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A B S T R A C T

Background: Observational studies provide evidence of correlations between cancer and the im
mune system. Previous research has established associations between immune traits and the 
propensity for developing certain cancers. However, a systematic exploration of these connections 
remains largely uncharted. Therefore, further investigation is needed to examine the causal as
sociation between cancer and immune cell traits using Mendelian randomization (MR) approach.
Methods: We identified genetic instruments for breast cancer (BC), lung cancer (LC), endometrial 
cancer (EC), ovarian cancer (OC), prostate cancer (PC), and their subtype cancers to investigate 
their potential causal impact on immune traits. Data on cancer and immune cell traits were ob
tained from the IEU Open GWAS project. To assess whether these five cancer types and subtype 
cancers have a causal association with immune cell traits, we conducted two-sample MR analyses. 
Additionally, we conducted bidirectional MR analyses to examine the direction of causal re
lationships and adjusted for potentially related pleiotropy through multivariable MR analysis.
Results: We have identified several causal relationships between different types of cancer and 
immune traits. We found that breast cancer may influence 49 immune cell traits, endometrial 
cancer may influence 38, lung cancer may influence 25, ovarian cancer may influence 19, and 
prostate cancer may influence 28. Among these, breast cancer and lung cancer were associated 
with four common immune traits: CD25 on IgD− CD38dim, CD25 on sw mem, CD24 on IgD−

CD38− , and CD25 on IgD− CD38− . Lung cancer and prostate cancer shared four immune traits: 
CD25 on IgD+ CD24+, CD25 on IgD+ CD38− , CD66b on CD66b++ myeloid cell, DN (CD4− CD8− ) 
AC. Endometrial cancer and ovarian cancer shared two immune traits: TD DN (CD4− CD8− ) %DN, 
EM DN (CD4− CD8− ) %DN. Breast cancer and endometrial cancer shared one immune trait: CD20 
on IgD− CD38dim. Endometrial cancer and prostate cancer shared one immune trait: CCR2 on 
myeloid DC. Lastly, breast cancer, lung cancer, and prostate cancer shared one immune trait: 
CD25 on CD24+ CD27+. Additionally, we identified specific immune traits that may serve as 
protective or risk factors for cancers. We found 14 immune traits may influence breast cancer, 9 
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immune traits may influence endometrial cancer, 22 immune traits may influence lung cancer, 9 
immune traits may influence ovarian cancer, and 14 immune traits may influence prostate cancer. 
Among these, breast cancer and prostate cancer shared three immune traits: HLA DR++ monocyte 
%monocyte, HLA DR on plasmacytoid DC, and HLA DR on DC. Lung cancer and ovarian cancer 
shared one immune trait: CD62L− monocyte %monocyte. Prostate cancer and endometrial cancer 
shared one immune trait: HLA DR on CD33dim HLA DR + CD11b+. Lastly, ovarian cancer and 
prostate cancer shared one immune trait: CD3 on resting Treg.
Conclusions: Our MR study suggests a potential relationship between immune traits and cancers, 
particularly highlighting 14 immune traits that are simultaneously influenced by two or three of 
five cancer types, while also indicating that 6 immune traits may simultaneously contribute to the 
development of two of the cancers. This elucidation enables us to reveal a significant involvement 
of immune traits in cancer progression, providing critical insights into how immune traits affect 
cancer susceptibility.

1. Introduction

The development, recurrence, and metastasis of tumors have long been known to be closely correlated with the immunological 
components [1]. The inflammatory immune response plays a pivotal role in the tumor microenvironment (TME) and correlates with 
unfavorable outcomes in cancer prognosis [2]. In the TME, cancer cells produce substances that hinder the function of immune cells or 
influence metabolic interplay between tumor cells and immune cells, impairing system’s ability to combat the cancer [3–5]. For 
example, extracellular vesicles encourage the exhaustion of CD8+ T cells by deubiquitinating the TGF-β receptor [6]. Recent research 
demonstrated that cancer cells have the ability to limit the availability of glucose to effector T cells, which in turn diminishes the 
effectiveness of T cell function by upregulating specific microRNAs [7]. Identifying the impact of tumors on various immune cell 
characteristics is instrumental in the discovery of oncological biomarkers and in elucidating the mechanisms underlying the immu
nological imbalances associated with cancer.

Immune cells can embody complex, dichotomous functions, serving as pivotal agents in both pro-tumor and anti-tumor effects. In 
typical conditions, immune cells demonstrate anti-tumor effects through immune surveillance and immune cytotoxicity. Nevertheless, 
under specific circumstances, certain immune cells may inadvertently contribute to the progression of tumors [8]. The infiltration of 
immunosuppressive cells, such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), into the tumor microen
vironment impedes the activity of effector immune cells, thereby hindering an effective anti-tumor immune response [9]. In BC 
models, decreasing the number of Tregs leads to the upregulation of PD-L1 expression on tumor cells and alters the composition of 
tumor-infiltrating lymphocytes (TILs), which results in the activation of CD8+ T cells [10]. MDSCs are a heterogeneous population and 
the accumulation of myeloid cells that are often immunosuppressive [11]. Blocking the accumulation of MDSCs in tumors increases the 
infiltration, activation, and therapeutic effectiveness of murine natural killer (NK) cells that were transferred into the tumor [12]. 
While immunotherapy research has predominantly concentrated on T cells, growing evidence suggests that tumor-infiltrating B cells 
and plasma cells play a critical and synergistic role in tumor control [13]. In addition, the low expression of human leukocyte antigen 
DR (HLA DR) on the monocyte subset might exert immunosuppressive function [14]. All in all, exposing impact of immune traits on 
cancer is significant for developing antitumor immunotherapies and cancer individualized screening and prevention [15].

Observational evidence has indicated that diseases characterized by chronic inflammation are linked to a higher risk of various 
cancers [16,17]. Moreover, the use of anti-inflammatory drugs, may play a preventive role in several types of cancer, including 
colorectal, endometrial, lung, breast, prostate, and ovarian cancers [18]. Given the close association between immune cells and in
flammatory responses, we have conducted a Mendelian randomization study on the tumor and immune cell characteristics in breast 
cancer, lung cancer, endometrial cancer, ovarian cancer, prostate cancer, and the their subtype cancers.

Previous MR analyses have explored the correlation between immune cell characteristics and cancer [19–21]. For example, Xu 
et al. found that elevated levels of CD14− CD16+ monocytes is a protective factor, CD27 on CD24+ CD27+ B cell is a risk factor, and 
IgD+ CD24+ B cells and CD27 on class-switched memory B cells are potential risk factors in lung cancer [22]. After the Bonferroni 
method, Wang et al. found the CD45RA− CD4+ %CD4+, CD8dim %T cell, BAFF-R on IgD+ CD38− unsw mem, CD27 on PB/PC lowered 
the risk of ER+ breast cancer; CD19 on IgD− CD38br, CD25 on IgD + CD38dim were associated with a higher risk of ER + breast cancer; 
CX3CR1 on CD14+ CD16− monocyte has a protective effect against ER− breast cancer [19]. However, these studies predominantly 
emphasize the impact of immune traits on cancer and subtype cancers, leaving the reciprocal influence of cancer and subtype cancers 
on immune traits less understood. Additionally, the same immune cell traits affected by different tumors have not been explored, and 
these immune cell traits may play a more significant role in the occurrence and progression of tumors.

