
Genomic repeats and human diseases
At least a third of the human genome consists of 
repetitive sequences of various types, including large 
segmental duplications, also known as low-copy-number 
repeats (LCRs), long and short interspersed transposon-
derived elements (LINEs and SINEs) and tandem repeats 
[1]. The tandemly repeated sequences encompass 
satellites (with repeated units longer than 100 bp), 
minisatellites (between 100 bp and 10 bp) and micro-
satellites (with a repeated motif shorter than 10 bp) [2]. 
The latter, also known as short tandem repeats (STRs) or 
simple sequence repeats, account for about 3% of the 
genome. Most of the STR tracts occur in the intergenic 
regions and introns, but a fraction of them, predomi-
nantly trinucleotide repeats (TNRs), also reside in exons 
and may be beneficial, neutral or deleterious. Among the 
beneficial roles of TNRs, which contribute about 0.1% to 
all STR sequences and are often polymorphic in length, is 
their potential to modulate cellular processes, including 

transcription splicing and translation [3]. These TNRs 
include repeats of CGG, CAG and AGG, which are 
overrepresented in human exons [4]. On the other hand, 
AAT, AAC and AAG are probably disadvantageous as 
they are negatively selected in exons [4]. TNR sequences 
undergo mutations at a very high frequency [5], and this 
may increase disease risk or trigger disease in specific 
conditions [6,7].

Over the past two decades our thinking about the links 
between STRs and human diseases has been dominated 
by neurological disorders known as trinucleotide repeat 
expansion diseases (TREDs) [8,9]. There are over 20 
diseases that belong to this group, the best known of 
which are fragile X syndrome (FXS), myotonic dystrophy 
type 1 (DM1), Huntington’s disease (HD) and spino-
cerebellar ataxias (SCAs). FXS is caused by an expanded 
CGG repeat located in the 5’ untranslated region (UTR) 
of the fragile X mental retardation 1 gene (FMR1); DM1 
is triggered by an expanded CUG repeat located in the 3’ 
UTR of the dystrophia myotonica protein kinase gene 
(DMPK); and HD is caused by an abnormally elongated 
CAG repeat located in the open reading frame of the 
Huntingtin gene (HTT), which is translated to form a 
polyglutamine tract in the protein (Figure 1a-c). The 
repeat type and localization determines the mechanism 
of pathogenesis, which can be impaired transcription 
(FXS, Figure 1a), transcript toxicity (DM1, Figure 1b) or 
protein toxicity (HD and SCAs; Figure 1c) [10,11].

Research on the pathogenesis of TREDs includes 
studies on toxic RNA that triggers alternative splicing 
alteration in numerous genes linked to the clinical symp-
toms of DM1 [12,13], and studies on toxic poly-Q 
proteins that impair many cellular functions [11]. 
Research on repeat instability mechanisms is also very 
active, and there are still many challenges ahead [7,8]. 
The consensus opinion at present is that several 
processes, including replication, recombination, DNA 
repair and transcription, contribute to repeat instability 
and that the formation of unusual non-B-DNA structures 
formed by the repeats is at the heart of the expansion 
processes [7,8]. When classified by the size of the under-
lying mutation, TREDs lie between many genetic diseases 
resulting from small base substitutions, deletions and 
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insertions and a class of diseases known as genomic 
disorders, caused by deletions or insertions of tens of 
thousands to several million base pairs. The group of 
genomic disorders with identified mutation mechanisms 
is constantly increasing, with major mechanisms includ-
ing non-allelic homologous recombination (NAHR), 
non-homologous end joining (NHEJ) and replication fork 
stalling and template switching (FoSTeS) [14].

TGG repeats trigger recurrent microdeletion
A recently published article [15] shows a link between a 
TNR sequence and a human genomic disorder related to 
OMIM #608149. The authors demonstrated that the 
recurrent 1.11 Mb microdeletion from the long arm of 
paternal chromosome 14 (14q32.2) is catalyzed by long 
tracts of interrupted TGG repeats (approximately 500 bp 
in size) located at both sides of the deletion with 88% 
sequence similarity (Figure 1d). An identical heterozy-
gous deletion was found in two unrelated patients 
diagnosed with several clinical phenotypes (such as 
growth retardation, hypotonia, precocious puberty and 
mental retardation) characteristic of maternal uni paren tal 
disomy (UPD(14)mat). UPD is defined by the inheritance 
of two copies of a chromosome from only one parent, a 
mother in this case, and is related to parent-specific 
imprinting of some genes. The deleted 14q32.2 region 
harbors 13 protein-coding genes, small nucleolar RNA 
(snoRNA) and microRNA loci [15] (Figure 1d). Two of 
these genes, Delta-like homolog 1 (DLK1) and retro-
transposon-like 1 (RTL1), are maternally imprinted 
(pater nally expressed), which explains several disease 
symptoms [15].

