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Abstract
Neutrophil cytosolic factor 4 (NCF4) is component of the nicotinamide dinucleotide phos-

phate oxidase complex, a key factor in biochemical pathways and innate immune

responses. In this study, splice variants and functional single-nucleotide polymorphism

(SNP) of NCF4 were identified to determine the variability and association of the gene with

susceptibility to bovine mastitis characterized by inflammation. A novel splice variant, desig-

nated as NCF4-TV and characterized by the retention of a 48 bp sequence in intron 9, was

detected in the mammary gland tissues of infected cows. The expression of the NCF4-refer-
encemain transcript in the mastitic mammary tissues was higher than that in normal tis-

sues. A novel SNP, g.18174 A>G, was also found in the retained 48 bp region of intron 9.

To determine whether NCF4-TV could be due to the g.18174 A>Gmutation, we constructed

two mini-gene expression vectors with the wild-type or mutant NCF4 g.18174 A>G frag-

ment. The vectors were then transiently transfected into 293T cells, and alternative splicing

of NCF4 was analyzed by reverse transcription-PCR and sequencing. Mini-gene splicing

assay demonstrated that the aberrantly spliced NCF4-TV with 48 bp retained fragment in

intron 9 could be due to g.18174 A>G, which was associated with milk somatic count score

and increased risk of mastitis infection in cows. NCF4 expression was also regulated by

alternative splicing. This study proposes that NCF4 splice variants generated by functional

SNP are important risk factors for mastitis susceptibility in dairy cows.

Introduction
Mastitis, a prevalent and complex inflammatory disease of the mammary gland, is a conse-
quence of microbial infection and leads to significant economic loss of dairy herds. The innate
immune system is the first line of defense against invading pathogens [1]. Nicotinamide dinu-
cleotide phosphate (NADPH) oxidase is an enzymatic complex with a critical role in innate
immunity. Phagocyte NADPH oxidase catalyzes the reduction of oxygen to O2

− and then gen-
erates reactive oxygen species (ROS), which are key components of phagocytic microbicidal
activity [2]. Studies in animal models and in vitro have confirmed the long-standing clinical
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observation that the NADPH oxidase is critical for defense against catalase-positive bacteria
and fungi [3–5]. The enzyme is composed of two membrane-spanning subunits, namely,
gp91-phox and p22-phox, which are encoded by CYBB and CYBA, respectively, as well as
three cytoplasmic subunits, namely, p40-phox, p47-phox, and p67-phox, which are encoded by
NCF4, NCF1, and NCF2, respectively. NCF4, also known as p40phox, is an important gene of
the NADPH oxidase complex [6]. NCF4, a key factor in biochemical pathways and innate
immune responses, is predominantly expressed in bone marrow cells, including neutrophils,
monocytes, basophils, eosinophils, mast cells, megakaryocytes, B cells, and T cells [7,8]. NCF4
specifically interacts with neutrophil cytosolic factor 2 (NCF2/p67-phox) to form a complex
with neutrophil cytosolic factor 1 (NCF1/p47-phox), which then interacts with the small G
protein RAC1 [9,10]. During bacterial infection, this complex is translocated to the cell mem-
brane of phagocytic cells, where it partners with gp91phox and p22phox to catalyze the pro-
duction of ROS and facilitate the eradication of invading bacteria [11,12].

Several studies have established that NCF4 is critical for generating superoxides in
NCF4-deficient cell lines and gene-targeted mice [11]. In mice lacking NCF4, the PX domain
mutant prevented PtdIns(3)P binding, and in vitro attack of Staphylococcus aureus by neutro-
phils was reduced to an extent similar to that in the absence of NADPH oxidase activity; more-
over, the elimination of S. aureus was impaired after intraperitoneal injection [13,14]. The
decreased levels of NCF4 could diminish Toll-like receptor (TLR) activation and antigen pre-
sentation because of inadequate ROS generation [15], thereby prolonging the infection period.