Therefore, our aim was to conduct a comprehensive two-sample MR analysis to investigate the causal relationships between five 
cancers (breast, endometrial, lung, ovarian and prostate cancer) and a broad range of immune cell traits, including B cell panel, T cell 
panel, cDC (circulating dendritic cells) panel, maturation stages of T cell panel, monocyte panel, myeloid cell panel, TBNK (T, B and NK 
cells) panel, Treg panel. These analyses were selected to explore the controversy and uncertainty of the role of immune cells in cancer, 
eventually helping to develop anti-tumor strategies.
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2. Material and methods

2.1. Study design

Fig. 1 provides an overview of the analytical approach. To qualify as valid instrumental variables (IVs), three basic assumptions 
must be met: (1) the genetic variants should have a strong association with the exposure; (2) the genetic variants should not be 
associated with any potential confounding variables that might affect the exposure-outcome relationship; and (3) the genetic variants 
should not have any effect on the outcome other than through the exposure [23].

To ensure the credibility and precision of the conclusions regarding the causal connection between cancer and immune cells, we 
established strict criteria for selecting single nucleotide polymorphisms (SNP) [24]. These criteria included: 1) Genome-wide signif
icance with cancer or immune traits (p < 5 × 10− 8) for each SNP; 2) Ensuring the independence of each SNP by limiting the linkage 
disequilibrium (LD) among SNPs associated with cancer or immune traits to r2 < 0.001 within a window size of 10,000 kb; and 3) Using 
F-statistics (F-statistics = (β/SE)2) to verify the strength of the correlation between instrumental variables (IVs) and exposure factors 
[25].

2.2. Cancer data

We have obtained the complete dataset of cancer from the IEU Open GWAS project https://gwas.mrcieu.ac.uk/. Descriptive sta
tistics for the phenotypic characteristics included in the genome-wide association studies (GWAS) of cancer data were available in 
Table S1. The genetic association summary statistics for breast cancer risk were acquired from two sources: the Breast Cancer Asso
ciation Consortium (BCAC), which is comprised of 68 studies, and the Discovery, Biology, and Risk of Inherited Variants in Breast 
Cancer Consortium (DRIVE). The combined sample size for these studies was 122,977 breast cancer cases and 105,974 controls. When 
stratified by estrogen receptor (ER) expression, there were 69,501 ER+ BC cases and 21,468 ER− BC cases included in the analysis [26].

The associations between SNPs and the risks of overall endometrial cancer, as well as endometrioid and non-endometrioid his
tological subtypes, were obtained from a meta-analysis of 17 studies conducted by the Endometrial Cancer Association Consortium 
(ECAC), the Epidemiology of Endometrial Cancer Consortium (E2C2), and the UK Biobank. The total sample size included 12,906 
endometrial cancer cases and 108,979 country-matched controls of European ancestry. Within the sample, there were 8758 cases of 
endometrioid histological subtype and 1230 cases of non-endometrioid histological subtype [27].

Genetic associations between SNPs and the risk of developing lung cancer were obtained from the International Lung Cancer 

Fig. 1. Overview of the analytical plan. MR: Mendelian randomization; SNP: Single nucleotide polymorphism; IVW: Inverse-variance weighted; ER: 
Estrogen receptor; cDC: Circulating dendritic cells; TBNK: T, B and NK cells.
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Consortium (ILCCO) consisting of 11,348 patients and 15,861 controls of European descent. The study included 3442 cases of lung 
adenocarcinoma and 3275 cases of squamous cell lung cancer (SCLC) [28].

The Ovarian Cancer Association Consortium (OCAC) and the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) 
conducted a meta-analysis to investigate the associations between SNPs and the risk of overall invasive epithelial ovarian cancer, as 
well as its histological subtypes. The study included up to 25,509 cases of epithelial ovarian cancer and 40,941 controls. The number of 
ovarian cancer cases by histotype was serous borderline (1954cases), mucinous borderline (1149cases), low grade serous (LGSOC, 
1012cases), high grade serous (HGSOC, 13037cases), endometrioid (ENOC, 2810cases), and clear cell carcinoma (CCOC, 1366cases) 
[29].

The Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome (PRACTICAL) consortium 
conducted a study to investigate the associations between SNPs and the risk of developing cancer. The study included 79,148 cases of 
prostate cancer and 61,106 controls of European descent [30].

2.3. Immune traits data

We have obtained the complete dataset of immune cell traits from the IEU Open GWAS project. Valeria et al. conducted a study 
utilizing flow cytometry to profile a broad range of 539 immune traits, encompassing 118 absolute cell counts, 389 mean fluorescence 
intensities (MFIs) of surface antigens, and 32 morphological parameters. Additionally, they considered 192 relative counts, which are 
ratios between cell levels. Overall, a total of 731 cell traits were assessed in a population cohort consisting of 3757 individuals from 
European descent. Descriptive statistics for the phenotypic characteristics included in the GWAS of immune traits were provided in 
Table S2. The immune traits were identified by seven panels, including B cell, myeloid cell, monocyte, TBNK cell, Treg, maturation 
stages of T cell, and cDC in their study, and the classification approaches for seven panel in our analysis align with those [31]. Here, we 
describe the classification approaches for B cell, myeloid cell and monocyte panel.

For B cell panel, CD19 positive cells were identified as total B cells and were further classified using various approaches. The 
classification approaches used in B cell panel include CD24 versus CD38, CD27 versus IgD, IgD versus CD38, CD24 versus CD27, IgD 
versus CD24, and CD20 versus CD38 (Fig. 2A). For monocyte panel, monocytes were identified based on morphological parameters 
and HLA DR positivity. The monocyte population was further subdivided into three subsets: classical, non-classical, and intermediate 
(Fig. 2B). For myeloid cell panel, the myeloid-enriched cells were subdivided based on CD14 high positivity and further classified into 

Fig. 2. The classification approaches for B cells (A), monocytes (B) and myeloid cells (C) panel. Different immune cells are distinguished by the 
presence of specific antibodies, denoted by the color blue. HLA DR: human leukocyte antigen DR; MDSCs: myeloid-derived suppressor cells. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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five subsets based on CD33 and HLA DR expression. Additional sub-characterization was done using CD11b and CD66b antibodies: 
granulocytic myeloid-derived suppressor cells (MDSCs); immature MDSCs; and basophils. Monocytic MDSCs were identified based on 
high positivity for CD14 and CD33, and weak positivity for HLA DR. Finally, hematopoietic stem cells were identified as CD34+

CD45dim cells (Fig. 2C). The specific classification can be found in Table S2.

2.4. Other factors

To meet the second condition of MR analysis, we searched for potential instrumental variable selection confounding factors in the 
PhenoScanner database [32]. If there were existing relationships between confounders and immune traits, we conducted multivariable 
MR analyses. When the breast cancer as exposure, the PhenoScanner database search revealed associations of instruments with 
obesity-related and basal metabolic rate traits. Therefore, we chose SNPs for body mass index (BMI) from a GWAS [33] of 694,649 
participants and basal metabolic rate (BMR) [34] for the multivariable MR analyses. For endometrial cancer, we chose SNPs for BMI, 
systolic blood pressure [35], diastolic blood pressure [35], and coronary heart disease [36] for the multivariable MR analyses. For 
ovarian cancer, we chose SNPs for BMI for the multivariable MR analyses. For prostate cancer, we chose SNPs for BMI, rheumatoid 
arthritis [37], coronary heart disease for the multivariable MR analyses via the inverse-variance method. Other confounders are 
detailed in Table S3.

