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Abstract

Dengue fever is a major worldwide public health problem that, as estimated by the WHO,

causes epidemics in over 100 countries, resulting in hundreds of millions of dengue virus

(DENV) infections every year. In China, dengue fever mainly occurs in coastal areas. Recur-

ring dengue outbreaks were reported by Guangdong Province almost every year since the

first epidemic in 1978. DENV infections persisted in Guangzhou in consecutive years since

2000, with the dengue epidemic reaching a historical peak in 2014. Because Guangzhou is

one of the largest cities for opening up in China, understanding the epidemiological charac-

teristics of dengue fever in the city can hopefully provide a significant basis for developing

effective dengue prevention strategies. In this study, a total of 34 DENV strains, including 29

DENV-1 strains and 5 DENV-2 strains, were isolated from a blood samples drawn from

patients who were diagnosed with dengue fever by hospitals in Guangzhou during 2018. To

explore the epidemiological characteristics of dengue fever, the envelope (E) gene obtained

from the isolates was amplified for phylogenetic analysis. The results from the phylogenetic

analysis showed that DENV in Guangzhou was mainly imported from Southeast Asian

countries. Additionally, propagation paths based on phylogeographical analysis suggested

potential local dengue transmission in Guangzhou.

Introduction

Dengue fever, also known as "break-bone fever", is an acute mosquito-borne viral disease

caused by dengue virus (DENV) [1]. Patients infected with DENV can have flu-like symptoms,

including a high fever, headache, and vomiting, which generally last for ten days. In a small
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proportion of cases, the disease develops into dengue hemorrhagic fever (DHF) or dengue

shock syndrome (DSS) [2, 3]. Dengue is principally spread by Aedes aegypti and Aedes albopic-
tus mosquitoes in tropical and subtropical regions where the warm and humid climate indi-

cates favorable mosquito habitat. In other words, dengue fever is also a seasonal infectious

disease, and mosquito densities and climatic conditions are strongly associated with the inci-

dence of dengue fever. In recent decades, dengue fever, as a growing threat to human health,

has presented a tremendous challenge to health service providers throughout the world [4].

According to a published study, an estimated 390 million dengue infections occur in over 100

countries every year [3, 5]. Globally, the vast majority of the world population is exposed to

DENV, making dengue one of the most dangerous vector-borne viral diseases worldwide [4].

Dengue outbreaks have a devastating effect on public health and economic sectors [3]. In the

stricken areas, the disease leads to a slowdown in the local economy as it inflicts a significant

health burden on the population, impairs people’s quality of life and impedes the development

of the tourist industry. With vector management as the primary means to control and prevent

DENV transmission, it should be noted that improper use of insecticides is a waste of

resources and a source of environmental pollution that threatens both human and environ-

mental health [6, 7]. So it is important to know the structure of dengue virus.

DENV, as a member of the genus Flavivirus in the family Flaviviridae, is an enveloped, sin-

gle-stranded, positive-sense RNA virus. The DENV genome is approximately 11,000 nucleo-

tides in length and encodes three structural proteins, namely, the capsid (C), premembrane

(prM), and envelope (E) proteins, and seven nonstructural (NS) proteins (NS1, NS2A, NS2B,

NS3, NS4A, NS4B and NS5) in a single open reading frame (ORF). Specifically, the 5’ end of

the DENV genome encodes the C/prM/E proteins, while the 3’ end encodes the seven NS pro-

tein[8]. There are five DENV serotypes, which are referred to as DENV-1, DENV-2, DENV-3,

and DENV-4, and the distinctions between these serotypes are based on their antigenicity.

Additionally, different serotypes can be further differentiated into different genotypes[9].