Alternative splicing is a key regulatory mechanism used to generate different mature tran-
scripts from the same primary RNA sequence; the process regulates the eukaryotic expression
of immune-related genes and is highly relevant to several diseases, including bovine mastitis
[16–19]. Splicing is mediated by spliceosome, which is assembled from snRNAs and protein
complexes. The spliceosome is regulated by ubiquitously expressed RNA-binding factors,
which interact with cis-acting RNA elements to influence spliceosome assembly at nearby
splice sites [20]. Spliceosomal recognition and RNA binding factors are involved in mutation-
derived and normal alternative mRNA splicing events; however, splicing mutations may alter
constitutive splicing, which results in aberrant splicing and clinically abnormal phenotypes
[21]. Ma et al. [22] revealed the splicing mutation g.8283 C>A in a splice acceptor site of the
PHKG1 intron 9, which resulted in a 32 bp deletion in the open reading frame and generated a
premature stop codon. The aberrant transcript expression induces nonsense-mediated decay,
which could lead to low protein levels and weak enzymatic activity in affected animals. Our
previous study found that SNP c. 1033+2184 C>T in the exonic splicing enhancer (ESE) motif
region yields aberrantly spliced CD46-TV and is involved in the risk of mastitis caused by Strep-
tococcus [23]. An estimated 25% of mutations resumed as missense and nonsense mutations
are splicing mutations [24], which can alter the conserved splice sites at exon–intron junctions.
However, knowledge remains limited with regard to alternative splicing events and characteri-
zation of the NCF4 splicing mutation, as well as their roles on cattle mastitis susceptibility.

In this study, we hypothesized that the bovine NCF4 gene may play an important role in
bovine mastitis susceptibility, which is regulated by alternative splicing. As such, alternative
splicing and splicing-relevant mutation, which can regulate NCF4 expression, should be stud-
ied at the transcriptional level. This study aimed to: (1) investigate whether different splice vari-
ants of the NCF4 gene are present in bovine mammary tissues; (2) analyze the expression
patterns of NCF4 transcripts in healthy and mastitis-infected bovine mammary gland tissues;
and (3) explore functional genetic variants associated with cow mastitis susceptibility. There-
fore, we attempt to clarify the potential molecular mechanism of NCF4 expression and its rela-
tionship to mastitis caused by pathogenic bacterial infection.
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Materials and Methods

Ethics statement
All experiments were performed according to the Regulations for the Administration of Affairs
Concerning Experimental Animals published by the Ministry of Science and Technology,
China in 2004 and approved by the Animal Care and Use Committee from the Dairy Cattle
Research Center, Shandong Academy of Agricultural Sciences, Shandong Province, China.

Sample collection
Mammary tissue samples were collected from the mammary tissues of six normal and six mas-
titis-infected first-lactating Chinese Holstein cows from a commercial bovine slaughter farm in
Jinan, Shandong Province, China. We obtained permission from this slaughterhouse to use the
animal parts. Cows were classified based on clinical symptoms and pathogenic bacteria from
the milk culture test. The normal cows did not present any clinical symptoms (heat, pain, red-
ness, and swelling of the udder, as well as milk clotting) and was not affected with pathogen
infection, as indicated in the culture test. Cows diagnosed with mastitis were first identified
based on clinical signs, such as heat, pain, redness, or swelling of the mammary glands, accom-
panied by the abnormal color or clotting of the milk. The milk isolates of bovine mastitis mam-
mary areas were further tested for pathogenic bacteria by cell culture. The mammary tissues
were immediately frozen in liquid nitrogen. Total RNA was extracted from 12 mammary tis-
sues by using RNAsimple Total RNA Kit (Tiangen, Beijing, China) according to the manufac-
turer's instructions. RNA concentrations were measured with the Biophotometer (Eppendorf).
RNA quality was monitored by visualization of ethidium bromide-stained bands in 1% agarose
gels after electrophoresis. The samples were stored at −80°C.

A total of 340 Chinese Holstein cows (between 4 and 7 years old, first to fourth parity) from
17 sires were selected from five dairy cattle farms; these farms had complete lactation dairy
herd improvement records and were located within the Shandong Agricultural Development
Area, P. R. China. Blood samples were collected from the jugular vein with permission from
the owners of the animals. Genomic DNA was isolated with the Tianamp Genomic Extraction
Kit (Tiangen, Beijing, China). Genomic DNA content was estimated spectrophotometrically
and diluted to 50 ng/ml. The DNA samples were stored at −20°C for subsequent analysis. Data
on milk SCC, an indicator of mastitis infection, were provided by the Dairy Herd Improvement
Laboratory, Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences. The
SCC values were transformed into SCS values, which were calculated with the following equa-
tion: SCS = log 2 (SCC/100) + 3, where SCC is expressed in cells/μl [25]. The corresponding
SCS from dairy herd improvement records were used for association analysis.