2.5. Statistical analyses

Given that we have established a stringent threshold of P < 1 × 10− 8 for SNPs associated with cancer or immune cell characteristics. 
This stringent threshold occasionally resulted in a limited number of instrumental variables available for analysis. To ensure the 
reliability of our results, we excluded traits from the analysis if they had fewer than three instrumental variables. For traits that had 
multiple instrumental variables, the inverse-variance weighted (IVW) test [38], MR-Egger regression [39] and weighted median (WM) 
[40] were used. IVW relies on the premise of no horizontal pleiotropy across all SNPs, under which it offers the most precise evaluation 
of causal effects. In contrast, the other two methodologies may yield more resilient estimates under less stringent circumstances. 
Specifically, WM permits the inclusion of up to 50 % ineffective SNPs, while MR-Egger detects horizontal pleiotropy and heterogeneity, 
particularly when such pleiotropy is present across all SNPs [20]. Given certain conditions, the IVW method was found to be 
marginally more effective than the other methods, and therefore the results were predominantly based on the IVW method, while the 
remaining three methods were utilized as supplementary analyses [41]. To assess the third MR assumption, we evaluated the het
erogeneity of independent SNP effects using Cochran’s Q statistics, and employed the MR-PRESSO and MR-Egger regression tests to 
monitor and detect any potential horizontal pleiotropy effect [32,42]. If the P-value of heterogeneity was less than 0.05, we utilized the 
random effects IVW method as the primary statistical analysis approach. Otherwise, we used the fixed effect IVW method. Further
more, we calculated the P-value of the MR-Egger intercept and the P-value of the MR-PRESSO global test to evaluate potential hor
izontal pleiotropy effects. If the P-value of the MR-Egger intercept or the MR-PRESSO global test was less than 0.05, it indicated the 
presence of horizontal pleiotropy. To account for confounding factors in our models, we conducted a multivariable IVW MR analysis. 
The multivariable IVW approach simultaneously considers multiple exposure factors, thereby minimizing the potential impact of 
SNP-exposure effects on other assumed risk factors along an indirect pathway [43]. To investigate whether the identified significant 
cancer genera have any causal impact on immune traits, we conducted a reverse MR analysis [44]. This entailed using SNPs associated 
with immune traits as instrumental variables and the identified causal cancer genus as the outcome.

All statistical analyses were conducted using R version 4.3.0. For MR analysis, we utilized the MendelianRandomization package 
(version 0.7.0) [45] and TwoSampleMR package (version 0.5.6). In addition, for MR-PRESSO analysis, we employed the MRPRESSO 
package (version 1.0) [42].

3. Results

3.1. Genetic instrument selection and F-statistics

We identified a total of 142, 16, 5, 12, and 137 SNPs significantly associated with breast, endometrial, lung, ovarian, and prostate 
cancer, respectively, at a significance level of p < 5 × 10− 8. The minimum F-statistics for these SNPs were 29.72, 30.37, 15.69, 29.98, 
and 29.57, respectively. Additional information on the significant SNPs and F-statistics for cancer and immune traits can be found in 
Tables S4 and S5. The findings suggest that any potential bias stemming from weak instruments (F-statistics <10) has been effectively 
addressed.

3.2. The detection of heterogeneity and directional pleiotropy

To evaluate the heterogeneity of independent SNP effects, we employed Cochran’s Q statistics. To examine the potential influence 
of horizontal pleiotropy, we utilized MR-Egger regression tests and MR-PRESSO (Tables S6 and Table S7). For certain MR-PRESSO 
analyses where there were insufficient instrumental variables (n < 4), the global test was not computed. If the P-value of the MR- 
Egger intercept or the MR-PRESSO global test for horizontal pleiotropy was less than 0.05, we removed the results between cancer 
and immune traits. These results of Cochran Q Test and MR-Egger intercept test both indicate the absence of heterogeneity or plei
otropy in relation to these cancer and immune cell traits.
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3.3. Causal effects of five cancers on seven panels immune traits

In our analysis of the causal effects of five cancers on immune traits, we identified several significant associations. Specifically, 
breast cancer was found to influence 49 immune cell traits, endometrial cancer may influence 38, lung cancer may influence 25, 
ovarian cancer may influence 19, and prostate cancer may influence 28. Among these, breast cancer and lung cancer were associated 
with four common immune traits: CD25 on IgD− CD38dim (CD25 expression on IgD− CD38dim B cell), CD25 on sw mem (CD25 
expression on switched memory B cell), CD24 on IgD− CD38-(CD24 expression on IgD− CD38− B cell), and CD25 on IgD− CD38-(CD25 
expression on IgD− CD38− B cell). Lung cancer and prostate cancer shared four immune traits: CD25 on IgD+ CD24+ (CD25 expression 
on IgD+ CD24+ B cell), CD25 on IgD+ CD38− (CD25 expression on IgD+ CD38− B cell), CD66b on CD66b++ myeloid cell (CD66b 
expression on CD66b++ myeloid cell), and DN (CD4− CD8− ) AC (Central Memory CD4− CD8− T cell Absolute Count). Endometrial 
cancer and ovarian cancer shared two immune traits: TD DN (CD4− CD8− ) %DN (Terminally Differentiated CD4− CD8− T cell % 
CD4− CD8− T cell), EM DN (CD4− CD8− ) %DN (Effector Memory CD4− CD8− T cell %CD4− CD8− T cell). Breast cancer and endometrial 
cancer shared one immune trait: CD20 on IgD− CD38dim (CD20 on IgD− CD38dim B cell). Endometrial cancer and prostate cancer 
shared one immune trait: CCR2 on myeloid DC (CCR2 on myeloid Dendritic Cell). Lastly, breast cancer, lung cancer, and prostate 
cancer shared one immune trait: CD25 on CD24+ CD27+ (CD25 expression on CD24+ CD27+ B cell) (Fig. 3). Together, these results 
suggest that cancers can influence immune cell traits, and some immune cell traits can be influenced by different cancers.

3.4. Causal effects of five cancers on three panels (B cell, monocyte and myeloid cell panel) immune traits

3.4.1. Breast cancer
Breast cancer has been found to influence the traits in B cells, monocytes, and myeloid cells (Fig. 4). Specifically, in relation to B 

cells, breast cancer was causally associated with IgD− CD27− %B cell (IgD− CD27− B cell/B cell ratio, β = 0.117, 95%CI = 0.042 to 
0.191, P = 0.002, IVW), IgD− CD24− %B cell (IgD− CD24− B cell/B cell ratio, β = 0.099, 95%CI = 0.025 to 0.174, P = 0.009, IVW), and 
so on. Regarding monocytes, breast cancer was associated with CD14 on CD14+ CD16+ monocyte (CD14 expression on CD14+ CD16+

monocyte, β = − 0.079, 95%CI = − 0.152 to − 0.006, P = 0.035, IVW), CCR2 on CD14+ CD16− monocyte (CCR2 expression on CD14+

CD16− monocyte, β = − 0.092, 95%CI = − 0.165 to − 0.02, P = 0.013, IVW), and so on. For myeloid cell, breast cancer was causally 
associated with CD14 on CD33br HLA DR + CD14dim (CD14 expression on CD33br HLA DR + CD14dim myeloid cell, β = − 0.151, 95%CI 
= − 0.259 to − 0.042, P = 0.006, IVW). These findings shed light on the potential impact of breast cancer on the immune system within 
these cell populations.

