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and least biased out of the four
tested engines.
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RESEARCH Special Issue: Immunopeptidomics
The Choice of Search Engine Affects
Sequencing Depth and HLA Class I Allele-
Specific Peptide Repertoires
Robert Parker1,*, Arun Tailor1 , Xu Peng1, Annalisa Nicastri1, Johannes Zerweck2,
Ulf Reimer2, Holger Wenschuh2, Karsten Schnatbaum2, and Nicola Ternette1,*
Standardization of immunopeptidomics experiments
across laboratories is a pressing issue within the field, and
currently a variety of different methods for sample prep-
aration and data analysis tools are applied. Here, we
compared different software packages to interrogate
immunopeptidomics datasets and found that Peaks
reproducibly reports substantially more peptide se-
quences (~30–70%) compared with Maxquant, Comet, and
MS-GF+ at a global false discovery rate (FDR) of <1%. We
noted that these differences are driven by search space
and spectral ranking. Furthermore, we observed differ-
ences in the proportion of peptides binding the human
leukocyte antigen (HLA) alleles present in the samples,
indicating that sequence-related differences affected the
performance of each tested engine. Utilizing data from
single HLA allele expressing cell lines, we observed sig-
nificant differences in amino acid frequency among the
peptides reported, with a broadly higher representation of
hydrophobic amino acids L, I, P, and V reported by Peaks.
We validated these results using data generated with a
synthetic library of 2000 HLA-associated peptides from
four common HLA alleles with distinct anchor residues.
Our investigation highlights that search engines create a
bias in peptide sequence depth and peptide amino acid
composition, and resulting data should be interpreted with
caution.

The identification of peptide ligands presented by the
major histocompatibility complex (MHC; human leukocyte
antigen (HLA) in humans) is a vital step in understanding
how the cellular immune system recognizes and eliminates
infected or malignant cells (1). In humans there are up to six
highly polymorphic classical class I HLA proteins expressed.
Each allele variant restricts the repertoire of its 8 to 14 mer
peptide ligands to distinct amino acid motifs, with
anchor residues predominantly at position (P) 2 and 9, and
with positions P3 and P5 also being important for some
alleles (2).
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In recent years, the identification of HLA peptide ligands has
been revolutionized by advancements in the sensitivity,
speed, and fragmentation efficiency of modern mass spec-
trometers (3–5). Alongside the improvements in data acquisi-
tion, novel computational algorithms for the identification of
HLA peptide sequences have been developed (MS rescue,
MHCquant, DeepRescore) but are not yet routinely imple-
mented in most search engines used in immunopeptidomics
laboratories (4, 6–8).
The majority of bioinformatic tools currently used to identify

spectra from HLA peptides were originally developed for
classical shotgun proteomics. These programs are frequently
applied to datasets where trypsin was used to provide a set of
peptides restricted to R or K residues at the C-terminus, which
are highly suitable for mass spectrometric analysis (9, 10).
Such peptides provide a highly confident search space where
spectral matches can be made at high sensitivity to the most
likely mature and stably expressed proteins found in the cell
(11). Immunopeptidomics is clearly distinct from trypsin-based
analysis of proteomes, as it requires highly sensitive peptide
identification methods in large search spaces that account for
the diverse sequence motifs created by polymorphisms in
HLA loci (12).
Several approaches have been developed that involve uti-

lizing multiple search engines or post-hoc rescoring of pep-
tide-spectrum matches (PSM) (7, 13, 14). Results from these
studies clearly indicate a need for improving the current
search engines and highlight differences in engine
performance.
To investigate these observed differences in sequence an-

notations across search engines, we here present a system-
atic comparison of four mass spectral peptide identification
tools used in immunopeptidomic research. Additionally, we
generated and tested a library of 2000 synthetic HLA peptides
covering four common HLA alleles. Our results demonstrate
that the Peaks database search (Peaks; Bioinformatics
cal Physiology, University of Oxford, Oxford, UK; 2JPT Peptide Tech-
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Search Engine Bias in Immunopeptidomics Data Analysis
solutions) provides significant improvements in sensitivity and
a reduction in peptide sequence bias when compared with the
classical database search engines Comet, MS-GF+, and
Maxquant.
EXPERIMENTAL PROCEDURES

Ethical Approval

All human data were downloaded from PRIDE database and
derived from published studies that state they were approved by
ethics committees and samples were obtained with informed consent.

