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Abstract: The MADS-box gene family is one of the largest families in plants and plays an important
roles in floral development. The MADS-box family includes the SRF-like domain and K-box domain.
It is considered that the MADS-box gene family encodes a DNA-binding domain that is generally
related to transcription factors, and plays important roles in regulating floral development. Our study
identified 211 MADS-box protein sequences in the Zea mays proteome and renamed all the genes
based on the gene annotations. All the 211 MADS-box protein sequences were coded by 98 expressed
genes. Phylogenetic analysis of the MADS-box genes showed that all the family members were
categorized into five subfamilies: MIKC-type, Mα, Mβ, Mγ, and Mδ. Gene duplications are regarded
as products of several types of errors during the period of DNA replication and reconstruction; in
our study all the 98 MADS-box genes contained 22 pairs of segmentally duplicated events which
were distributed on 10 chromosomes. We compared expression data in different tissues from the
female spikelet, silk, pericarp aleurone, ear primordium, leaf zone, vegetative meristem, internode,
endosperm crown, mature pollen, embryo, root cortex, secondary root, germination kernels, primary
root, root elongation zone, and root meristem. According to analysis of gene ontology pathways, we
found a total of 41 pathways in which MADS-box genes in maize are involved. All the studies we
conducted provided an overview of MADS-box gene family members in maize and showed multiple
functions as transcription factors. The related research of MADS-box domains has provided the
theoretical basis of MADS-box domains for agricultural applications.

Keywords: maize; gene family; MADS-box; transcription factor; phylogenetic analysis

1. Introduction

Maize (Zea mays) is an essential crop that is a staple food in many parts of the world,
and the total production of maize has surpassed that of whole rice and wheat. The history
of the agricultural selection of domesticated maize has spanned more than 10,000 years [1].
Maize is a staple food for people and fodder for animals; in addition, maize can also
be widely used in energy and industry, such as in the production of ethyl alcohol, corn
starch, and corn syrup [2]. Maize is an important model organism for genetic and genomic
research [3]. Elie Dolgin completed the maize reference genome (B73) in 2009 and found
that it contained a 2.3 billion base sequences and more than 32,000 protein-coding genes [2].

Transcription factors combined with specific DNA sequences are cis-acting elements
that control promoters and enhancers. Transcription factors and target genes are combined
through the DNA-binding area, a site that is the most conserved sequence in evolution. The
MADS-box gene was first identified as a homologous gene controlling flower development
that encodes a DNA-binding domain that is generally related to transcription factors [4].
The MADS-box domain (SRF-like and K-box like) functions in DNA-binding, protein
dimerization, and nuclear localization [5]. MADS-box genes are widely expressed in almost
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all eukaryotes and some prokaryotes; many studies have been conducted in animals, plants,
fungi, and other organisms [6]. MADS-box family genes also play essential roles in the
plant life cycle, from embryo to gametophyte development [7]. MADS-box genes are
crucial in regulating plant development, such as in female gametophytes, embryoid seed
development, and fruit ripening [6,8].

Gramzow et al. divided MADS-box genes into two subtypes—SRF-like (Type I) and
MEF2-like genes (Type II) [6]. The K-box domain has often been used to distinguish
Type I and Type II genes. The K-box domain has approximately 70 amino acids and
has been divided into three subtypes—K1, K2, and K3 [9]. Based on the MADS-box
genes’ structure in Arabidopsis thaliana, Type I can be subdivided into four subgroups, Mα,
Mβ, Mγ, and Mδ [10–12], while Type II genes can be subdivided into two subgroups,
MIKCC and MIKC* [6]. In addition, Type I genes consist of variable domains as well
as SRF-like domains; in contrast, Type II genes consist of an intervening domain (I), a
keratin-like domain (K), and a C-terminal domain (C) following MEF2-like domains [9].
The structural difference in I domains and K domains is features that distinguish MIKCC

and MIKC* [13]. The analysis of thousands of MADS-domain proteins has revealed that
the MADS-box genes share the MIKC domain which enables protein combinatorial and
cooperative multimerization [14].