3.4.2. Endometrial cancer
Endometrial cancer has been found to influence the traits of B cell and myeloid cell (Fig. 5). For B cell, endometrial cancers were 

causally associated with BAFF-R on CD24+ CD27+ (BAFF-R expression on CD24+ CD27+ B cell, β = − 0.132, 95%CI = − 0.254 to 
− 0.009, P = 0.035, IVW), BAFF-R on IgD+ CD24+ (BAFF-R expression on IgD+ CD24+ B cell, β = − 0.14, 95%CI = − 0.263 to − 0.018, P 
= 0.025, IVW), and so on. For myeloid cell, endometrial cancers were causally associated with CD45 on CD33dim HLA DR− (CD45 
expression on CD33dim HLA DR− myeloid cell, β = − 0.216, 95%CI = − 0.397 to − 0.036, P = 0.019, IVW) and CD45 on basophil (CD45 
expression on basophil, β = − 0.223, 95%CI = − 0.403 to − 0.042, P = 0.015, IVW). These results suggest that endometrial cancer can 
affect immune cell traits.

3.4.3. Lung cancer
Lung cancer has been found to influence the traits of B cell and myeloid cell (Fig. 6). For B cell, lung cancers were causally 

associated with IgD + CD38br AC (IgD+ CD38+ B cell absolute count, β = − 0.144, 95%CI = − 0.269 to − 0.02, P = 0.023, IVW), IgD +

CD38br %lymphocyte (IgD + CD38br B cell/lymphocyte ratio, β = − 0.158, 95%CI = − 0.285 to − 0.031, P = 0.015, IVW) and so on. For 
myeloid cell, endometrial cancers were causally associated with CD66b on CD66b++ myeloid cell (CD66b expression on CD66b++

Fig. 3. The causal relationships between different types of cancer and immune traits. Set Size: the number of immune cell characteristics that are 
influenced by different types of cancer. Intersection Size: distribution of immune cell characteristics in different tumors.
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myeloid cell, β = − 0.23, 95%CI = − 0.421 to − 0.039, P = 0.018, IVW). These findings indicate that lung cancer may impact the 
characteristics of immune cells.

3.4.4. Ovarian cancer
Ovarian cancer has been found to the traits of B cell and myeloid cell (Fig. 7). For B cell, ovarian cancers were causally associated 

with CD20− CD38− AC (CD20− CD38− B cell absolute count, β = − 0.162, 95%CI = − 0.307 to − 0.018, P = 0.028, IVW), IgD− CD38dim 

AC (IgD− CD38dim B cell absolute count, β = − 0.152, 95%CI = − 0.297 to − 0.008, P = 0.039, IVW) and so on. For myeloid cell, ovarian 
cancers were causally associated with CD11b on CD33br HLA DR + CD14dim (CD11b expression on CD33br HLA DR + CD14dim myeloid 
cell, β = 0.214, 95%CI = 0.002 to 0.425, P = 0.048, IVW). These results suggest that ovarian cancer can influence immune cell traits.

Fig. 4. The specific associations between breast cancer and immune cell traits. SNP: Single nucleotide polymorphism; IVW: Inverse- 
variance weighted.

Fig. 5. The specific associations between endometrial cancer and immune cell traits. SNP: Single nucleotide polymorphism; IVW: Inverse- 
variance weighted.
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3.4.5. Prostate cancer
Prostate cancer has been found to influence the traits of traits of B cell, monocyte, myeloid cell (Fig. 8). For B cell, breast cancer was 

causally associated with CD25 on CD24+ CD27+ (CD25 expression on CD24+ CD27+ B cell, β = − 0.067, 95%CI = − 0.127 to − 0.006, P 
= 0.031, IVW), CD25 on IgD+ CD24+ (CD25 expression on IgD+ CD24+ B cell, β = − 0.069, 95%CI = − 0.13 to − 0.008, P = 0.026, 
IVW), and so on. For monocyte, breast cancer was associated with PDL-1 on CD14+ CD16− monocyte (PDL-1 expression on CD14+

CD16− monocyte, β = 0.076, 95%CI = 0.015 to 0.137, P = 0.015, IVW) and CD64 on CD14− CD16− (CD64 expression on CD14−

CD16− monocyte, β = 0.069, 95%CI = 0.009 to 0.129, P = 0.024, IVW). For myeloid cell, breast cancer was causally associated with 
CD66b on CD66b++ myeloid cell (CD66b expression on CD66b++ myeloid cell, β = 0.102, 95%CI = 0.009 to 0.195, P = 0.031, IVW), 
CD45 on CD66b++ myeloid cell (CD45 expression on CD66b++ myeloid cell, β = 0.123, 95%CI = 0.032 to 0.215, P = 0.008, IVW), and 
so on. These findings indicate that prostate cancer may impact the characteristics of immune cells.

3.5. Causal effects of subtype cancers on panels (B cell, monocyte and myeloid cell panel) immune traits

We identified causal relationships between breast subtype (ER+ and ER− breast cancer), endometrial subtype (endometrioid 

Fig. 6. The specific associations between lung cancer and immune cell traits. SNP: Single nucleotide polymorphism; IVW: Inverse- 
variance weighted.

Fig. 7. The specific associations between ovarian cancer and immune cell traits. SNP: Single nucleotide polymorphism; IVW: Inverse- 
variance weighted.

Fig. 8. The specific associations between prostate cancer and immune cell traits. SNP: Single nucleotide polymorphism; IVW: Inverse- 
variance weighted.
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histology), lung subtype (SCLC) and ovarian subtype (HGSOC, serous borderline and mucinous borderline) cancer and immune traits. 
The results can be found in Fig. S1. No relationship was found between immune traits and the following subtype cancers: non- 
endometrioid histology endometrial cancer, lung adenocarcinoma, LGSOC, ENOC, and CCOC. These findings indicate that cancer 
subtypes may affect the traits of immune cells.

3.6. Causal effects of five cancers and their subtype on other four panels (TBNK, Treg, maturation stages of T cell and DC panel) immune 
traits

The complex interplay of specialized cells and molecules within the immune system plays a pivotal role in cancer [46]. By cate
gorizing immune cells into four additional panels, we expanded our analysis to explore the relationship between different types of 
cancers and immune traits. The casual associations between cancer and immune traits are presented in Table S8. These results indicate 
that the interaction between cancers and immune cell characteristics is a widespread occurrence.