Preparation of Antibody-Conjugated Beads

One milliliter Protein A-sepharose beads (GE Healthcare) were
washed in 50 mM borate, 50 mM KCl (pH 8.0) solution, and then
incubated with 2 mg of antibody slowly rotating 1 h in cold room.
Beads were washed with 0.2 M triethanolamine (pH 8.2) and cross-
linked with 40 mM dimethyl pimelimidate dihydrochloride (DMP)
(Sigma) (pH 8.3) for 1 h at room temperature. Ice-cold 0.2 M Tris buffer
(pH 8.0) was added to stop the reaction, and beads were washed with
0.1 M citrate (pH 3.0), and finally 50 mM Tris (pH 8.0).

MHC Class I Immunoprecipitation

5 × 108 cells were pelleted and lysed in 10 ml lysis buffer (0.5%
IGEPAL 630, 150 mM NaCl, 50 mM Tris (pH 8.0) plus protease in-
hibitor cocktail (Roche)) for 30 min. Lysates were centrifuged at 300g
for 10 min and then at 15,000g for 60 min and incubated with 1 ml
antibody-protein G-Sepharose beads (GE) (1 ml) overnight. Beads
were washed by 50 mM Tris buffer (pH 8.0) containing first 150 mM
NaCl, then 450 mM NaCl, and no salt in the final wash. Complexes
were eluted with 5 ml 10% acetic acid and dried.

High-Performance Liquid Chromatography Peptide Fractionation

MHC complexes were resuspended in 120 μl of loading buffer
(0.1% trifluoroacetic acid (TFA), 1% acetonitrile (ACN) in water) and
fractioned by RP-HPLC using an Ultimate 3000 high-performance
liquid chromatography (HPLC) system (Thermo Scientific) and 4.6 ×
50 mm ProSwift RP-1S column (Thermo Scientific) with 10 min
gradient from 3% to 30% ACN in 0.1% TFA in water at a flow rate of
1 ml/min. Alternate fractions containing peptides were separated into
odd and even samples, dried, and resuspended in 20 μl of loading
buffer and analyzed by LC-MS.

Protein Lysate Preparation and Digestion for Mass Spectrometry
Analyses

DoTc2 and HeLa cells were cultured to 80% confluence in Dul-
becco’s modified Eagle medium (Sigma) supplemented with 10%
heat-inactivated fetal calf serum, 2 mM L-glutamine, and 100U peni-
cillin/ml, and was incubated at 37 ◦C in 5% CO2. Cell pellets were
collected by centrifugation and lysed in lysis buffer (0.5% (v/v) IGEPAL
630, 50 mM Tris pH 8.0, 150 mM NaCl, and one tablet cOmplete
Protease Inhibitor Cocktail EDTA-free (Roche) per 10 ml buffer) at 4 ◦C
then centrifuged at 3000g for 10 min followed by a 20,000g spin step
for 15 min at 4 ◦C. Supernatants were measured for protein content
(BCA assay, Thermo Fisher) and were purified by chloroform/methanol
precipitation. Protein pellets were dissolved in 6 M Urea, 100 mM Tris-
HLC pH 7.4, and 5 mM DTT for 30 min. Next, cysteine residues were
alkylated with 20 mM iodoacetamide (IA) for 15 min followed by
addition of DTT to 20 mM to react with residual IA for 15 min. Lysates
were diluted to a final urea concentration of 2 M, and trypsin or
elastase was added at a 1:50 enzyme to protein ratio, followed by
2 Mol Cell Proteomics (2021) 20 100124
incubation at 37 ◦C for 16 h. Sample cleanup was performed with a
C18 column (Waters Oasis SPE kit).

Synthesis of Synthetic Standard

Synthetic peptides were individually synthesized by solid-phase
synthesis on cellulose membranes as described previously (15). Dur-
ing synthesis, a carbamidomethylated cysteine building block was
used for cysteine to eliminate the need for cysteine modification
before MS analysis. Peptides were cleaved from the membrane into
pools of 250 peptides each.