MADS-box genes ZAG1 and ZAG2 were first identified as floral-development reg-
ulators in maize [15]. With the development of research, they were implicated in the
absorption of nutrients in the root [16], starch biosynthesis [17], yield enhancement [18],
and other processes [19]. Analyzing the evolution and function of MADS-box genes could
help us understand the roles of the MADS-box gene family members in gene regulation
interactive networks, which could reveal the origin, heredity, and evolution of species and
provide a theoretical basis and technical support for variety breeding.

In this study, we analyzed MADS-box genes in maize. We fetched the MADS-box
seed sequences for SRF-like and K-box domains (PF00319 and PF01486) from the protein
family database (Pfam) [20]. A total of 211 protein sequences were identified, in which 176
sequences contained SRF-like domains and 181 sequences contained K-box domains. We
analyzed the MADS-box genes in maize genome-wide. According to their evolutionary re-
lationships, chromosome distribution, and family-member gene structures, the collinearity
of MADS-box genes among three crops (rice, maize, and wheat) was analyzed. Based on
transcription data from public databases, we explored the expression modules in different
tissues and the development process of maize. We also outline the related research of
MADS-box domains which could provide the theoretical basis of MADS-box domains for
yield breeding in maize.

2. Materials and Methods
2.1. Identification and Classification of MADS-Box Proteins in Maize

The genomic sequence (Zea_mays.B73_RefGen_v4.dna.toplevel.fa), protein sequences
(Zea_mays.B73_RefGen_v4.pep.all.fa) and annotation file (Zea_mays.B73_RefGen_v4.47.gff3)
were downloaded from the Ensembl plants website (http://plants.ensembl.org/ (9 July 2020)).
To identify all MADS-domain proteins in maize, a hidden Markov model (HMM) search was
performed against the protein database of maize using the SRF-TF domain (PF00319) and the
K-box domain (PF01486), which were downloaded from the Pfam protein family database
(http://pfam.xfam.org/ (9 July 2020)) [20].

We used HMMR3.0 (http://hmmer.org/download.html (9 July 2020)) to search
MADS-box genes from the maize genome with an e-value of 1e-10 [21]. All the MADS-box
genes in maize whose structures were identified in SRF or K-box domains by SMART
(http://smart.embl.de/ (9 July 2020)) were analyzed [22]. We used Clustalw for multiple
protein sequence alignment to build a new hidden Markov model, which was used to
extract protein sequences. All the candidate MADS-box genes were verified by Pfam
and NCBI (National Center for Biotechnology Information). Furthermore, we analyzed
the physicochemical properties, including the number of amino acids, molecular weight,
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isoelectric point, grand average of hydropathicity (GRAVY), and subcellular localiza-
tion (Table S1). The number of amino acids, molecular weight, and isoelectric points
were determined using a Perl script; GRAVY was calculated by the GRAVY calculator
(http://www.gravy-calculator.de/ (26 June 2021)); and the subcellular localization was
analyzed by BUSCA (http://busca.biocomp.unibo.it/ (26 June 2021)) [23].

2.2. Phylogenetic Analysis and Classification of the MADS Gene Family

To further understand the phylogenetic relationship of MADS-box gene family members
in dicotyledons, we construct a phylogenetic tree with Oryza sativa, Zea mays, and Triticum aes-
tivum L. A total of 655 protein sequences were identified, including 67 rice protein sequences,
211 maize protein sequences, and 377 wheat protein sequences. Muscle was used to carry out
the alignment of multiple protein sequences [24]. The phylogenetic relationship was obtained
by integrating the protein sequences using IQ-TREE software (multicore version 1.6.12) [25]
with the best-fit model VT+F+R5 [26]. We assessed the phylogenetic relationships by ul-
trafast bootstrapping with 1000 replicates. Figtree was employed to visualize the results of
phylogenetic relationship analysis (http://tree.bio.ed.ac.uk/software/figtree/ (13 July 2021)).