3.7. Multivariable MR analysis

The PhenoScanner search revealed connections between instrumental variables for cancer and associated traits. However, when 

Fig. 9. Multivariable IVW estimates for adjusted associations between cancers and immune traits. SNP: Single nucleotide polymorphism; IVW: 
Inverse-variance weighted.
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potential pleiotropy was taken into account using a multivariable MR analysis via the inverse-variance method, the combined effect 
values for these associated traits were modified. For instance, upon considering BMI as a covariate, the previously observed links 
between breast cancer and immune traits including IgD− CD27− %B cell (IgD− CD27− B cell/B cell ratio) and CD20− %B cell (CD20− B 
cell/B cell ratio), as well as endometrial cancer and immune traits including HVEM on naive CD8br (HVEM expression on naive CD8+ T 
cell), HVEM on CD4+ (HVEM expression on CD4+ T cell) and HVEM on EM CD4+ (HVEM expression on effector memory CD4+ T cell) 
lost their significance. Similarly, adjusting for coronary heart disease revealed that the associations between prostate cancer and 
immune trait including Activated Treg AC (activated CD4 regulatory T cell absolute count), as well as endometrial cancer and immune 
trait including CD3 on CD28+ DN (CD3 expression on CD28+ CD4− CD8− T cell), were no longer statistically significant. Those results 
were shown in Fig. 9. These results suggest that the majority of findings in our study are minimally influenced by confounding factors.

3.8. Reverse MR analysis

Cancers and immune traits have bidirectional relations. To assess potential reverse causation effects, we utilized a reversed analysis 
approach by examining the roles of exposure and outcome. We did not find significant bidirectional effects between immune traits and 
cancer in most of the MR analyses conducted. However, cancer and immune traits have bidirectional relations in certain cases and 
Fig. 10 presents a summary network to enhance our understanding of complex interplay between immune traits and cancer. The 
following section demonstrates the impact of immune characteristics on tumor development.

3.8.1. Causal effects of seven immune panels immune traits on five cancers
We identified several causal relationships between immune traits and five cancers risk. Specifically, we found 14 causal re

lationships with breast cancer, 9 with endometrial cancer, 22 with lung cancer, 9 with ovarian cancer, and 14 with prostate cancer. 
Among these, breast cancer and prostate cancer shared three immune traits: HLA DR++ monocyte %monocyte (HLA DR++ monocyte/ 
monocyte ratio), HLA DR on plasmacytoid DC (HLA DR expression on plasmacytoid dendritic cell), and HLA DR on DC (HLA DR 
expression on dendritic cell). Lung cancer and ovarian cancer shared one immune trait: CD62L− monocyte %monocyte (CD62L−

monocyte/monocyte ratio). Prostate cancer and endometrial cancer shared one immune trait: HLA DR on CD33dim HLA DR + CD11b+

(HLA DR expression on CD33dim HLA DR + CD11b+ myeloid cell). Lastly, ovarian cancer and prostate cancer shared one immune trait: 
CD3 on resting Treg (CD3 expression on resting CD4 regulatory T cell) (Fig. 11).

In our analysis, immune traits may serve as risk factors for cancer and serve as protective factors against cancer. For B cell panel 
(Table 1), B cell traits may correlate with the development of breast cancer, lung cancer, endometrial cancer and ovarian cancer. CD20 
on IgD− CD38− B cell (CD20 expression on IgD− CD38− B cell) was a risk factor for breast cancer (OR = 1.058, 95%CI = 1.013–1.106, 
P = 0.012, IVW), CD25 on IgD + CD38dim B cell (CD25 expression on IgD + CD38dim B cell) was risk factor endometrial cancer (OR =
1.108, 95%CI = 1.007–1.218, P = 0.034, IVW). BAFF-R on IgD+ CD24+ B cell (BAFF-R expression on IgD+ CD24+ B cell) was a risk 
factor for lung cancer (OR = 1.042, 95%CI = 1.004–1.081, P = 0.03, IVW). CD20 on IgD+ CD38− B cell (CD20 expression on IgD+

CD38− B cell) was a risk factor for ovarian cancer (OR = 1.118, 95%CI = 1.019–1.226, P = 0.019, IVW). For monocyte panel (Table 1), 
CD64 on CD14− CD16− (CD64 expression on CD14− CD16− monocyte) was a protective factor against breast cancer (OR = 0.951, 95% 
CI = 0.914–0.99, P = 0.014, IVW). HLA DR on CD14+ CD16+ monocyte (HLA DR expression on CD14+ CD16+ monocyte) was a 
protective factor against prostate cancer (OR = 0.967, 95%CI = 0.941–0.994, P = 0.018, IVW). For myeloid cell panel (Table 1), CD33 
on CD33dim HLA DR + CD11b+ (CD33 expression on CD33dim HLA DR + myeloid cell) was a protective factor against breast cancer (OR 
= 0.989, 95%CI = 0.979–0.999, P = 0.028, IVW). HLA DR on CD33dim HLA DR + CD11b+ (HLA DR expression on CD33dim HLA DR +

CD11b+ myeloid cell) was a protective factor against endometrial cancer (OR = 0.944, 95%CI = 0.902–0.988, P = 0.013, IVW). 
Basophil %CD33dim HLA DR− CD66b− (Basophil/CD33dim HLA DR− CD66b− myeloid cell ratio) was a protective factor against 
prostate cancer (OR = 0.972, 95%CI = 0.945–0.999, P = 0.045, IVW). To gain a deeper understanding of the relationship between 
immune traits and cancers, we conducted MR analysis to include four additional panels (TBNK, Treg, maturation stages of T cells, and 
DC panels) (Table 2). The field of cancer immunology focuses on studying how the immune system interacts with cancer cells and how 
this interaction can be harnessed for therapeutic purposes [47]. Categorizing cancers based on specific characteristics has indeed been 

Fig. 10. Summarized results of bidirectional MR study on cancers and immune traits. SNP: Single nucleotide polymorphism; IVW: Inverse- 
variance weighted.
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valuable in understanding the relationship between immune traits and cancer. The casual associations between seven panels immune 
traits and cancer subtypes are presented in Table S9. Together, these findings imply that various immune cell traits can influence 
cancer development.

Fig. 11. The causal relationships between different types of cancer and immune traits. Set Size: the number of immune cell characteristics that 
influence different types of cancer. Intersection Size: distribution of immune cell characteristics in different tumors.

Table 1 
Causal effects of three immune panels (B cell, monocyte and myeloid cell panel) immune traits on five cancers.