Identification of splice variant
First-strand cDNA was synthesized with the PrimeScript RT Master Mix first-strand cDNA
synthesis kit (TaKaRa, Dalian, China). The synthesized cDNA was subjected to PCR with a
pair of specific primers NCF4-cDNA (Table 1) to amplify the fragment of the bovine NCF4
gene (GenBank accession No. NM_001045983.1). DNA bands of PCR products were separated
with 1% agarose gel electrophoresis and eluted with the Gel Extraction Kit (BioTeke, Beijing,
China). The identification of splice variants was performed according to our previous method
[26]. The brief process is as follows. After purification, the PCR products were subcloned into
the pEASY-T3 cloning vector (TaKaRa, Dalian, China). The mixture was transformed into E.
coli DH5α. Positive clones were selected and sequenced by BGI Ltd. The sequenced results
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were compared with the reference NCF4mRNA sequence using the DNAMAN v5.2.2 software
(LynonBiosoft) for identification of splice variants.

Relative expression of bovine NCF4 transcripts
qPCR was conducted to investigate the relative expression of NCF4 transcripts in the healthy
and mastitis-infected bovine mammary gland tissues. The qPCR protocol and calculation of
relative expression were previously described by Gao et al. [27]. Briefly, qPCR was performed
with SYBR green (TaKaRa, Dalian, China) on a Roche LightCycler 480 machine (Roche
Applied Science, Mannheim, Germany). The following qPCR profiles were used: 50°C for
2 min; 94°C for 3 min; followed by 40 cycles of 94°C for 30 s, 55°C for 40 s, 68°C for 15 s. The
last stage for the dissociation curve analysis was 95°C for 15 s, 60°C for 15 s, and 95°C for 15 s.
All qPCR reactions were performed in triplicate. The housekeeping gene β-actin was used as
reference to normalize data. The template that did not undergo the reverse transcription reac-
tion served as the negative control. Data were analyzed using the 2-ΔΔCt method.

Analysis and prediction of NCF4 splice variants
The translation of NCF4 splice variant sequence to a protein sequence was performed by
ExPASy software (http://web.expasy.org/translate/). The secondary protein structure of bovine
NCF4 splice variants was predicted with SWISS-MODEL (http://swissmodel.expasy.org/).
Alterations in the binding site of the splicing factor were predicted by ESEfinder 3.0 (http://
rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi), and alternative splice site prediction was
achieved with ASSP (http://wangcomputing.com/assp/index.html).

Screening and genotyping of splice mutation and association analysis
During the search for alternative splice variants of the NCF4 gene, we isolated and sequenced
NCF4 cDNA from mammary gland tissue samples and found one SNP g.18174 A>G in the
retained 48 bp region of intron 9. To test if the SNP g.18174 A>G was also present in the geno-
mic DNA, we designed the primer pair NCF4-SNP (Table 1) to amplify the region adjacent to
intron 9 and exon 10 of the NCF4 gene. The PCR products from 10 DNA samples were
sequenced to verify the authenticity of the SNP.

Direct sequencing of PCR product containing the splicing mutation fragment was used for
genotyping of SNP g.18174 A>G. The association between the genotypes and SCS was

Table 1. List of primer sets used in this work.

Primer Primer sequences (50–30) Target Fragment size
(bp)

NCF4- cDNA F: GAGGCTAGCTGGAGGGAAGT R:
CAGCAGGTCTGTCCAACTCA

NCF4 gene full length cDNA
amplification

1228

β-actin gene F: GCACAATGAAGATCAAGATCATC R:
CTAACAGTCCGCCTAGAAGCA

β-actin gene qPCR 173

NCF4- reference F: CACCAACTGGCTACGCTGCTA R:
TCTCTGGAACTCCCGCCTCA

Reference transcript qPCR 133

NCF4- TV F: CTGGCTACGCTGCTATTACTATG R:
TCTCTGGAACTCCCGCCTGG

TV transcript RT-PCR 175

NCF4- SNP F: CCAGCTCTGACCCCTTCCAATTC R:
CCCCCTCAGCGTCACGGTAG

Genotyping of the SNP g.18174 A>G 178

pSPL3 vector-
specific

SD6: TCTGAGTCACCTGGACAACC SA2:
ATCTCAGTGGTATTTGTGAGC

Mini-gene expression analysis 263

doi:10.1371/journal.pone.0143705.t001
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analyzed using a general least-square model procedure of the SAS statistical analysis software
(SAS Institute Inc, Cary, NC, USA). The linear model is expressed as follows: Yijkl = μ + Gi +
Pj + Ek + Fl + eijkl, where Yijkl is the observed value; μ is the overall mean; Gi is the fixed effect of
genotype; Pj is the fixed effect of age; Hk is the effect of farm; El is the fixed effect of season; eijkl
is the random residual error. Values with P< 0.05 were considered significant.