2.3. Chromosomal Distribution and Gene Structure Analysis of MADS-Box Genes in Zea mays

The genomic sequence (Zea_mays.B73_RefGen_v4.dna.toplevel.fa), protein sequences
(Zea_mays.B73_RefGen_v4.pep.all.fa), and annotation file (Zea_mays.B73_RefGen_v4.47.gff3)
were downloaded from the Ensembl website in the previous step. We used Tbtools to
transform the gff3 file to a gtf file for further analysis. We extracted candidate MADS-box
gene sequences and annotation files using a Perl script. The conserved motifs were blasted
in the NCBI batch web conserved-domain tool (https://www.ncbi.nlm.nih.gov/Structure/
bwrpsb/bwrpsb.cgi (14 January 2021)). We extracted the MADS-box gene sequence using a
Perl script, including 2000 bp upstream of the CDS, to analyze types of cis-elements on the
PlantCARE website (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ (20 May
2021)). The chromosomal distribution, cis-elements, and motif locations were visualized using
Tbtools software (https://github.com/CJ-Chen/TBtools (22 January 2021)) [27].

2.4. Gene Duplication and Synteny Analysis of MADS-Box Genes in Zea mays

All MADS-box genes were mapped to the chromosomes of maize, and the physical
location information was obtained from the genome sequence from annotation files of the
maize genome (Zea_mays.B73_RefGen_v4.47.gff3) using a Perl script. Multiple collinear
scanning toolkits (MCScanX) were used to analyze the gene replication events with default
parameters. To study the synteny relationships between orthologous MADS genes of maize
and other species, home linear-analysis maps were generated using Dual Synteny Plotter
software (https://github.com/CJ-Chen/TBtools (26 May 2021)).

2.5. Expression and Regulation Relationships among MADS-Box Gene Family Members in Maize

The maize expression data of B73 (classical maize cultivar) throughout the growth
period were acquired from the database Zeamap (http://www.zeamap.com/ (6 January
2021)) [28]. Each MADS-box gene was annotated and analyzed as a node in the regulation
network utilizing the webserver STRING (https://string-db.org/ (7 January 2021)); we
obtained the protein–protein interactions between MADS gene family members from public
sources [29]. The interaction relationships were obtained by cystoscopy (https://cytoscape.
org/ (7 January 2021)). The GO enrichment and KEGG pathways were analyzed using the
cluego plugin integrated into Cystoscope [30].
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3. Results
3.1. Identification of MADS-Box Gene Family Members in Maize

A total of 211 putative coding sequences corresponding to the MADS-box family were
identified by searching the Zea mays genome with the SRF-TF domain (PF00319) and the
K-box domain (PF01486). There were 176 SRF members and 185 K-box members with each
domain, among which 117 members had both SRF and K-box domains. Among the 211
putative MADS-box proteins in maize, all the 211 MADS-box protein sequences were coded
by 98 expressed genes. The protein numbers, molecular weights, and theoretical pIs ranged
from 46 amino acids to 491 amino acids (5.4 kDa to 54.8 kDa and 4.12 to 11.84, respectively.
Based on the results of GRAVY calculations, we found that most of the family members
were hydrophilic proteins, while only a few of the members were hydrophobic proteins.
The distribution of subcellular locations included the nucleus, chloroplast, extracellular
space, and endomembrane system. Furthermore, we found that all hydrophobic proteins
were related to chloroplast and endomembrane systems (Table S1).

3.2. Classification and Phylogenetic Analysis of the MADS-Box Gene Family Members

In our study, a total of 67 rice protein sequences, 211 maize protein sequences, and 377
wheat protein sequences were identified by HMM analysis. All the 655 protein sequences
were summarized into 463 groups by expressed genes. To construct the phylogenetic
tree, we selected 463 protein sequences consisting of 60 rice protein sequences, 98 maize
protein sequences, and 305 wheat protein sequences (Figure 1). Based on the formal study
of MADS-box genes in Arabidopsis, a total of 108 genes were selected for classifying the
MADS-box gene members [31]. From the phylogenetic tree, we found that the MADS-box
genes were divided into five subfamilies—MIKC-type, Mα, Mβ, Mγ, and Mδ (Figure 1).