Exposure Outcome (ID) Method Nsnp OR(95%CI) P

B cell Breast cancer ​ ​ ​ ​
CD20 on sw mem ieu-a-1126 IVW 7 1.034(1.004–1.065) 0.025
CD20 on IgD- CD38− ieu-a-1126 IVW 4 1.058(1.013–1.106) 0.012
B cell Endometrial cancer ​ ​ ​ ​
CD25 on IgD + CD38dim ebi-a-GCST006464 IVW 3 1.108(1.007–1.218) 0.034
B cell Lung cancer ​ ​ ​ ​
BAFF-R on CD24+ CD27+ ieu-a-966 IVW 6 1.038(1.001–1.077) 0.046
BAFF-R on IgD + CD24+ ieu-a-966 IVW 5 1.042(1.004–1.081) 0.03
BAFF-R on IgD + CD24− ieu-a-966 IVW 10 1.041(1.006–1.078) 0.02
BAFF-R on IgD + CD38− ieu-a-966 IVW 9 1.045(1.009–1.083) 0.014
BAFF-R on IgD + CD38− naive ieu-a-966 IVW 8 1.044(1.009–1.08) 0.012
BAFF-R on IgD + CD38− unsw mem ieu-a-966 IVW 7 1.038(1.001–1.077) 0.045
BAFF-R on IgD + CD38br ieu-a-966 IVW 10 1.042(1.006–1.079) 0.022
BAFF-R on IgD + CD38dim ieu-a-966 IVW 10 1.039(1.005–1.075) 0.025
BAFF-R on IgD- CD27− ieu-a-966 IVW 8 1.039(1–1.078) 0.048
BAFF-R on IgD- CD38− ieu-a-966 IVW 6 1.041(1.003–1.081) 0.033
BAFF-R on IgD- CD38br ieu-a-966 IVW 3 1.11(1.006–1.226) 0.038
BAFF-R on memory B cell ieu-a-966 IVW 5 1.039(1.001–1.078) 0.044
BAFF-R on naive-mature B cell ieu-a-966 IVW 10 1.042(1.006–1.078) 0.02
BAFF-R on unsw mem ieu-a-966 IVW 5 1.039(1.001–1.078) 0.045
BAFF-R on IgD+ ieu-a-966 IVW 10 1.039(1.004–1.075) 0.028
BAFF-R on transitional ieu-a-966 IVW 8 1.046(1.008–1.086) 0.018
BAFF-R on B cell ieu-a-966 IVW 10 1.039(1.004–1.075) 0.027
B cell Ovarian cancer ​ ​ ​ ​
CD20 on IgD + CD38− ieu-a-1120 IVW 4 1.118(1.019–1.226) 0.019
Monocyte Breast cancer ​ ​ ​ ​
CD64 on CD14− CD16− ieu-a-1126 IVW 3 0.951(0.914–0.99) 0.014
HLA DR on CD14− CD16− ieu-a-1126 IVW 5 0.978(0.962–0.996) 0.014
Monocyte Prostate cancer ​ ​ ​ ​
HLA DR on CD14+ CD16+ monocyte ieu-b-85 IVW 4 0.967(0.941–0.994) 0.018
HLA DR on monocyte ieu-b-85 IVW 4 1.047(1.021–1.073) 0
Myeloid cell Breast cancer ​ ​ ​ ​
CD33 on CD33dim HLA DR + CD11b+ ieu-a-1126 IVW 7 0.989(0.979–0.999) 0.028
CD33 on CD33dim HLA DR + CD11b- ieu-a-1126 IVW 7 0.989(0.979–0.999) 0.03
HLA DR on CD33− HLA DR+ ieu-a-1126 IVW 3 0.976(0.962–0.991) 0.002
Myeloid cell Endometrial cancer ​ ​ ​ ​
HLA DR on CD33dim HLA DR + CD11b+ ebi-a-GCST006464 IVW 4 0.944(0.902–0.988) 0.013
HLA DR on CD33dim HLA DR + CD11b- ebi-a-GCST006464 IVW 5 0.943(0.904–0.985) 0.008
Myeloid cell Prostate cancer ​ ​ ​ ​
Basophil %CD33dim HLA DR- CD66b- ieu-b-85 IVW 3 0.972(0.945–0.999) 0.045
HLA DR on CD33br HLA DR + CD14− ieu-b-85 IVW 3 1.05(1.026–1.075) 0
HLA DR on CD33br HLA DR + CD14dim ieu-b-85 IVW 3 1.07(1.036–1.105) 0
HLA DR on CD33dim HLA DR + CD11b+ ieu-b-85 IVW 4 0.955(0.933–0.978) 0
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4. Discussion

Cancer employs diverse mechanisms to disrupt the normal functioning of immune cells, thereby promoting tumor growth and 
advancement. By employing a two-sample MR, we examined potential associations of cancers and their subtypes with immune cell 
traits, including associations between absolute cell counts, proportions of cells, and the levels of cell surface antigens.

We identified SNPs that demonstrated a significant association with breast, endometrial, lung, ovarian, and prostate cancers, using 
a significance threshold of P < 5 × 10− 8. The selected single instrumental variables (IVs) exhibited an F-statistic greater than 10 and an 
r2 value less than 0.001, indicating that none of the SNPs were weak instrumental variables. Among these SNPs, we found the 
rs4784227 (P = 1E-200) in FPXA1 and rs11379664 (P = 1E-200) in FGFR2 were strongly associated with overall breast cancer. 
rs11651052 (P = 4.00037E-20) in HNF1B was strongly associated with overall endometrial cancer. rs8040868 (P = 4.9705E-60) in 
CHRNA3 was strongly associated with overall lung cancer. rs62276619 (P = 5.53478E-39) in TIPARP was strongly associated with 
overall ovarian cancer. rs11986220 (P = 1.09901E-187) was strongly associated with overall prostate cancer. The rs11986220 variant 
is located within a FoxA1 binding site, where the prostate cancer risk allele enhances both FoxA1 binding affinity and androgen 
responsiveness [48]. Additionally, genetic variants associated with BMI consistently appear as a variable across various cancer types in 
our study, suggesting a potential relationship between cancer incidence and BMI. Recent studies underscore the significance of BMI as 
a contributing risk factor across a spectrum of cancers [49,50].

Table 2 
Causal effects of four immune panels (TBNK, Treg, maturation stages of T cells, and DC panels) immune traits on five cancers.