In fact, as early as 1978, a case of imported dengue fever was discovered in Xiamen, after

which the Chinese mainland has experienced multiple dengue epidemics in the past few

decades [10]. In addition to the coastal provinces in Southeast China and Taiwan that are

mainly affected by the disease, an increasing geographic expansion to the inland is noted as the

global climate changes [10, 11]. Guangdong Province has been declared a severe epidemic area

by the Chinese Center for Disease Control and Prevention, as it has been frequently attacked

by dengue fever since the first outbreak [12]. Despite the absence of reported dengue fever

cases between 1982 and 1984, 1988 and 1989, and in 1994, 1996, and 1998, the disease has

been a constant threat in Guangdong Province [13]. In Guangzhou, the capital city of Guang-

dong Province, dengue incidence, regardless of the number of DENV infections, has been

reported every year since 2000 [14]. In 2014, Guangdong Province experienced its worst den-

gue outbreak on record, during which different DENV serotypes were detected in the DENV-

infected patients [12, 15]. There were over 46000 dengue fever cases notified nationwide

throughout the year, including up to 45230 cases and 76 imported cases reported by Guang-

dong Province, which exceeds the cumulative number of infections between 1990 and 2013

[14, 16].

DENV infections are simply classified as imported and autochthonous cases according to

patients’ recent travel records. Dengue epidemics refer to continued widespread outbreaks of

dengue fever in areas where DENV affects a large population and is transmitted between peo-

ple by the mosquitoes Aedes aegypti and Aedes albopictus. To date, there are no other DENV

foci in mainland China, except for the reported natural focus in Yunnan Province [17]. As a

result of rapid economic growth, thriving tourism, and the greenhouse effect, there were many

patients infected with dengue fever in Guangdong Province, and a serious outbreak occurred
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in 2014. [18, 19]. The endemicity of dengue in Guangzhou has been heatedly discussed [20]. A

previous study based on phylogenetic analysis suggested the presence of local dengue trans-

mission in Guangzhou [10]. In the present study, DENV strains were isolated from blood sam-

ples drawn from DENV-infected patients who were diagnosed with dengue fever by hospitals

in Guangzhou during 2018. We described the epidemiological characteristics of isolated

DENV based on phylogenetic reconstruction and analysis using a dataset comprised of DENV

sequences downloaded from the GenBank database and those obtained from genome

sequencing.

Materials and methods

1. Sample collection

In this study, all patient samples were approved by the First Affiliated Hospital of Guangzhou

University of Chinese Medicine and Guangdong Hospital of Traditional Chinese Medicine.

All patients had fever> 37.5˚C for less than 72 h. Anti-dengue IgM and IgG enzyme-linked

immunosorbent assay (ELISA) kits were used to confirm dengue infection [21]. A total of 170

samples suspected of having dengue fever occurred during the 2018 outbreak. 55 blood sam-

ples were determined to be positive samples by hospital diagnosis.

Oral informed consent was obtained from all patients who were involved in this study.

2. Virus isolation, RNA extraction and serotyping

Dengue virus was isolated from 55 positive blood samples. To increase virus titer, each

patient’s serum was inoculated into an Aedes albopictus C6/36 cell line cultured in MEM with

10% FBS (Gibco, Carlsbad, CA, USA) and diluted 1:40 in fresh MEM. Next, the medium was

added to C6/36 cells and incubated at 30˚C for 2 h. Then, the residual inoculum was replaced

with fresh MEM containing 2% FBS; the cells were maintained at 30˚C in a humidified atmo-

sphere of 5% CO2 for 5 to 7 days (until significant cytopathic effects (CPE) occurred). Simulta-

neously, the supernatants were collected for RNA extraction after centrifugation at 4000 rpm.

These samples were stored at -80˚C until needed.

Viral RNA was extracted from 200 μl of each supernatant using the QIAamp Viral RNA

Mini Kit (Qiagen, Germany) as instructed by the manufacturer. Then, the RNA was reverse-

transcribed into cDNA by reverse transcriptase at 37˚C for 90 min and then at 70˚C for 10

min. DENV serotyping was carried out by multiplex RT-PCR [22].

3. Sequencing

Using RNA as templates, RT-PCR was performed to amplify the envelope (E) gene. DENV-1

primers were designed for sequencing based on the DENV-1 standard Hawaii strain (Gen-

Bank accession number: KM204119) and DENV-2 strain (GenBank accession number:

KM279569) [10, 22]. E gene sequences of 34 strains were obtained from the patient samples.