Splicing mini-gene reporter assay
Generation of mini-gene constructs. To evaluate the in vitro splicing with mini-genes, we

amplified a 178 bp genomic fragment spanning the parts of intron 9 and exon 10 of the NCF4
gene from bovine genomic DNA. After digestion with EcoRI and XhoI, the segment with the
wild-type AA or the mutant type GG of the NCF4 gene were cloned into the pSPL3 vector
(Invitrogen, CA, USA). The clones were transformed into Trans5a cells, plated on agar con-
taining 100 mg/ml ampicillin, and incubated overnight at 37°C. Positive colonies were cultured
overnight in lysogeny broth at 37°C. Plasmids were isolated with the Endo-free Plasmid Mini
Kit II (Omega, USA). The constructs were directly sequenced to verify the presence of the cor-
rect sequences.

Cell culture and transfection. HEK 293 T cells were cultured in DMEMmedium, with
10% fetal bovine serum (FBS), penicillin (100 U/l), and streptomycin (100 mg/l) at 37°C in 5%
CO2 atmosphere. For the transfection assay, cells were transferred to six-well culture plates,
grown to approximately 80% to 85% confluence and transfected with 4 μg of wild-type or
mutant mini-gene constructs with the Lipofectamine 2000 Transfection Reagent (Invitrogen,
CA, USA) for 5 h in Opti-MEMmedium (Gibco, USA), according to manufacturer’s instruc-
tions. As a control, some cells were transfected with pSPL3 lacking the NCF4 insert and some
cells were transfected with nothing. All transfections were performed in triplicate and repeated
at least thrice in independent experiments.

Mini-gene expression analysis. Cells were collected at 24 h post-transfection, and total
RNA was extracted with the RNAsimple Total RNA kit (Tiangen, Beijing, China). RNA was
reverse transcribed into cDNA. RT-PCR was performed with the PrimerScript RT reagent Kit
with gDNA Eraser (TaKaRa, Dalian, China) and the pSPL3 vector specific primers SD6 and
SA2 (Table 1). RT-PCR products were separated by electrophoresis on 2% agarose gels, and
each DNA band was analyzed by direct sequencing after extraction with a Gel Extraction kit
(Omega, USA).

Results

Identification of bovine NCF4 splice variants
cDNA from mammary tissues was used as the template for PCR amplification, which yielded
one fragment of approximately 1200 bp. We compared the reference genomic sequence of
bovine NCF4 (GenBank accession number NC_007303.5) and the reference cDNA sequence
(GenBank accession number NM_001045983.1). We found two NCF4 transcripts, which were
designated as NCF4-reference and NCF4-TV, in mammary gland tissues (Fig 1). The splice var-
iant NCF4-TV retained a 48 bp fragment of intron 9. The sequence of NCF4-TV was submitted
to the National Center of Biotechnology Information (GenBank accession number KT351731).

The comparison of the bovine NCF4-reference and NCF4-TV coding sequences was shown
in S1 Fig. We also predicted the amino acids sequence and secondary structure of the putative
protein isoforms of NCF4-reference and NCF4-TV with ExPASy and SWISS-MODEL, respec-
tively. The amino acids sequence (Fig 2A) and secondary structure differed between the two
isoforms (Fig 2B). The NCF4-reference isoform encoded a 339 aa protein. Owing to introducing
a new stop codon, the putative NCF4-TV isoform contained 285 aa, of which 64 aa were deleted
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from the reference sequence and 10 aa were added from retention portion of intron 9. The iso-
forms shared the same PX and SH3 conserved domains, but NCF4-TV lost the PB1 domain.

Relative expression of the NCF4-reference transcript in mammary gland
tissues
Given that fewer NCF4-TV splice variant clones were found compared with the number of
NCF4-reference clones, we considered NCF4-reference as the main transcript in bovine mam-
mary tissues. Quantitative real-time PCR (qPCR) was performed to determine the relative
expression of the bovine NCF4-reference transcripts in six normal and six mastitic bovine
mammary gland tissues (Fig 3). The expression level of NCF4-reference transcript was rela-
tively higher in mastitic bovine mammary tissues than in the normal tissues (P< 0.05).