Exposure Outcome (ID) Method Nsnp OR(95%CI) P

cDC Breast cancer ​ ​ ​ ​
CD11c on granulocyte ieu-a-1126 IVW 4 1.039(1.006–1.074) 0.022
HLA DR on myeloid DC ieu-a-1126 IVW 7 0.978(0.964–0.993) 0.003
HLA DR on plasmacytoid DC ieu-a-1126 IVW 9 0.984(0.973–0.995) 0.004
HLA DR on DC ieu-a-1126 IVW 7 0.982(0.969–0.995) 0.005
cDC Lung cancer ​ ​ ​ ​
CD62L- monocyte %monocyte ieu-a-966 IVW 4 0.919(0.845–0.999) 0.046
cDC Ovarian cancer ​ ​ ​ ​
CD62L- monocyte %monocyte ieu-a-1120 IVW 4 0.937(0.88–0.998) 0.042
cDC Prostate cancer ​ ​ ​ ​
HLA DR on plasmacytoid DC ieu-b-85 IVW 9 1.045(1.031–1.06) 0
HLA DR on DC ieu-b-85 IVW 7 1.051(1.034–1.068) 0
Maturation stages of T cell Breast cancer ​ ​ ​ ​
CD8 on EM CD8br ieu-a-1126 IVW 3 1.047(1.019–1.076) 0.001
CD45RA + CD8br %CD8br ieu-a-1126 IVW 5 0.985(0.973–0.997) 0.015
Maturation stages of T cell Lung cancer ​ ​ ​ ​
CD4 on naive CD4+ ieu-a-966 IVW* 4 0.813(0.671–0.985) 0.034
CD4RA on TD CD4+ ieu-a-966 IVW 3 1.083(1.015–1.155) 0.015
Maturation stages of T cell Ovarian cancer ​ ​ ​ ​
CD45RA on naive CD4+ ieu-a-1120 IVW 10 0.962(0.934–0.99) 0.009
Maturation stages of T cell Prostate cancer ​ ​ ​ ​
Naive CD8br %T cell ieu-b-85 IVW 3 0.992(0.986–0.998) 0.009
TBNK Breast cancer ​ ​ ​ ​
HLA DR++ monocyte %monocyte ieu-a-1126 IVW 3 0.958(0.926–0.991) 0.013
TBNK Prostate cancer ​ ​ ​ ​
HLA DR++ monocyte %monocyte ieu-b-85 IVW 3 1.057(1.014–1.103) 0.009
HLA DR + NK %NK ieu-b-85 IVW 7 1.039(1.009–1.069) 0.01
FSC-A on NK ieu-b-85 IVW 3 1.079(1.027–1.134) 0.002
HLA DR on B cell ieu-b-85 IVW 8 1.02(1–1.041) 0.048
Treg Endometrial cancer ​ ​ ​ ​
CD39+ CD4+ AC ebi-a-GCST006464 IVW 6 0.943(0.9–0.988) 0.014
CD39+ CD8br %T cell ebi-a-GCST006464 IVW 7 1.027(1–1.055) 0.047
CD39+ CD8br AC ebi-a-GCST006464 IVW 6 1.031(1.003–1.059) 0.028
CD45RA- CD28− CD8br AC ebi-a-GCST006464 IVW 116 1(1–1) 0.007
CD25 on CD39+ CD4+ ebi-a-GCST006464 IVW 5 0.958(0.921–0.996) 0.032
CD4 on CD39+ secreting Treg ebi-a-GCST006464 IVW 3 1.116(1.032–1.207) 0.006
Treg Lung cancer ​ ​ ​ ​
CD25hi CD45RA- CD4 not Treg %T cell ieu-a-966 IVW 3 0.939(0.884–0.997) 0.041
CD28+ CD45RA + CD8dim AC ieu-a-966 IVW 6 0.975(0.953–0.997) 0.026
Treg Ovarian cancer ​ ​ ​ ​
Resting Treg % CD4 Treg ieu-a-1120 IVW 11 0.968(0.944–0.992) 0.01
Resting Treg %CD4 ieu-a-1120 IVW 6 0.957(0.928–0.987) 0.006
Activated Treg %CD4 Treg ieu-a-1120 IVW 4 1.059(1.011–1.109) 0.016
CD25++ CD8br AC ieu-a-1120 IVW 3 1.092(1.012–1.178) 0.023
CD3 on resting Treg ieu-a-1120 IVW 5 0.952(0.91–0.997) 0.036
CD127 on CD28+ CD4+ ieu-a-1120 IVW 3 1.111(1.02–1.211) 0.016
Treg Prostate cancer ​ ​ ​ ​
CD3 on resting Treg ieu-b-85 IVW 5 0.968(0.941–0.995) 0.021
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Our discovery regarding the link between cancer and immune traits aligns with previous observational studies, which have 
demonstrated that cancer contributes to the dysregulation of immune cells. Tregs inhibit the immune response against tumors, and 
their infiltration into tumor tissues is often linked to a poor prognosis. Depletion of Tregs was able to improve the antitumor response 
[51]. Examination of the tumor microenvironment in prostate cancer underscores the role of infiltrating Tregs and macrophages as 
pivotal indicators of unfavorable prognosis [52]. Consistent with prior research, our MR analysis suggests that prostate cancer is a risk 
factor for Activated Treg AC (activated Treg cells absolute count, β = 0.065, 95%CI = 0.002 to 0.128, P = 0.044, IVW). The accu
mulation of MDSCs that is often immunosuppressive. A recent study reports that the V-domain suppressor of T cell activation (VISTA) 
deficiency leads to a notable decrease in tumor-associated MDSCs and enhanced T cell-mediated tumor control [53]. In addition, the 
ovarian cancer microenvironment exerts a significant influence over the metabolism and functionality of MDSCs, thereby intricately 
tuning the immune microenvironment. Consistent with prior research, our MR analysis suggests that endometrioid histology endo
metrial cancer (β = 0.213, 95%CI = 0.045 to 0.381, P = 0.013, IVW) and serous borderline ovarian cancer (β = 0.188, 95%CI = 0.055 
to 0.321, P = 0.006, IVW) are risk factors for Mo MDSC AC (monocytic MDSCs absolute count). The cancer can influence the 
co-stimulatory molecules and cell surface receptors.

Different cancers can influence the same immune cell traits. In our study, we found that breast cancer and lung cancer were linked 
to four common immune traits. Similarly, lung cancer and prostate cancer also shared four immune traits. Endometrial cancer and 
ovarian cancer exhibited two shared immune traits. Additionally, breast cancer and endometrial cancer shared one immune trait. 
Endometrial cancer and prostate cancer shared one immune trait. Lastly, breast cancer, lung cancer, and prostate cancer shared one 
immune trait. Different immune characteristics can also affect the same types of cancer. breast cancer and prostate cancer can be 
influenced by three same immune traits. Lung cancer and ovarian cancer can be influenced by one same immune trait. Prostate cancer 
and endometrial cancer can be influenced by one same immune trait. Lastly, ovarian cancer and prostate cancer can be influenced by 
one same immune trait. This implies that research on these immune characteristics may lead to the development of biomarkers and 
treatment strategies that can simultaneously target different tumors. Transcriptomic analysis reveals four unique TME subtypes 
consistently identified across a spectrum of 20 distinct cancer types. These TME subtypes exhibit a strong correlation with patient 
outcomes following immunotherapy treatment in various cancer types, highlighting that individuals with immune-favorable TME 
subtypes derive the greatest benefit from immunotherapy interventions [54]. This research suggests that immune traits serve as a 
universal immunotherapy biomarker across a diverse range of cancer categories.

Given the complexity of interactions between tumors and the immune system, different cancers may have divergent effects on the 
same immune traits. The CD25 and CD24 on IgD− CD38− B cell surface, CD25 on switched memory B cell surface and CD25 on IgD−

CD38dim B cell surface tends to decrease in expression in breast cancer and increase in expression in lung cancer in our analysis. The 
CD25 on IgD− CD38dim B cell tends to decrease in expression in prostate cancer and increase in expression in lung cancer in our 
analysis. The CD25 on IgD− CD38dim B cell surface tends to increase in expression in prostate cancer and decrease in expression in lung 
cancer in our analysis. In addition, the regulation of immune cells involves complex genetic mechanisms that exhibit highly selective 
effects on cancer risk. It is also important to note that the same immune traits may have divergent effects on different types of cancer. 
For example, HLA DR expression on plasmacytoid DC is a protective factor against breast cancer, but a risk factor for prostate cancer. In 
reverse MR analysis, the same immune traits may be different in the different stage of cancer development. The higher expression of 
CD20 on switched memory tends to be a risk factor for breast cancer development, but the breast cancer tends to induce the lower 
expression of CD20 on switched memory. The higher expression of CD25 on memory B cell tends to a protective factor against SCLC, 
but the SCLC tends to induce the higher express of CD25 on memory B cell.

Experimental research have suggested that cancer can influence the immune system of cancer patients through multiple mecha
nisms. Nevertheless, the precise mechanism through cancer induce immune system dysregulation has yet to be determined. Hence, a 
mechanistic analysis of our findings is necessary for further investigation. Cytokines are potent secreted regulators of diverse cell types 
and cellular activities, especially in the immune system [55]. Dysregulated cytokine production by malignant cells is involved in the 
dysregulated immune cells. For example, Interleukin-10 (IL-10) stimulates the expression of CD39 on CD8+ T cells, thereby enhancing 
the effectiveness of anti-PD1 therapy in EGFR-mutated non-small cell lung cancer [55]. A recent study has proposed that 
tumor-derived immunoglobulin-like transcript 4 (ILT4) is directly implicated in inducing cell senescence in naive/effector T cells [56]. 
Given the complex connections among cancer, circulating inflammatory cytokines, and immune traits, further studies and mediation 
MR analysis are needed to explore the detailed associations and underlying mechanisms.