3.3. Gene Structure and Motif Composition of the MADS-Box Gene Family

To further understand the distinct regions of proteins and motifs, we conducted an
online analysis of the 211 putative MADS-box protein sequences in maize in the NCBI
Conserved Domain Database. We constructed the phylogenetic tree of 211 MADS-box
proteins in maize and annotated MIKC-type, Mα, Mβ, Mγ, and Mδ in different colors
(Figure 2a). As shown in Figure 2b, we found a total of 17 types of conserved domains. In
addition to SRF-like and K-box domains, which are the characteristic domains of MADS-
box gene family members, ABA GPGR, WRKY, DUF3032, and Spc7 superdomains also
play essential roles in MADS-box genes.

In addition, we selected 2000 bp of a CDS sequence promoter region and submitted it to
PlantCare (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ (20 May 2021))
and summarized all the cis-elements into 14 types of functional modules (Figure 2c and
Table S3). AREs, G-boxes, GC motifs, O2 sites, and ABRE3 exist widely in maize MADS-box
family members. To further understand the composition of MADS-box genes in maize, we
analyzed the domains in MADS-box genes and obtained the exon and intron structures from
the GFF3 annotation file (Zea_mays.B73_RefGen_v4.47. gff3). The MADS-box genes were
composed of several exons and introns, with significant differences (Figure 2d).

3.4. Gene Dupulacation, Chromosomal Distribution, and Synteny Analysis of MADS-Box Gene
Family Members

We used 98 MADS-box genes’ DNA sequences to analyze the concatenated duplication
events in maize. We noticed that one gene might have two duplication events. If a gene
had two duplicated events in another location, we would count it as two pairs. A total of
22 pairs of duplicated genes were distributed on 10 chromosomes (Figure 3). These results
demonstrated that replication events were the fundamental driving force of MADS-box
gene evolution. To further understand the evolutionary constraints acting on MADS-box
gene family members, we calculated the Ka/Ks ratios of the MADS gene pairs. The
orthologous MADS-box gene pairs had Ka/Ks < 1, suggesting that the maize MADS-box
genes were under purifying selection pressure during evolution [32].

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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Figure 2. Phylogenetic relationships, gene structures, and conserved protein motifs of MADS-box genes from Zea mays.
(a) The phylogenetic tree of 211 MADS-box proteins. (b) Motif composition of MADS-box proteins in maize; a total of 17
types of conserved domains were found. (c) Cis-element analysis of the MADS-box gene family. Different colors represent a
total of 14 types of functional modules. (d) Gene structure of MADS-box genes. Black lines indicate introns, green boxes
indicate CDS, and yellow boxes indicate UTR.
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Figure 3. The intrachromosomal segmental duplication map of the MADS genes in maize. Colored lines inside the circle
represent duplication inside the same chromosome (red) and between different chromosomes (green).

The MADS-box gene family members were symmetrically distributed on 10 chromo-
somes of Zea maize linkage groups (Figure 4). Chromosome 1 had more MADS-box gene
family members than the others. In contrast, chromosome 10 had the fewest members. The
distribution of MADS-box gene members was significantly different between all 10 chromo-
somes. Considering the significant difference in MADS-box gene family members, genetic
recombination and exchanges play important roles in the distribution of MADS-box genes.

3.5. Synteny Analysis of MADS-Box Gene Family Members in Maize and Other Species

To further understand the phylogenetic mechanisms of MADS-box genes among Zea
mays, Oryza sativa, and Triticum aestivum L., we analyzed the synteny relationships of these
three important dicotyledonous crops (Figure 5). Gray lines represent the synteny relation-
ships between two species and red lines represent the synteny relationships between two
species in MADS-box gene family members. Based on the collinearity analysis of MADS-
box genes between Zea mays and two other important crops (Oryza sativa and Triticum
aestivum L.), we found that the MADS-box genes between Zea mays and Triticum aestivum L.
have more homologous gene pairs with the MADS-box genes between Oryza sativa and
Triticum aestivum L. The collinearity findings are listed in Supplementary Table S2.
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3.6. Gene Expression in MADS-Box Gene Family Members