Effect of mutation on alternative splice sites
To identify the molecular cause of the aberrant NCF4 splice variant, we sequenced bovine
genomic DNA and found a novel SNP g.18174 A>G in the retained 48 bp region of intron 9.
The SNP g.18174 A>G was submitted to the National Centre for Biotechnology Information
(submitter SNP numbers: ss 1815612795). ESEfinder 3.0 showed that the SNP was located in
the ESE motif region. The introduction of allele G, relative to allele A, in the locus g.18174
A>G increased the three binding sites for auxiliary splicing proteins, namely, SRSF1, SRSF1
(IgM-BRCA1), and SRSF5 (Fig 4). The splice site score (8.701) of the mutant sequence was
higher than that of the wild-type (8.535) via the Alternative Splice Site Predictor (ASSP) analy-
sis. Therefore, the mutation strengthened the role of the constitutive acceptor splice site, which

Fig 1. Diagram representation of the alternative splicing pattern ofNCF4 transcripts and results of SNP g.18174 A>G sequencing in the retained 48
bp sequence in intron 9 of the bovineNCF4 gene. (A)Genomic structure of the bovineNCF4 gene. (B) Splicing pattern of theNCF4-TV splice variant and
the sequencing result of SNP g.18174 A>G. TheNCF4-TV transcript retains a 48 bp sequence from intron 9. The position of the A nucleotide in the start
codon (ATG) is defined as +1.

doi:10.1371/journal.pone.0143705.g001
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is located at the 4 bp sequence downstream of the SNP, thereby modifying the NCF4-TV splic-
ing of mature mRNA during NCF4 transcription.

Fig 2. The amino acids sequence, protein structures and domains of the bovineNCF4-isoforms. (A) The amino acids sequence of bovine
NCF4-reference and TV transcripts. The NCF4-reference isoform encoded a 339 aa protein andNCF4-TV isoform encoded a 285 aa protein. The amino
acids sequence of red and blue marks were differed between the two isoforms. (B) The secondary structures and domains of putative isoforms of NCF4-
reference andNCF4-TV.

doi:10.1371/journal.pone.0143705.g002
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Mini-gene splicing assay
To test whether the retention of the 48 bp NCF4-TV splice variant in intron 9 was caused by
the internal mutation g.18174 A>G, we assessed the effect of the variant on splicing through
the mini-gene splicing assay. Two mini-gene expression vectors, which carried either the wild-
type AA or the mutant type GG fragment of NCF4, were constructed and transiently trans-
fected into 293T cells (Fig 5A). The mini-gene transcripts in the transfected cells were analyzed
by RT-PCR with the pSPL3 vector-specific primers SD6 and SA2. We found two amplicons of
393 and 441 bp from the mutant GG construct and only one amplicon of 393 bp from the
wild-type AA construct (Fig 5B). Sequencing analysis revealed that the truncated amplicon
(393 bp) corresponded to the portions of intron 9 (77 bp) and exon 10 (53 bp) of bovine NCF4
and the empty pSPL3 control (263 bp) sequence, respectively. The second amplicon (441 bp)
included a portion of intron 9 (77 bp), retained portion of intron 9 (48 bp), and a portion of
exon 10 (53 bp) of NCF4, as well as the empty pSPL3 control (263 bp) sequence. The mini-
gene splicing assay demonstrated that SNP g.18174 A>G is responsible for the NCF4-TV aber-
rant splicing, which produces the 48 bp retained portion in intron 9.

Fig 3. Relative expression ofNCF4-reference transcripts in normal andmastitic bovinemammary tissues.Gene-specific transcript levels are
normalized by the expression of the housekeeping gene β-actin in each sample.

doi:10.1371/journal.pone.0143705.g003
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Effect of SNP g.18174 A>G on NCF4 mRNA levels
We genotyped six Chinese Holstein cows, namely, 3 AA, 2 AG, and 1 GG individuals. RT-PCR
analysis with the NCF4-TV primer pair revealed that the NCF4-TV transcript was expressed in
the GG individual compared with the AA individuals (Fig 5C). Furthermore, we performed a
quantification analysis on the expression of NCF4-TV transcript by Image J software. The
results suggest that the NCF4-TV expression is up-regulated by 1.62- and 6-fold in the cows
with the genotype GG compared with individuals with the genotypes AG and AA, respectively.
However, larger sample sets are still needed to confirm the expression quantification.