The authors [15] considered several possible deletion 
mechanisms (Figure 2b). First, the deletion may be 
mediated by NAHR that occurs between two TGG repeat 
tracts. Second, it may result from an inherent instability 
of the repeat and/or from the stable structure that the 
repeated sequence is very likely to form, and either of 
these would affect the second and third possible mecha-
nisms, NHEJ and FoSTeS. NAHR is the mechanism that 
best explains genomic rearrangements in which sites are 
flanked by highly similar sequences. Most of the recur-
rent genomic rearrangements that have a common size 
and fixed breakpoints are thought to occur by NAHR 
[14]. However, none of the recurrent genomic disorders 
known so far, perhaps with the exception of some cases 
of Jacobsen syndrome [16], have recombination hot spots 
located in triplet repeat tracts. Typically, the NAHR 
breakpoints are located in LCRs 10 to 300 kb in size that 
share over 95% similarity [14]. NAHR hotspots are 
typically 300 to 500 bp in size and contain non-B DNA 
structures capable of inducing double-stranded DNA 
(dsDNA) breaks, such as palindromes, DNA transposons 
and minisatellites but not microsatellites [17]. The STR 

Figure 1. Triplet-repeat-mediated pathological mechanisms 
of human diseases. (a-c) Diseases associated with the expansion 
of triplet repeats (TREDs). (a) Expansion of CGG/CCG repeats over 
200 repeats in exon 1 of the FMR1 gene located on chromosome 
X causes methylation of CpG islands in expanded repeats and 
flanking DNA, which results in the formation of heterochromatin 
and inhibition of transcription. Loss of FMR1 expression causes 
FXS in mutation-carrying males; FXS is thus a recessive disease. 
(b) Expanded CTG repeats (60 to a few thousand) in the 3’ UTR 
of the DMPK gene are transcribed but not translated. Long CUG 
repeat hairpins cause a toxic dominant RNA gain-of-function effect 
mediated by sequestration of nuclear RNA-binding proteins, such as 
the alternative splicing regulator muscleblind-like 1 (MBNL1). There is 
clear evidence of an RNA gain-of-function effect in at least five TREDs: 
DM1, DM2 (expanded CCTG repeats), fragile X-associated tremor 
ataxia syndrome (FXTAS; expanded CGG repeats), Huntington’s 
disease-like 2 (HDL2) and SCA8 (expanded CTG repeats). (c) The 
mutated HTT gene with expanded CAG repeats (40 to 100 repeats) 
in the coding region is transcribed and translated into a toxic protein 
containing an abnormally long polyglutamine domain. Intracellular 
aggregation of mutant protein is responsible for the pathogenesis 
of HD. A similar pathological mechanism is postulated for several 
dominant disorders known as polyglutamine expansion diseases: 
seven different spinocerebellar ataxias (SCA1, 2, 3, 6, 7, 8 and 17), 
dentatorubral-pallidoluysian atrophy (DRPLA) and spinal and bulbar 
muscular atrophy (SBMA). (d) Diseases caused by long TGG repeat 
tracts. The dominant UPD(14)mat-like phenotype is caused by the 
deletion of a 1.11 Mb fragment of chromosome 14q32, which is 
mediated by two interrupted TGG repeat tracts (red boxes A and 
B). The deleted fragment contains about a dozen protein and short 
RNA coding genes, including paternally (green) and maternally (red) 
imprinted genes. The phenotype results from loss of function of two 
genes, DLK1 and RTL1, and haplo-insufficiency of the others.
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Figure 2. Mechanism of TGG repeat-induced deletion. (a) Schematic representation of the 14q32.2 deletion (blue lines) and proximal and 
distal breakpoint sequences (red boxes A and B, respectively). Nucleotide sequences of A and B TGG repeat tracts are shown. Green indicates 
interruptions; pure repeat tracts (of at least 8 repeat units) are underlined. (b) Potential mechanisms that can explain the formation of TGG repeat-
mediated deletion. NAHR requires homology between breakpoint sequences, NHEJ relies on joining dsDNA breaks induced by DNA structures at 
breakpoints, and FoSTeS depends on replication stalling and switching of the lagging strand to another replication fork. Both replication stalling 
and disengagement of the lagging strand can be facilitated by structures formed by template or synthesized DNA strands. (c) Frequency of 
different TNRs in the human genome. Blue bars indicate the number of pure TNR tracts with at least eight repeat units according to [4] (this is the 
length required for stable G-quadruplex formation); red bars indicate the number of interrupted TNR tracts with at least 100 units (the minimal 
sequence length required for catalyzing NAHR is 300 bp) according to Simple Repeat track, available on the UCSC Browser (hg18) (our unpublished 
data). (d) G-quadruplex structure formed by eight GGA DNA repeats (GGA)8 [21]. The most 5’ and 3’ nucleotides are shown and arrows indicate 
direction of DNA strand from 5’ to 3’ end. A similar structure can be expected for TGG repeats based on the results of an RNA study [23].
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sequences are typically associated with a second recombi-
nation mechanism, NHEJ (Figure 2b), which has evolved 
to repair dsDNA breaks [17] and as such does not require 
sequence similarity at breakpoints. A third mechanism, 
FoSTeS, involves switching of the replicated strand to 
another replication fork (Figure 2b), which could also 
happen at TGG repeats [14]. None of these three mecha-
nisms requires TGG repeat expansion, but repeat 
polymorphisms could modulate deletion frequency.