The primers used in this article are listed in Tables 1 and 2. These sequences were uploaded to

the GenBank database, and their IDs, i.e., the GenBank accession numbers of the sequences,

are listed in Table 3.

4. Dataset

In the dataset, the new isolates and the sequences of DENV-1 and DENV-2 available from the

GenBank database were aligned and adjusted using MAFFT v7.308 [23] and Aliview to remove

those without a sampling date or geographic location (The length of the E gene sequence is

1485). Recombination Detection Program (RDP v4.36) was employed in recombination
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analysis with a wide range of recombination detection methods, including RDP, Chi-maera,

BootScan, 3Seq, GENECONV, MaxChi, and SiScan [24]. To avoid redundancy, CD-HIT-EST

(http://weizhongli-lab.org/cdhit_suite/cgi-bin/index.cgi?cmd=cd-hit-est) was used to group

sequences from outside China into clusters, with the nucleotide identity threshold of 100%

[25]. A single sequence was randomly chosen from each cluster as a representative of all

sequences that shared the same sampling date and geographic location.

5. Phylogenetic signal assessment and nucleotide substitution model

selection

The accuracy of phylogenetic inference based on the nucleotide sequence dataset is subject to

the saturation level of the phylogenetic signal. Substitution saturation is a crucial factor

because a phylogenetic tree becomes meaningless if the aligned sequences in the dataset lose

phylogenetic information due to substitution saturation. In the present study, the substitution

saturation level of each dataset was assessed with DAMBE and Xia’s test method [26].

Models of nucleotide substitution allow for the calculation of probabilities of change

between nucleotides along the branches of a phylogenetic tree. On this basis, we used the

Akaike information criterion (AIC) to select a best-fit model and created a maximum-likeli-

hood tree (ML tree) with the model. Additionally, a maximum clade credibility (MCC) tree

was generated using the Bayesian Information Criterion (BIC) for model selection. The best-

fit models of nucleotide substitution were estimated with JModeltest v2.1.7 [27]. Subsequently,

the IQ-TREE [28] was employed to determine the best-fit models since a massive quantity of

sequences were deposited in a global dataset, which was beyond the capacity of JModeltest.

6. Phylogenetic tree reconstruction

In search of more information about the samples, we set up a global dataset that involved all

samples and the DENV-1 and DENV-2 sequences available from the GenBank, except those

being removed from the database as redundant sequences. Furthermore, ML trees were con-

structed with best-fit models in RAxML v8.0.9 [29], while the reliability of topology was evalu-

ated using bootstrap values derived from 1000 repetitions. The ML trees were visualized with

FigTree v1.4.2.

Table 1. Primer sequence, and size of RT-PCR product and generated combination of primers.

Virus Primer Primer sequence (from 50 to 30) Size of amplicon &Primer combination Primer position

Dcon-F AGTTGTTAGTCTACGTGGACCGACA 1–25

DENV-1 DENV-1-R CCCCGTAACACTTTGATCGCTCCATT 342 bp Dcon-F and DEN1-R 317–342

DENV-2 DENV-2-R CGCCACAAGGGCCATGAACAG 251 bp Dcon-F and DEN2-R 231–251

DENV-3 DENV-3-R GCACATGTTGATTCCAGAGGCTGTC 538 bp Dcon-F and DEN3-R 514–538

DENV-4 DENV-4-R GTTTCCAATCCCATTCCTGAATGTGGTGT 754 bp Dcon-F and DEN4-R 726–754

https://doi.org/10.1371/journal.pone.0224676.t001

Table 2. Primers used for amplifying and sequencing the complete DENV-1and DENV-2 envelope gene.