Fig 4. ESEmotif threshold scores associated withNCF4 genotypes. Bar graphs represent scores above the threshold for the ESEmotifs in the A or G
allele of locus 18174. The red square indicates the introduction of the G allele, relative to the A allele in locus g.18174 A>G, thereby increasing binding sites
to the auxiliary splicing proteins: SRSF1, SRSF1 (IgM-BRCA1), and SRSF5. g.18174 A>G-A sequence: 50 -tgctggacctttcccgaactctgatctctcccacccaggc
gggagttcca-30; g.18174 A>G-G sequence: 50 -tgctggacctttcccgaactctggtctctcccacccaggcgggagttcca-30.

doi:10.1371/journal.pone.0143705.g004
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Association between the SNP g.18174 A>G and milk SCS in Chinese
Holstein cows
To investigate whether SNP g.18174 A>G was associated with mastitis in dairy cows, we evalu-
ated the effects of this SNP on milk SCS values in 340 Chinese Holstein cows. We first ampli-
fied the PCR product containing the splicing mutation fragment and then genotyped each
individual by direct sequencing. The frequencies of the AA, AG, and GG genotypes were
48.24%, 36.76%, and 15.00%, respectively. Subsequently, we analyzed the relationship between
the three genotypes and milk SCS. The individuals with the AA genotype presented lower SCS
values than those with the GG genotype (P< 0.05, Table 2).

Discussion
This study utilized the combined RT-PCR, clone sequencing, mini-gene splicing system in
vitro, and association analysis to characterize a novel NCF4 transcript in mammary gland tis-
sues. We found an SNP in intron 9, which could cause aberrant intron retention. This SNP
produced the splice variant NCF4-TV, which is associated with mastitis susceptibility in cows.

The p40phox protein encoded by NCF4 is a regulatory component of the superoxide-pro-
ducing phagocyte NADPH oxidase, an important multicomponent enzyme system for host
defense [28]. NADPH oxidase generates ROS by catalyzing the one-electron reduction of oxy-
gen into the superoxide anion radical [29]. This multi-subunit complex plays a central role in
the defense mechanisms against invading microbes. Mastitis is an inflammatory disease caused
by various pathogenic microorganisms in dairy cattle. NCF4 is an essential innate immunity
gene with an important role in bovine mastitis.

The human NCF4 gene shows a pattern of diversity [1], with four splice variants deposited
in the Ensembl database (www.ensembl.org). The four different human transcripts encoded
four types of protein with sizes of 339 aa, 348 aa, 212 aa, and 166 aa. In the present study, a
novel NCF4 transcript variant was identified in the mammary gland tissues of Chinese Hol-
steins. The multiple mRNA transcripts produced by alternative splicing from a single primary
RNA may exhibit diverse functional properties [30,31]. SWISS-MODEL predicted that the
putative NCF4-TV isoform demonstrated different protein secondary structures, without a
functional domain, because of intron retention. Two NCF4 isoforms share the common PX

Fig 5. SNP g.18174 A>G induces aberrantNCF4-TV splicing. (A) Schematic representation of theNCF4mini-genes used in the functional splicing assay.
The wild-type and mutant fragments contained 125 bp of intron 9 and 53 bp of exon 10; fragments harboring the A or G allele were separately cloned into the
EcoRI and XhoI cloning sites of the pSPL3 vector. Two mini-gene expression vectors were transiently transfected into 293T cells. (B) RT-PCR analysis of the
NCF4 spliced transcripts on a 2% agarose gel. RT-PCR products were amplified from the total RNA of 293T cells transfected with the wild-type and mutant
(g.18174 A>G) NCF4mini-gene constructs. The size of the RT-PCR product (441 bp) corresponded to the amplified portion of intron 9 (77 bp), the retained
portion of intron 9 (48 bp), the amplification of exon 10 (53 bp), and the pSPL3 control plasmid (263 bp). The size of the RT-PCR product (393 bp)
corresponded to the amplified portion of intron 9 (77 bp), the amplification of exon 10 (53 bp), and the pSPL3 control plasmid (263 bp). (C) Electrophoresis of
RT-PCR products showing the presence and abundance of NCF4-TV transcript in bovine mammary samples with three NCF4 SNP g.18174 A>G genotypes.
Expression of the NCF4-TV transcript is highest in mammary samples from GG animals, followed by those from AG and AA individuals.

doi:10.1371/journal.pone.0143705.g005

Table 2. Least squaresmean and standard error of SCS in different genotypes of theNCF4 SNP g.18174 A>G in Chinese Holstein cows.