Structural insight into TGG repeats
A closer inspection of the nucleotide sequences of the 
TGG repeat segments (Figure 2a) may shed more light on 
the likelihood of the proposed mechanisms. Both seg-
ments (A and B in Figure 2a) contain approximately 60 
repeat interruptions (mainly single nucleotide substi-
tutions). The longest uninterrupted TGG repeat is 15 
repeat units, and 12 tracts are at least 8 units. Pure repeat 
tracts of this length probably show only moderate repeat 
number polymorphism [18]. The repeat interruptions are 
mostly TGA, TAG and AGG triplets in one repeat tract 
and TGA, TGT and TAC in the other (Figure 2a). The 
interrupting triplets may prevent repeated sequences 
from expansion, which is known to be the case for 
interrupted CGG and CAG repeats in genes implicated 
in FXS, SCA1 and SCA2 [19]. Repeat expansions in these 
genes require the previous loss of repeat interruptions, 
which are thought to inhibit inter-strand slippage and to 
suppress intra-strand interaction [7,19]. Bena et al. [15] 
consider the possibility that the TGG repeat tracts are 
unstable. They demonstrate that TGG repeats are, on 
average, much longer than any other TNR in the genome. 
The analysis we have performed using the same con-
straints (our unpublished work) shows the frequency of 
TNR tracts in the genome and reveals that AGG and 
TGG repeats most frequently form the longest tracts of 
at least 100 units (300 bp), which may facilitate the 
NAHR mechanism (Figure 2c). Considering only pure 
repeat tracts of at least 8 units, which may be implicated 
in repeat instability, the total number of TGG repeats in 
the genome is similar to that of AGG and much lower 
than that of TAA and CAA repeats (Figure 2c) [4].

Taking the structural perspective, the repeated 
sequences within DNA become transiently single-
stranded during DNA replication, recombination, repair 
and transcription, which allows non-B-DNA structure 
formation and various downstream effects [20]. The 
repeat interruptions present within the TGG repeats will 
no doubt influence their ability to form G-quadruplexes 
and would be likely to diversify the G-quadruplex 
structures. It is likely that there will be a heterogeneous 
mixture of structural variants formed by the repeated 
sequence and their core elements may resemble the G-
quadruplex structures described for AGG repeats (Figure 

2d) [21]. Notably, the longest repeat tracts of at least 
100 units consist of AGG and TGG repeats (Figure 2c), 
which are capable of forming G-quadruplex structures. 
For both of these repeat types, the presence of just four 
repeats is sufficient to form minimal G-quadruplex 
structures (Figure 2d) that can stack on each other and 
become more stable. One lesson that can be taken from 
our analysis of the putative mechanisms underlying the 
14q32.2 deletion is that deeper insight into the features 
of repeated sequences may be needed to identify and 
better understand the mechanism involved.

The tip of the iceberg or a scarce phenomenon?
Whatever the exact mechanism implicated in the 
14q32.2 deletion [15], the involvement of TGG repeat 
tracts in this deletion cannot be questioned. One 
important issue that needs to be addressed now is how 
general this kind of mechanism could be. If NAHR is in 
operation, similar TNR-mediated genomic 
rearrangements should be predictable, as was shown 
earlier for LCR sequences [22]. If stable structure is 
important, the analysis can be narrowed to repeats 
having the potential to form G-quadruplex (TGG, AGG 
and CGG) and hairpin (CNG, GAC and GTC) 
structures [23,24]. If repeat instability is essential, more 
attention needs to be paid to the nature, density and 
localization of the repeat interruptions. Genome-wide 
copy-number variation discovery studies (for example, 
[25]) may provide important information on this 
intriguing question.
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