Reaction Primer name Sequence (from 50 to 30) Primer position

Amplification & Sequencing DENV1-E-F TGCCATAGGAACATCCATCAC 863–883

DENV1-E-R TCCCAATGGCTGCTGATAGTC 2495–2462

DENV2-E-F AATGGCAGCAATCTTGGCATACACC 747–771

DENV2-E-R ACTGAGCGGATTCCACAAATGCCCT 2504–2480

https://doi.org/10.1371/journal.pone.0224676.t002
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7. Phylogeographic analyses

According to the ML trees obtained from the global dataset, the newly isolated sample

sequences in the DENV-1 and DENV-2 datasets were divided into different clusters (with the

classification of clusters based on bootstrap values and the number of 70% as a cut-off for a

"reliable" branch). A sample sequence was selected from each cluster for nucleotide BLAST on

the NCBI web server, and 100 DENV sequences were downloaded from each BLAST run. On

this basis, the sample sequence of Cluster III was set to match 1000 sequences to gather more

biological information. The downloaded sequences and the samples were combined together

and divided into four datasets for comparison on the MAFFT web server. Phylogenetic signals

of these datasets were detected as described above.

Table 3. The 2018 Guangzhou dengue virus sequences information isolated and uploaded in this study.

ID Accession Serotype Location Collection date Cluster

1–3 MK517719 DENV-1 Guangzhou 2018/9/20 Cluster I

3–8 MK517720 DENV-1 Guangzhou 2018/9/21 Cluster I

4–9 MK517721 DENV-1 Guangzhou 2018/9/21 Cluster I

5–18 MK517735 DENV-1 Guangzhou 2018/9/21 Cluster II

6–19 MK517740 DENV-1 Guangzhou 2018/9/22 Cluster I

7–26 MK517738 DENV-1 Guangzhou 2018/9/22 Cluster II

8–29 MK517744 DENV-1 Guangzhou 2018/9/23 Cluster III

9–32 MK517739 DENV-1 Guangzhou 2018/9/24 Cluster II

1–37 MK517743 DENV-1 Guangzhou 2018/9/24 Cluster III

2–40 MK517750 DENV-2 Guangzhou 2018/9/24 Cluster V

12–43 MK517746 DENV-1 Guangzhou 2018/9/24 Cluster III

3–44 MK517752 DENV-2 Guangzhou 2018/9/25 Cluster V

12–45 MK517747 DENV-1 Guangzhou 2018/9/25 Cluster III

15–48 MK517734 DENV-1 Guangzhou 2018/9/25 Cluster II

4–49 MK517748 DENV-2 Guangzhou 2018/9/25 Cluster IV

17–59 MK517722 DENV-1 Guangzhou 2018/9/26 Cluster I

18–61 MK517723 DENV-1 Guangzhou 2018/9/26 Cluster I

19–64 MK517725 DENV-1 Guangzhou 2018/9/26 Cluster I

20–66 MK517727 DENV-1 Guangzhou 2018/9/26 Cluster I

21–69 MK517730 DENV-1 Guangzhou 2018/9/26 Cluster I

22–81 MK517741 DENV-1 Guangzhou 2018/9/28 Cluster I

23–84 MK517729 DENV-1 Guangzhou 2018/9/28 Cluster I

24–89 MK517726 DENV-1 Guangzhou 2018/9/28 Cluster I

25–93 MK517724 DENV-1 Guangzhou 2018/9/28 Cluster I

26–94 MK517731 DENV-1 Guangzhou 2018/9/28 Cluster I

1–97 MK517733 DENV-1 Guangzhou 2018/10/1 Cluster II

27–107 MK517742 DENV-1 Guangzhou 2018/10/3 Cluster I

28–108 MK517745 DENV-1 Guangzhou 2018/10/3 Cluster III

31–134 MK517728 DENV-1 Guangzhou 2018/10/5 Cluster I

32–135 MK517732 DENV-1 Guangzhou 2018/10/5 Cluster I

5–141 MK517751 DENV-2 Guangzhou 2018/10/6 Cluster V

6–146 MK517749 DENV-2 Guangzhou 2018/10/6 Cluster IV

3–169 MK517736 DENV-1 Guangzhou 2018/10/8 Cluster II

4–170 MK517737 DENV-1 Guangzhou 2018/10/8 Cluster II

IDs in Table 1 are registration numbers when collecting blood samples; the clustering is distinguished according to ML trees.

https://doi.org/10.1371/journal.pone.0224676.t003
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Each dataset was analyzed with TempEst v1.5 to investigate its temporal signal and "clockli-

keness" of ML phylogenies before applying the assumption of a molecular clock into the phylo-

genetic analysis [30]. ML trees generated by RAxML were inputted, and the sample dates of

the sequences were defined. After estimation of the best-fitting root, a linear regression was

performed on the root-to-tip distances of samples versus the date of the isolate, and significant

outliers (sequences) were rejected as they did not fit into the assumption of the molecular

clock.