We acquired the maize expression data of B73 (a classical maize cultivar) from the
database Zeamap (http://www.zeamap.com/ (6 January 2021)) [26]. Comparing ex-
pression data in different tissues from the female spikelet, silk, pericarp aleurone, ear
primordium, leaf zone, vegetative meristem, internode, endosperm crown, mature pollen,
embryo, root cortex, secondary root, germinating kernels, primary root, root elongation
zone, and root meristem, we constructed a heatmap of 98 genes which belong to MADS-
box gene family in maize (Figure 6). We found that most genes had higher expression
levels in the female spikelet, silk, pericarp aleurone, and ear primordium, while only a
few were expressed in the ear primordium, leaf zone, vegetative meristem, internode, and

http://www.zeamap.com/
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endosperm crown. The female spikelet, silk, and pericarp aleurone at twenty-seventh
day after pollination(DAP), the ear primordium at 2–4 mm and 6–8 mm, the leaf zone at
2 stomatal, the vegetative meristem at 16–19 days, 6–7 internodes, 7–8 internodes, and
mature leaf 8, the endosperm crown at 27 days, the mature pollen and embryos at 38 DAP,
the root cortex at 5 days, the secondary root at 7–8 days, the germinating kernels at second
day after inoculation(DAI), the primary root at 5 days, the root elongation zone at 5 days,
and the root meristem at 5 days (Figure 6, Supplementary Figure S1). In B73, we found 29
MADS-box genes with no expression. Subsequently, we took the 29 genes to analyze the
expression in 82 other varieties; only two genes (Zm00001d031399 and Zm00001d036279)
had no expression (Supplementary Figure S2).
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3.7. Gene Regulation Networks: Review of the Potential Connections

According to the analysis of gene ontology pathways, we found a total of 41 pathways
in which MADS-box genes in maize were involved. Among them, sequence-specific DNA
binding had the most associated genes (909), and plant ovule development and plant-type
ovary development have the fewest associated genes (18). In contrast to MADS-box gene
family members, protein dimerization had the most members (44), and proximal promoter
sequence-specific DNA binding had the fewest members (3). By calculating the proportions
of all the family members in pathway-associated genes, plant-type ovary development and
plant ovule development accounted for the highest proportion (50%). In contrast, positive
regulation of biological processes accounted for the lowest proportion (5%) (Figure 7a).
All 41 ontology pathways could be classified into five groups—transcription regulatory
region sequence-specific DNA binding (56.1%), plant-type ovary development (26.83%),
transcription-factor binding (12.2%), protein dimerization (2.44%), and proximal promoter
sequence-specific DNA binding (2.44%) (Figure 7b). Based on the PPI database, we identi-
fied the interaction relationships of all 41 pathways in the five groups (Figure 7c).
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4. Discussion

The rapid progress of sequencing technology has made the study of genomes much
more accessible [33]; studying gene family members’ functions and modes of action through
the whole genome has proven to be an efficient method for exploring the interaction
relationships in many types of gene families [34,35]. Many studies on the identification of
gene family members in the whole genomes of different species, such as Triticum aestivum
L. [31], Populus trichocarpa [36], Brassica rapa [37], Brachypodium distachyon [38], Oryza
sativa [39], and Arabidopsis have been conducted [40].

Maize is an important crop and has the highest yield worldwide. MADS-box gene
family members are essential transcription factors and play crucial roles in flowering and
floral development [41]. Some studies also found that members of this family influenced
female gametophytes, embryoid seed development, and fruit ripening [8,42]. We surveyed
MADS-box gene family members’ functions that might be able to help us to breed and
produce yield improvements in maize [43,44].

