, Mannheim, Germany) in the
TissueLyser II (Qiagen) at 4 ◦C for 5 min, and centrifuged at 14,000× g for 20 min at 4 ◦C.
Approximately one million fibroblast cells suspended in 500 µL RIPA buffer supplemented
with the protease inhibitor mix were incubated on ice for 10 min with vortexing every 2 min
and then centrifuged at 400× g for 20 min at 4 ◦C. The protein concentration was determined
using the BCA Protein Assay kit (Thermo Scientific, Waltham, MA, USA). Soluble proteins
(30 µg of dermis extract or 20 µg of fibroblasts extract) were used for electrophoresis
and transferred to membranes according to standard procedures. The membranes were
blocked and incubated with anti-TET1 (1:1000, Thermo Fisher, Rockford, IL, USA), anti-
TET2 (1:1000, Active Motif), anti-TET3 (1:1000, Abiocode, Agoura Hills, CA, USA) or
anti-GAPDH (1:1000, Santa Cruz Biotechnology, Dallas, TX, USA) primary antibodies,
followed by washing in TBST and incubation with appropriate secondary antibodies.
Expression of GAPDH served as internal control. Signals were detected as described above.

4.7. Immunofluorescence

Skin fragments were deep-frozen and cut using the Cryocut 1800 (Leica, Reichert-Jung,
Germany) into 20 µm slices that were placed onto glass slides covered with poly-α-lysine.
Isolated skin fibroblasts (0.1 × 105 per well) were seeded on coverslips placed in a 24-well
dish. Tissue slices and fibroblasts attached to the coverslip were stained following standard
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procedures. In short, tissue sections and fibroblasts were fixed in 4% paraformaldehyde,
washed, permeabilized with 0.5% Triton X-100, incubated in 4 N HCl, neutralized, blocked
with 10% goat serum, 3% BSA, and 0.1% Triton X-100, then incubated overnight at 4 ◦C
with anti-5mC (1:100, Abcam) and anti-5hmC (1:300, Active Motif). The fibroblasts were
also stained with antibodies against the heterochromatin markers HP1 (1:100, Santa Cruz
Biotechnology) and MacroH2A (1:100, Santa Cruz Biotechnology). Then, appropriate sec-
ondary antibodies (5mC: 1:2000 anti-mouse Alexa Fluor 488 (Life Technologies, Rockford,
IL, USA), 5hmC: 1:2000 anti-rabbit Alexa Fluor 546 (Life Technologies) or 1:500 anti-rabbit
Alexa Fluor 633 (Invitrogen, Eugene, OR, USA), HP1: 1:1000 anti-mouse Alexa Fluor
488 (Invitrogen), MacroH2A: 1:1000 anti-mouse Alexa Fluor 546 (Invitrogen)) were used.
Fluorescence was analyzed using the LSM 780/ELYRA PS.1 confocal microscope (Zeiss,
Jena, Germany).

A total of 100 nuclei labeled with anti-5mC and anti-5hmC antibodies were analyzed
for fluorescence intensity in dermis fragments of eight young (Y, 23–35 years) and seven
older (O, 75–94 years) individuals. Mean fluorescence was calculated using the ZEN 2012
version BLUE program (Zeiss). Cells in hair follicles, sweat glands, sebaceous glands,
blood vessels, as well as inflammatory infiltrates, were not evaluated.

4.8. RNA Isolation, cDNA Synthesis, and Real-Time PCR

RNA was isolated from 100 mg of the dermis or 106 fibroblasts per isolation using
the Direct-zol RNA MiniPrep kit (Zymo Research, Irvine, CA, USA), according to the
manufacturer’s protocol. Reverse transcription was performed with 200 ng of total RNA
using the Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Fisher). Real-time
PCR was performed with 1 ng template cDNA, the primers listed in Supplementary
Table S2, and the LightCycler 480 Sybr Green I Master Kit (Roche) in the Light Cycler
480 Instrument II (Roche). The PCR cycles were: initial denaturation at 95 ◦C for 5 min,
then 45 cycles of 12 s at 95 ◦C, 12 s at the suitable temperature (Supplementary Table S2),
12 s at 72 ◦C, and one melting curve cycle. All reactions were performed in duplicate.
Expression of TBP served as an internal control.