The spatial diffusion of the time-scaled genealogy was modeled as a continuous-time Mar-

kov chain (CTMC) process with the program BEAST v1.8.3 [31]. The diffusion process along

the phylogenies of the datasets for BLAST was estimated using the Bayesian stochastic search

variable selection (BSSVS) procedure. The uncorrelated lognormal relaxed clock (ULRC)

method was adopted to produce phylogenetic estimates. In addition, we chose a Bayesian sky-

line coalescent model to review the demographic history and ran the Bayesian MCMC chain

for a bulk number of iterations to ensure process convergence. The BEAGLE package was

used to speed up the calculation process [32]. The effective sample size (ESS) was calculated

using TRACER [33], with all parameters showing ESS values > 200 after burn-in in the initial

10% iterations. The MCC tree was summarized using TreeAnnotator v1.8.2 at the burn-in rate

of 10% and was visualized with FigTree v1.4. SPREAD v1.0.6 is used to generate the propaga-

tion path map. Import the files generated by the BEAST software into the SPREAD software,

set the latitude and longitude of the location, and set the BF value to 3, and then generate the

corresponding path map.

8. Group average distance calculation

We differentiated the DENV-1 and DENV-2 data sets based on genotypes. In order to avoid

the impact of old viruses on genetic distance calculation, we only extracted the genotypes of

sequence samples from Guangdong Province in the past five years. The MEGA software was

used to compare sample sequences of different clusters and compare them to sequences not in

the cluster.

Fig 1. Gel electrophoresis analysis of RT-PCR products. According to the results from gel electrophoresis analysis of

different samples given in the figure, there are 34 RT-PCR products; the sizes of the amplicons (ID 2–40, 3–44, 4–49,

5–141, and 6–146) are consistent with DENV-2, while the rest are consistent with DENV-1.

https://doi.org/10.1371/journal.pone.0224676.g001
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Fig 2. Maximum likelihood tree for global dataset reconstruction of DENV-1. The maximum likelihood tree result of DENV-1 is shown in the figure. The sample

sequence clusters under different branches, and the red blocks labeled in the branches in the figure are clusters of sample sequence clusters. Different color blocks

outside the branches represent different genotypes.

https://doi.org/10.1371/journal.pone.0224676.g002

Fig 3. Maximum likelihood tree for global dataset reconstruction of DENV-2. The maximum likelihood tree result of DENV-2 is shown in the figure. The sample

sequence clusters under different branches, and the blue blocks labeled in the branches in the figure are clusters of sample sequence clusters. Different color blocks

outside the branches represent different genotypes.

https://doi.org/10.1371/journal.pone.0224676.g003
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Result

1. Sample information and serotypes

In 2018, a total of 170 blood samples were provided by the First Affiliated Hospital of Guang-

zhou University of Traditional Chinese Medicine, and 34 strains of dengue viruses were

obtained from these blood samples, including 29 strains of DENV-1 and 5 strains of DENV-2.

After gel electrophoresis analysis, the RT-PCR products were sequenced and uploaded to the

GenBank database to obtain accession numbers. Details are shown in Fig 1 and Table 3. The

original image of agarose gel electrophoresis is shown in S1 Fig.

2. Phylogenetic signal assessment

The substitution saturation level of each dataset of the DENV E gene was assessed with

DAMBE. The results of the assessment indicated that no subset experienced full substitution

saturation.