Mass Spectrometric Analysis

Peptide mixtures were dissolved in loading buffer (1% Acetonitrile,
0.1% Trifluoroacetic acid), and 200 fmols/peptide were analyzed by an
Ultimate 3000 HPLC system coupled to a high field Q-Exactive (HFX)
Orbitrap mass spectrometer (Thermo Scientific). Peptides were trap-
ped by PepMap 100 C18 columns (ThermoFisher Scientific) before
reverse phase separation with a 60 min gradient of acetonitrile 2% to
25%, in 1% DMSO, 0.1% Formic acid at a flow rate of 250 nl/min on a
75 μm × 50 cm PepMap RSLC C18 EasySpray column (ThermoFisher
Scientific). Data-dependent acquisition involved one full MS1 scan
(120,000 resolution, 60 ms accumulation time, AGC 3 × 106) followed
by 20 data-dependent MS2 scans (60,000 resolution, 120 ms accu-
mulation time, AGC 5 × 105), with an isolation width of 1.6 m/z and
normalized HCD energy of 25%. Three methods were utilized for
analysis of the synthetic standard: (A) considered charge states of 2 to
4, (B) considered charge states of 1 to 4 while (C) involved one full
scan 300 to 700 followed by 18 MS2 scans for charge states 2 to 4
followed by one full scan 700 to 1400 followed by two MS2 scans for
charge states 1. Dynamic exclusion was set for 30 s. For enzymatic
digests normalized HCD was increased to 28% and only 2 to 4 charge
states were acquired.

Raw Data Processing

Mass spectrometry raw data files were downloaded from the PRIDE
partner repository or MassIVE from the following projects:
PXD007635, PXD004894, PXD007635, PXD009531, MSV000080527.
Raw data files were converted to mzXML by MSConvert using 32 bit
Thermo RAW defaults (v3.0.19014) analyzed in COMET (2019013),
Maxquant (v.1.6.1.0), MS-GF+ (v.20181015), and PEAKS 8.5 (Bio-
informatic Solutions), inputting a protein sequence fasta file containing
20,606 reviewed human Uniprot entries downloaded on 24/05/2018
appended to the same (DECOY) entries after randomization. No
enzyme specificity was set (with exception of the tryptic digest, for
which “trypsin” was selected), peptide mass error tolerances were set
at 5 or 20 ppm for precursors depending on the dataset and 0.03 Da
for MS2 fragments and only peptides of length 7 to 25 were consid-
ered, for the analysis of the peptide standard and enzymatic digests,
“carbamidomethylated cysteine” were considered as fixed modifica-
tion. A 1% false discovery rate (FDR) was calculated using a decoy
database search approach. PSMs were ranked by score best to worst
(PEP, SpecEValue, Evalue, and −10logP Score) for each search engine
respectively. FDR was calculated as the cumulative sum of decoys as
a fraction of all PSMs as described further in the Results section.

Data analysis and plotting were performed with R or Microsoft
excel. NetMHCpan 4.1 (http://www.cbs.dtu.dk/services/) was installed
locally and utilized to define allele binding predictions (rank score cut-
off 0.5 or 2). Peptide sequences were clustered into distinct motifs
using MixMHCp v2.1 (https://mixmhcp.vital-it.ch/#/submission)
(16, 17). Sequence logos were generated by the Seq2logo2.0 package
in R or by MixMHCp. Venn diagrams and UpsetR plots were created
using UpsetR and BioVenn packages in R. Amino acid composition
enrichment analysis was done using Composition Profiler (http://www.

http://www.cbs.dtu.dk/services/
https://mixmhcp.vital-it.ch/#/submission
http://www.cprofiler.org/


Search Engine Bias in Immunopeptidomics Data Analysis
cprofiler.org/) (18). Analysis of variance (ANOVA) was carried in R.
Peptide retention time prediction was done using the SpecL program
in R (19).

Experimental Design and Statistical Rationale

Four diverse immunopeptidome datasets from independent labo-
ratories formed the main part of this work. Firstly, our initial observa-
tions were found in analysis of our in-house Ovarian cancer cell line
data DoTc2 (high-resolution HCD MS2 spectra, HLA*A03:01,
HLA*B55:01, HLA*C03:03). Secondly, to provide an extensive dataset
with consistent acquisition parameters, we chose 19 Melanoma tissue
samples (87 raw files) from which we explored in detail the MM15
patient dataset (high-resolution HCD MS2 spectra, HLA*A03:01,
HLA*A68:01, HLA*B27:05, HLA*B35:03, HLA*C02:02, HLA*C04:01).
Thirdly, to observe if effects were consistent between laboratories,
sample types and acquisition methods, data from an ovarian cancer
tissue sample (low-resolution CID MS2 spectra) (1 raw file) and a
Glioblastoma tissue sample (high-resolution HCD MS2 spectra,
HLA*A02:01, HLA*A32:01, HLA*B27:05, HLA*B44:02, HLA*C05:01,
HLA*C02:02) (two raw files) were obtained from the PRIDE repository.
Finally, to assess for biases between HLA alleles, we selected 13
datasets acquired from single allele expressing cell lines from two
independent studies (high-resolution HCD MS2 spectra). As controls
we additionally investigated proteomic data using a tryptic or elastase
digestion of HELA cell (two raw files) lysates (high-resolution HCD
MS2 spectra). To validate our results, we analyzed a synthetic stan-
dard and this sample using three different mass spectrometry
methods (nine raw files) (high-resolution HCD MS2 spectra).
RESULTS