4.9. hMeDIP and Bioinformatics Analysis

DHMRs were searched for in DNA isolated from fibroblasts of five young (Y, 22–
35 years) and five older (O, 74–94 years) individuals. The hMeDIP-seq service was per-
formed by the NXT-Dx Co. (Gent, Belgium). The paired-end 50 bp sequence reads were
mapped using STAR (v2.5) software. Peaks were generated using the MACS14 (Model-
based Analysis of ChIP-Seq) peak caller [39]. The differential analysis of the hMeDIP-seq
data was performed with the R packages DiffBind [40] and MEDIPS [41]. For DiffBind,
a consensus peakset for the differential analysis was created from the 5hmC peaks identi-
fied by MACS14, and only peaks present in at least three individuals were used in further
analysis. The analysis was performed in two variants—for the full length, “wide window”
(mean size 450 bp) fragments and short, “narrow window” (50 bp) fragments re-centered
around the strongest enrichment. The first variant corresponded to the mean length of the
sequenced DNA fragments, while the second variant allowed for a more precise analysis of
shorter genomic features, such as regulatory elements and intron-exon boundaries. For the
MEDIPS analysis, reads were extended to 450 bp, and the genome was divided into wide
(450 bp) and narrow (50 bp) window sizes. Differential analysis was performed for regions
present in at least five counts in the same individual. For both packages, library size was
normalized to the full library size using the TMM (trimmed mean of M-values) method.
The statistical analysis was performed with the EdgeR algorithm. p-values were corrected
using the false discovery rate (FDR) method. The threshold for the adjusted p-value was
set to 0.1 [18].

Annotation regarding histone marks was obtained from http://www.roadmape
pigenomics.org/, and annotations of regulatory features were obtained from the En-
sembl Regulatory Build [42]. Genic features were obtained from the UCSC knownGene
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database for the hg38 human genome (https://bioconductor.org/packages/release/data
/annotation/html/TxDb.Hsapiens.UCSC.hg38.knownGene.html), and Ensembl release
96 [43]. CpG annotations were obtained from the AnnotationHub Bioconductor pack-
age (https://www.bioconductor.org/packages/devel/bioc/manuals/AnnotationHub/m
an/AnnotationHub.pdf). The identified DHMRs were annotated with the Annotatr R
package from Bioconductor. Random regions were generated by the locus overlap analysis
(LOLA) R package, which provides an automatable enrichment analysis for genomic region
sets [44].

Gene annotations for gene ontology were obtained from the KnownGene database
and the EnsDb.Hsapiens v.86 Ensembl-based annotation package. Gene annotation of
potentially regulated genes was performed with the ChiPpeakAnno [45] package and the
rGREAT package [25]. The over-representation test of the Gene Ontology pathways was
performed with the ClusterProfiler package. A heatmap of the DHMRs identified by the
DiffBind package was generated using the Bioconductor ComplexHeatmap package for R
software [46]. Graphs were prepared using ggplot2 R library [47].

4.10. Statistical Analysis

The data distributions were determined with the Shapiro–Wilk normality test.
Student’s t-test was used to compare between groups of normally distributed data, and the
Mann–Whitney U test was used for skewed distributions. Because of the skewed distribu-
tion, the correlation analysis was performed using Spearman’s rank correlation coefficient
analysis. Calculations were performed in Prism 5 (GraphPad Software, Inc., San Diego, CA,
USA). Linear regression analysis was conducted in the R-commander package. The differ-
ential binding affinity analysis was performed with the DiffBind R package and the EdgeR
algorithm, and p-values and FDR values were assigned to each candidate binding site.
We used EdgeR with an FDR correction for the MEDIPS package analysis. The significance
of enrichment was verified with Fisher’s exact test using the LOLA R package. All 5hmC
peaks identified in fibroblasts were used as a background set. The level of significance for
all analyses was established at a corrected p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-00
67/22/1/78/s1.
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