3. Phylogenetic analysis and molecular clock tests

Obviously, the sample sequences were classified in independent clusters with high bootstrap

values (70–100%), indicating robust support for the tree topology. DENV-1 was used to

Fig 4. The propagation path map of dengue virus in Guangzhou in 2018. The propagation path map is drawn based on the

paleogeography analysis. The red curves indicated that the clusters of sample sequences were belonged to DENV-1, while the blue curves

belonged to DENV-2, which indicated the propagation path. The time beside the curves indicates the time range in which the virus

strain is introduced, and the red flag indicates different locations.

https://doi.org/10.1371/journal.pone.0224676.g004
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construct 3529 sequences of ML tree, and 3542 of DENV-2. From the ML tree of the global

dataset, the sample sequences positive for DENV-1 were divided into three clusters, and the

DENV-2 positive sample sequences were grouped into two clusters (for detailed clustering

results, see Fig 2, Fig 3 and Table 1). Molecular clock tests were performed on the basis of the

ML trees. A stable temporal structure was observed as the linear regression on the root-to-tip

distances versus the data suggested a relatively high fitting degree, and R2 had a positive value,

which enabled further study of the evolutionary process. The molecular clock detection maps

are displayed on the corresponding MCC maps.

4. Ancestral reconstruction and discrete paleogeography analysis

All sample sequences were clearly clustered into one branch (with the classification of

branches based on posterior probabilities and the number of 0.8 and higher as trustworthy). In

this study, all sample sequences in the first, second, and third clusters belonged to DENV-1.

According to the MCC tree reconstructed from Cluster I, the 17 isolates were clustered in one

branch (posterior probability = 0.9985), which is the same as the Thailand and Taiwanese 2015

sequences (posterior probability = 0.9998). Our paleogeography analysis results showed that

the sample virus originated in Taiwan. In 2015, the virus affected the region radically and was

later imported into Guangzhou between 2015 and 2018. The MCC tree of Cluster II indicated

that the sample sequences were clustered in the branch (accession: MG767211) with a

sequence obtained from Guangzhou in 2017 (posterior probability = 0.9999), with no other

clusters in the same branch. The results from the paleogeography analysis suggested that

Guangzhou was the location where the most recent common ancestor was found, while an ear-

lier ancestor appeared in Singapore. The MCC tree of Cluster III suggested that the sample

sequences were clustered in the same branch with the Taiwanese 2015 and 2016 sequences, as

well as the cluster of the Singaporean 2016 sequences (posterior probability = 0.9992). Through

paleogeography analysis, the sample virus might be spread along a propagation path and

imported into Guangzhou from Taiwan in 2018 or before. The fourth and fifth clusters

belonged to DENV-2. As shown in the MCC tree of Cluster IV, the sample sequences were

clustered in the same branch with the Malaysian 2013 sequence (posterior probability = 0.9999),

indicating that the most recent ancestor of the sample sequences emerged from Malaysia.

According to the propagation path map, the sample virus entered Guangzhou during 2013–

2018. The MCC tree of Cluster V suggested that the sample sequences were clustered in the

same branch with the Indian 2015 sequences and the Taiwanese 2015 sequence cluster (poste-

rior probability = 0.8465). According to the propagation path, the sample virus was imported

into Guangzhou during 2015–2018. It is difficult to infer a highly accurate propagation path as

no more sequences are available from the GenBank database. The propagation path map of all

sample viruses is included in Fig 4. The MCC trees are shown in Figs 5–9.

5. Average genetic distance comparison

The five sample clusters were compared with the genetic distances of the same genotype in

clusters in 2014–2018. It can be seen from the table that the sequence of the DENV-2 two-

Fig 5. Maximum clade credibility tree of the sequence of cluster I. A| A root-to-tip analysis was performed in TempEst v1.5. An ML tree was built using

the sample dataset to determine the R2 value; R2> 0 indicates a positive correlation between the dataset and the molecular clock. B| Sequences from

different geographic regions are represented by different colors. The location on the branch is the most recent ancestor position, and the value is the

posterior probability. The purple branch indicates that Fujian Province is the most recent ancestor of the sequences; the green branch corresponds to

Malaysia; the blue branch corresponds to Taiwan Province; and the red branch corresponds to Guangzhou. The dotted line box represents the sample

sequence obtained in this experiment.

https://doi.org/10.1371/journal.pone.0224676.g005
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cluster sample collected in this study differs greatly from the sequence of the same genotype.

The sequence differences between other sample clusters and the same genotype are small. The

data is presented in Table 4.