Genotype Sample number Genotypic frequencies (%) Allelic frequencies (allele) (%) SCS

AA 164 48.24 66.62(A) 4.26 ± 0.27b

AG 125 36.76 4.51 ± 0.42ab

GG 51 15.00 33.38(G) 4.90 ± 0.29a

a,b Means with different superscripts are significantly different (P < 0.05).

doi:10.1371/journal.pone.0143705.t002
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domain, which is important for the basic immunity-associated functions of the NCF4 protein.
But due to lack of specific bovine NCF4 antibody, a western blot analysis had not been done to
detect the presence of both protein variants. This requires us to further study. The novel puta-
tive NCF4-TV isoform would influence several functions because of the lack of the PB1
domain, which is required for the formation of a complex between the p40phox and p67phox
subunits to maximize the activation of NADPH oxidase [32]. The NADPH oxidase activity reg-
ulates phagosomal pH, and the derivative ROS can function as signaling molecules within and
between neighboring immune cells [33]. Meanwhile, reduced ROS levels in these cells may
influence antigen processing, immunoregulation, control of cell activation, and differentiation
[34]. Deletion of the PB1 domain would affect the interaction between NCF4 and NCF2, which
is an important risk factor for increased systemic lupus erythematosus, a typical systemic auto-
immune disease [35]. Subsequently, qPCR analysis showed that the expression of the main
transcript NCF4-reference were up-regulated in mastitic bovine mammary tissues relative to
normal tissues. These results imply that the NCF4 gene is a risk factor for mastitis susceptibility
by altering gene expression at the transcription level by alternative splicing.

Splicing regulation involves multiple splicing factors, including the SR and hnRNP protein
families. Sequence variants, such as SNPs, affect protein-binding sites (or mutations in the
binding proteins themselves) and contribute to aberrant splicing [36]. In the present study, we
found the SNP g.18174 A>G in the retained portion of intron 9 of the NCF4-TV splice variant.
First, we used the ESEfinder software to predict whether the SNP would affect binding capacity
with splicing proteins. The prediction results showed that relative to the A allele, the G allele
increased the number of binding sites to the auxiliary splicing proteins: SRSF1, SRSF1
(IgM-BRCA1), and SRSF5. An intronic mutation (c.903+469T>C) in theMTRR gene, creates
an SRSF1 binding motif, which leads to intron retention [37]. SR proteins (serine/arginine-rich
splicing factor, SRSF) are a family of structurally related and highly conserved cellular splicing
factors and primarily modulate alternative splicing. Therefore, the increased binding of the
three splicing factors may generate the NCF4-TV splice variant.

To analyze further the contribution of SNP g.18174 A>G in the regulation of NCF4-TV, we
constructed two mini-gene expression vectors, which were transiently transfected into 293T
cells and analyzed by RT-PCR. In contrast to the wild-type AA construct, the mutant GG con-
struct permitted the retention of the 48 bp intron 9 sequence. This experiment was consistent
with the predicted results. The SNP g.18174 A>G contributed to the aberrant splicing of
NCF4-TV. The expression of NCF4-TV transcripts in GG individuals was higher than in AA
individuals, thereby further confirming our view.

Mutations that affect alternative splice variants account for at least 15% of disease-related
mutations [36]. The associations reported in GWAS between SNP rs4821544 in human NCF4
and Crohn’s disease confirmed the involvement of NADPH genes in the pathogenesis of com-
mon inflammatory-related diseases [38,39]. Zhang et al. [19] reported that the SNP g.10766
T>C caused the production of the aberrant splice variant NCF1-TV1 and associated with
increased milk somatic cell score in cows. To test whether the identified g.18174 A>G SNP has
an important role in bovine mastitis, we performed association analysis between the three
genotypes and SCS in Chinese Holsteins. The individuals with AA genotypes exhibited lower
SCS values than those with the GG genotypes. During mastitis infection, the recruitment of
neutrophils into the mammary gland increases somatic cell count (SCC), which is an indirect
selection tool for reduced mastitis [40]. The SNP g.18174 A>G of NCF4may contribute to
genome-assisted selection of SNP panels to improve mastitis resistance traits on a breed basis.
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