Apart from the factors related to inflammation, tumor metabolism factors may also have an impact on immune cell characteristics. 
The metabolically adverse tumor microenvironment creates obstacles for tumor-infiltrating immune cells, hindering sustained clinical 
remission post-immunotherapy. The metabolic interaction between cancer cells and adjacent immune cells may influence the 
magnitude and type of immune responses, underscoring the potential role of metabolic crosstalk in immune surveillance and evasion 
[57]. Increased levels of lipoprotein lipase in radiation-induced thymic lymphomas result in elevated serum triacylglycerol (TAG) 
levels, subsequently causing dysfunction in dendritic cells (DCs) [58]. Moreover, within the tumor microenvironment, the competitive 
uptake of glucose is accountable for impairing T cell function. Additionally, the competitive uptake of amino acids, glutamine, fatty 
acids, and other metabolites or growth factors by both tumor cells and immune cells, along with the expression of corresponding 
transporters on their surfaces, are pivotal factors influencing immune cell functionality [59]. These interplay may change the immune 
cells traits. Therefore, exploring the correlation among tumors, metabolic reactions, and immune cell characteristics holds great 
promise for investigating tumor immune mechanisms.

Similar effects also exist between tumors, extracellular vesicles, and immune cell characteristics. The tumor-induced systemic 
environment affects both the frequency and phenotype of monocytes, leading them to acquire immunosuppressive functions [60]. To 
some extent, this imbalance in immune cell activity within the tumor microenvironment is mediated by tumor-derived extracellular 
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vesicles (EVs). For instance, in cases of melanoma and colon cancer, tumor-derived exosomes inhibit the differentiation of peripheral 
inflammatory monocytes into dendritic cells, instead promoting their polarization into the monocytic MDSC phenotype, which is 
marked by reduced expression of HLA-DR [61]. In addition, stimulation of monocytes with pancreatic cancer-derived EVs led to 
distinctive alterations in the expression of HLA-DR, PD-L1, CD86, and CD64 [62]. Collectively, cancer can impact the immune system 
of patients through various mechanisms. Further investigation, including MR analysis, is necessary to delve into the correlation be
tween cancers and immune characteristics.

The impact of cancer on immune cell traits offers significant potential for future research and clinical practice. Tumor-associated 
immune cell characteristics may influence the tumor microenvironment, which in turn can impact immunotherapy strategies. 
Research indicates that a significant proportion of patients do not benefit from immune checkpoint inhibitors (ICIs) due to resistance or 
relapse, which is likely caused by the presence of various immunosuppressive cells, such as MDSCs, in the TME. These cells strongly 
inhibit T-cell activity, facilitating the immune escape of malignant tumors [63]. Recent discoveries suggest that targeting MDSCs could 
be a promising alternative approach for immunotherapy, reshaping the immunosuppressive microenvironment and enhancing the 
effectiveness of cancer immunotherapy [64]. Together, further exploration into the role of immune cells can inform the development 
of targeted immunotherapies.

In our MR results, the ovarian cancer-associated immune traits are significantly fewer than other cancer-associated immune traits. 
The phenomenon could be attributed to the low tumor mutational burden (TMB) characteristic of ovarian cancer. TMB quantifies the 
number of nonsynonymous mutations present in a tumor sample, reflecting both genomic instability and the probability of neoepitope 
emergence on the cell surface [65,66]. Neoepitopes are unique proteins displayed on the exterior of cancer cells, making them 
recognizable by the immune system. Ovarian cancer is typically classified as a "cold tumor", exhibiting a low TMB phenotype [67]. 
Consequently, its responsiveness to immunotherapy has traditionally been constrained. In addition, lung cancer is intimately linked to 
immune responses and tends to exhibit a favorable response to immunotherapy. However, in our study, we observed a limited as
sociation between lung cancer and immune cell traits, such as dmonocyte traits or myeloid cells traits. This may be attributable to the 
stringent criteria we applied in selecting instrumental variables, which may have precluded the identification of associations between 
lung cancer and immune cell traits. The same influence potentially extends to other cancers as well.

Our study has some limitations. Firstly, the GWAS of cancers and immune traits are from European populations. As linkage 
disequilibrium patterns vary across ethnic groups, our study is not suitable for non-European populations [68,69]. It is crucial to 
exercise caution when extrapolating our findings to other populations. Secondly, we employed multivariate MR to explore the po
tential presence of horizontal pleiotropy resulting from confounding factors. However, despite employing multivariate MR analysis, it 
was challenging to mitigate bias caused by pleiotropic effects that is beyond the ones examined in our analysis. Thirdly, it is important 
to note that our study focused on only five types of cancers, and it is necessary to investigate potential associations between immune 
traits and other types of cancer. Notably, leukemia and lymphoma directly impact immune cells, which are vital for maintaining a 
functional immune system [70]. For the relationship between pancreatic cancer and immune system, the effectiveness of immuno
therapy has been limited so far, although multiple clinical trials of immunotherapy have been launched as treatments with promising 
clinical results.

5. Conclusions

Our MR estimates reveal potential contributions of various cancers and their subtypes to the immune cell traits, such as breast and 
lung cancer-associated CD25 on IgD− CD38dim, CD25 on sw mem, CD24 on IgD− CD38− , and CD25 on IgD− CD38− immune cell traits; 
lung and prostate cancer-associated CD25 on IgD+ CD24+, CD25 on IgD+ CD38− , CD66b on CD66b++ myeloid cell, DN (CD4− CD8− ) 
AC immune cell traits; endometrial and ovarian cancer-associated TD DN (CD4− CD8− ) %DN, EM DN (CD4− CD8− ) %DN immune cell 
traits; breast and endometrial cancer-associated CD20 on IgD− CD38dim immune cell traits; endometrial and prostate cancer-associated 
CCR2 on myeloid DC immune cell traits; breast cancer, lung cancer, and prostate cancer-associated CD25 on CD24+ CD27+ immune 
cell traits. Furthermore, our findings highlight the complex regulation of cancer risk by immune cells, such as HLA DR++ monocyte % 
monocyte, HLA DR on plasmacytoid DC, and HLA DR on DC (breast cancer and prostate cancer); CD62L− monocyte %monocyte (lung 
and ovarian cancer); HLA DR on CD33dim HLA DR+ CD11b+ (prostate cancer and endometrial cancer); CD3 on resting Treg (ovarian 
and prostate cancer). The impact of various types of cancer on the same immune cell traits, as well as the influence of different immune 
characteristics on the same type of cancer, is highlighted by this research. It demonstrates that immune traits can act as universal 
biomarkers and targets for immunotherapy across a diverse range of cancer types. Altogether, our findings are crucial for cancer 
immunotherapy, as they enhance our understanding of the dysregulation mechanisms in immune cells and have significant impli
cations for public health strategies aimed at reducing cancer risk.
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