Discussion

In the present study, blood samples were drawn from DENV-infected patients who were diag-

nosed with dengue fever by hospitals in Guangzhou during 2018, and an analysis was per-

formed on the DENV strains isolated from these blood samples. Through gel electrophoresis

analysis, the isolated sequences were classified into two serotypes, namely, DENV-1 and

DENV-2. Furthermore, DENV-1 strains were divided into three clusters, and the DENV-2

strains were divided into two clusters according to the ML trees. The ancestral reconstruction

analysis showed that the sample sequences largely originated from Indonesia, Malaysia, Singa-

pore, and Taiwan. This suggests that the dengue virus that we are popular in Guangzhou is still

based on input. As the capital city of Guangdong Province and the trade center in Southeast

China, Guangzhou is exposed to a relatively high risk of the disease, as DENV may enter the

city along with imported goods and migrant workers. In addition, DENV continuously flows

into China because Thailand, Malaysia, Singapore, and other Southeast Asian countries are

popular destinations for Chinese tourists, especially those living in Guangdong Province.

Therefore, entry-exit inspection and quarantine should be implemented effectively for dengue

prevention and control. For instance, suspected and confirmed cases of DENV infection

should be isolated and treated properly to reduce the risk of imported dengue fever. In addi-

tion, health education also plays an important role in dengue prevention and control. To

reduce the risk of DENV infection, public health authorities should provide the necessary

materials for tourists to gain a better understanding of dengue prevention and remind them

not to visit an endemic area during epidemic seasons.

Interestingly, the results from the traceability analysis showed that the most recent common

ancestor of the sequences of cluster II emerged from Guangzhou, and Cluster II and the

Guangzhou 2017 isolate are in the same branch without any other foreign sequences. More-

over, they shared a common ancestral lineage to the Malaysian 2014 isolate, the Singaporean

2014 isolate, and the Zhongshan 2015 isolate in other branches. Phylogeographically, there are

two possible propagation paths. First, the virus originated in Singapore and became an epi-

demic in the country before 2014; during the next year, it was imported into Zhongshan, and

then in 2017, the disease flowed into Guangzhou from other cities in Guangdong Province; the

Guangzhou 2018 isolates came from the virus imported into the city during 2017 as a result of

local transmission. Second, the virus emerged from Singapore and was not introduced into

Zhongshan until 2015; during 2017 and 2018, the virus was continuously imported into

Guangzhou from Singapore or other countries and regions; the sample sequences were not

clustered into a branch with the isolates from other countries because no related sequences

were available in GenBank or the database had no sufficient patient isolates. Regarding the

sources of spread or propagation, some DENV strains were imported from endemic countries

and regions and caused dengue fever without further propagation in China; some evolved

from imported strains and led to local epidemics during the year; others were localized strains

after vertical transmission. Although no substantial evidence was found in this study to prove

Fig 6. Maximum clade credibility tree of the sequence of cluster II. A| A root-to-tip analysis was performed in TempEst v1.5. An ML tree was

built using the sample dataset to determine the R2 value; R2> 0 indicates a positive correlation between the dataset and the molecular clock. B|

Sequences from different geographic regions are represented by different colors. The location on the branch is the most recent ancestor position,

and the value is the posterior probability. The blue branch indicates that Singapore is the most recent ancestor of the sequences; and the red branch

corresponds to Guangzhou. The dotted line box represents the sample sequence obtained in this experiment.

https://doi.org/10.1371/journal.pone.0224676.g006
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Fig 7. Maximum clade credibility tree of the sequence of cluster III. A| A root-to-tip analysis was performed in TempEst v1.5. An ML tree was built using the sample

dataset to determine the R2 value; R2> 0 indicates a positive correlation between the dataset and the molecular clock. B| Sequences from different geographic regions

are represented by different colors. The location on the branch is the most recent ancestor position, and the value is the posterior probability. The green branch indicates

that Singapore is the most recent ancestor of the sequences; the blue branch corresponds to Taiwan Province; and the red branch corresponds to Guangzhou. The dotted

line box represents the sample sequence obtained in this experiment.

https://doi.org/10.1371/journal.pone.0224676.g007
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vertical transmission of DENV in Guangzhou, previous phylogenetic analyses indicated possi-

ble local transmission of dengue fever in the city.