Previous work identified 75 genes in maize and divided them into 11 subfamilies,
7 duplication pairs, and 14 motifs; the expression of MADS-box genes in maize comes
from mixed tissues and organs [42,43]. In contrast, our study identified 67 protein se-
quences in Oryza sativa, 211 protein sequences in Zea mays, and 377 protein sequences
in Triticum aestivum L. for analyzing MADS-box gene family members. Furthermore, we
studied the conserved motifs of 211 protein sequences in maize (Figure 2b) and found
17 types of conserved domains, in addition to SRF-like and K-box domains, which were
the characteristic domains of MADS-box gene family members. HMG-CoA (β-hydroxy
β-methylglutaryl-CoA) is a metabolic intermediate in the metabolism of branched-chain
amino acids, which consist of leucine, isoleucine, and valine. [45,46]. ABA GPCRs are
abscisic acid receptors that are GPCR-type G proteins related to elaborate receptor–effector
signaling networks [47]. WRKY is one of the most important transcription factors in plants
and appears to be involved in pathogen defense, senescence, and trichome ontogeny [48].
Prefoldin is a molecular chaperone involved in protein folding and synthesis [49]. Spc7 is
an essential kinetochore protein that plays a crucial role in kinetochore-microtubule interac-
tions [50]. The diversity of MADS-box gene family member motifs suggests that MADS-box
genes may have more potential functions. We also identified 14 types of cis-regulatory ele-
ments in the MADS-box family members (Figure 2c). The I-box, which consists of GATAA,
is an essential binding sequence of light-regulated sequences in plants [51]. ABREs play
an essential role in response to ABA to affect osmotic stress and drought stress tolerance
in plants [52,53]. GC motifs have been identified in response to waterlogging tolerance
during cell wall modification in plants [54]. As “G-box” elements, they are involved in
linalool biosynthesis during floral development [55]. The analysis of cis-regulatory ele-
ments has indicated that the promotor region is probably related to maize development
and tolerance. All the MADS-box genes are composed of several exons and introns, with
significant differences (Figure 2d). The diversity of cis-elements and motifs is proposed
to have different types of regulatory mechanisms and functions. Most of the structural
domains within Zea mays MADS-box genes have conserved motifs, and many studies in
other plant species have suggested similar results [56,57]. These findings demonstrate that
MADS-box genes in plants are highly conserved. However, some studies found that Type I
MADS-box genes, especially Mα have a faster birth and death rate in maize [58].

Combining genome information analysis of rice, corn, and wheat, we know that
their total numbers of genes are approximately 39,045 [59], 38,987 [2], and 107,891 [60],
respectively, and the ratios of family members in maize are higher than those in rice and
wheat. Perhaps this is related to the more frequent behavior of transposons in maize. The
mechanisms involved in forming the gene family were considered to be gene duplication,
relocation, divergence [61], and concerted evolution [62]. Gene duplications are regarded
as products of several types of errors during DNA replication and reconstruction. Tandem
replication, segmental replication, and genome duplication, rearrangement, and expan-
sion also play essential roles in functional gene diversity [63]. We annotated MADS-box
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genes in maize from Ensembl plants; some related genes had been fine-mapped or cloned.
Bearded-ear (bde) encodes transcription factors that affects FM determinacy, organ on-
togeny, and sex determination [64,65]. Apetala1 in Arabidopsis controls floral-organ identity
and inflorescence architecture [66], which has a homologous gene, zap1, in maize [15]. The
Arabidopsis gene AGAMOUS1 was isolated as zag1 in maize [67], and mutants of zag1
formed extra carpels and silks [68]. Tunicate1 (TU1) was detected in developing maize
inflorescences [69] and has been proposed to play roles in floral development and sex
determination [70,71]. In GO and KEGG pathway analyses, we explored the potential
functions of MADS-box gene family members in maize. Through analysis of expression
data, we found the MADS-box genes are functional in the ontogeny of the female spikelet,
stigma, aleurone layer and panicle primordium; all 41 ontology pathways could be clas-
sified into five groups—transcription regulatory region sequence-specific DNA binding,
plant-type ovary development, transcription factor binding, protein dimerization, and
proximal promoter sequence-specific DNA binding. Go and KEGG analysis indicated that
MADS-box genes play multiple roles in plant development as transcription factors. Related
research on MADS-box domains has provided the theoretical basis of MADS-box domains
for agricultural applications. The potential functions need to be verified and explored by
more experiments in subsequent studies.
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.3390/genes12121956/s1, Figure S1: Expression of MADS-box genes in maize (48 genes); Figure S2:
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Table S3: Details of the cis-acting elements for MADS-box gene family members in maize.
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