Since Aedes albopictus is the main medium for DENV transmission, the localization of

DENV largely depends on the formation of localized and virus-carrying eggs and the survival

of DENV in the eggs and offspring mosquitoes through winter[34]. A previous study demon-

strated that DENV can survive in eggs and spread to offspring mosquitoes. Transovarial trans-

mission of DENV is strongly temperature-related as it determines whether the eggs and young

offspring can wait out the winter season. As an example, Yunnan Province has reported the

localization of DENV as it has a subtropical monsoon climate and provides a natural habitat

for Aedes albopictus. Similar to Yunnan Province, Guangzhou has hot, humid summers and

mild, dry winters, which create a favorable environment for the breeding of Aedes mosquitoes.

Moreover, as the greenhouse effect continues to warm the planet slowly, overwintering

becomes easier for mosquitoes. Peri-urban areas in Guangzhou have plenty of dirty gullies,

open spaces, and rented houses that require effective management to improve the living envi-

ronment. Additionally, local residents who like indoor and outdoor planting, fish farming,

and water harvesting also provide places for mosquito breeding. To reduce mosquito breeding

sites, effective urban sanitation management should be implemented. For example, stagnant

water should be cleared in a timely manner to ensure the smooth operation and maintenance

of the city’s drainage system; in crowded places, mosquito prevention and control measures

should be taken for the public good. Personal hygiene also plays a critical role in dengue pre-

vention. Residents should avoid keeping fish and aquatic plants and regularly clean up stag-

nant water in their houses. An individual with a fever or other dengue fever-like symptoms

should promptly seek medical attention. Hospitals should strive to improve the diagnostic

accuracy and efficiency of dengue fever. Suspected DENV-infected patients should be isolated

to prevent further transmission. We should pay closer attention to localized DENV in Guang-

zhou and strictly implement relevant dengue prevention and control measures.

Although the results of this study implied that vertical transmission of DENV might exist in

Guangzhou, there is no solid evidence supporting the inference as no adequate sequences are

available for analysis. The coverage of the sequence has a great impact on the study. Patients

with dengue sometimes have negative infections. The patient is not aware that the infection

with dengue virus has led to a decrease in the reported sequence, and a small number of viruses

have not been sequenced and uploaded to the database. These can all lead to the wrong propa-

gation path. Therefore, local centers for disease control and prevention should work closely

with disease control and prevention departments of Southeast Asian countries to observe how

DENV is prevalent in these countries, thereby identifying sources of propagation for DENV in

China and exploring the epidemiological characteristics of dengue fever to provide a basis for

dengue prevention strategies. As the Belt and Road Initiative moves forward, Asian, European

and African countries expect to increase transport connections for international trade,

strengthen people-to-people exchanges and remove barriers to investment and trade. Given

that, the conventional entry-exit inspection and quarantine divided by national administrative

regions is falling short, leading to an increased risk of dengue and Zika fever in the countries

Fig 8. Maximum clade credibility tree of the sequence of cluster IV. A| A root-to-tip analysis was performed in TempEst v1.5. An ML

tree was built using the sample dataset to determine the R2 value; R2> 0 indicates a positive correlation between the dataset and the

molecular clock. B| Sequences from different geographic regions are represented by different colors. The location on the branch is the

most recent ancestor position, and the value is the posterior probability. The purple branch indicates that Indonesia is the most recent

ancestor of the sequences; the blue branch corresponds to Malaysia; the orange branch corresponds to Zhongshan City; the green branch

corresponds to East Timor; and the red branch corresponds to Guangzhou. The dotted line box represents the sample sequence obtained

in this experiment.

https://doi.org/10.1371/journal.pone.0224676.g008
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along the Belt and Road. There is an urgent need to raise public awareness about disease pre-

vention and control, as well as intensified measures against dengue and Zika fever. It is neces-

sary to establish joint prevention and control mechanisms for infectious diseases so that China

and other relevant countries can work together to effectively combat infectious diseases and

safeguard health security with their technologies and resources.
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