Comparison of Four Search Engines for Analysis of
Immunopeptidomic Data

Four search engines were assessed for performance in the
analysis of immunopeptidomics datasets: (1) COM-
ET(v.2019013)—an open-source database search tool used in
both proteomic and immunopeptidomic workflows (20); (2)
Maxquant (Andromeda) (v.1.6.1.0)—used for both proteomic
and immunopeptidomic studies (21); (3) MS-GF+
(v.20181015)—a recently developed search engine that is
highly adaptable to the dataset under investigation by deriving
scores independent of type of spectra acquired (22); (4) Peaks
(v.8.5)—a commercial search engine that utilizes de novo
sequencing to score spectra prior to a sequence database
search frequently utilized in a broad range of peptidomic
studies (23).
Raw data files for class I immunopeptidomic datasets

formed the basis of this work. Three datasets that were ac-
quired on high-resolution HCD-type instruments: (1) the cer-
vical cell line DoTc2 cell line (“DoTc2”; in-house), (2)
glioblastoma cancer tissue (“Glio”; PXD007635, (24)), (3) 19
Melanoma tissue samples (“MM”; PXD004894, (25)) and one
dataset that was acquired on a hybrid mass spectrometer with
low-resolution CID, (4) an ovarian cancer tissue sample
(“Ova”; (24)), were selected for this study. Raw files were
downloaded and processed by MSconvert (ProteoWizard
3.0.19014) into mzXML format, and all files were subsequently
searched using the previously described four search engines.
To standardize FDR calculations across each search engine,
the same human UNIPROT database (downloaded on 24/05/
2018, 20,361 entries) with additional randomized (decoy) se-
quences appended was adopted for all analyses. We also
standardized mass tolerances (5–20 ppm), peptide length re-
striction (7–25 mers), disabled any additional search space
constraints and scoring filters, and included all charge states
acquired. Each search engine had a unique method of
determining sensitivity cutoffs; for COMET, this could not be
disabled. To remove any bias, we removed PSMs to the inbuilt
FDR approaches and calculated FDR externally based on
PSMs to the decoy sequences appended to the human
Swissprot database. We validated this approach by
comparing it to in-built FDR calculations for the Dotc2 dataset
and found an 83% to 95% (DoTc2) consensus (Fig. S1).
Initially, we assessed the number of peptide identifications

reported by each engine using an estimate of global FDR,
which was calculated based on the cumulative sum of decoy
(B) and target (A) PSMs after peptide ranking by score
[SpecEValue (COMET), PEP (Maxquant), Evalue (MS-GF+)
and −10logP (Peaks)] for each search engine as follows:
[FDR = B/(A + B)]. At an FDR cutoff of 1%, the search engines
varied considerably in the number of unique peptides re-
ported for each immunopeptidomic dataset (Fig. 1A). The
length distributions were as expected for class I immuno-
peptidomic data; however, there was distinct lack of 8-mer
peptides in the Maxquant search results (Fig. 1B). The
number of identifications reported was consistently higher for
Peaks (42%–69%) compared with MS-GF+, Maxquant, and
COMET at a 1% FDR cutoff, respectively (Fig. 1C). Inter-
section analysis based on peptide sequences indicated that
most peptides (93%–99%) found by COMET, Maxquant, and
MS-GF+ were also identified by Peaks. (Fig. 1C). Additional
sequences identified by Peaks (and other search engines)
exhibited similar mass error deviations and predictable
retention time characteristics when compared with peptides
identified in common (Fig. S2), but, on average, had a lower
score (Fig. S3), indicating that the ranking of PSMs is a major
factor affecting peptide identification when using FDR in
immunopeptidomics (26).
To explore this effect further, we determined the fate of

scans identified by Peaks at FDR <1% in the other search
engines at a relaxed FDR of 5%. This analysis revealed that
between 35% and 86% of the additional peptides identified at
5% FDR were also identified by Peaks at 1% FDR, supporting
the hypothesis that the increased performance of Peaks was
defined by an improved ranking of peptides in the lower score
range (Fig. S4).
To investigate whether these effects were due to the larger

search space resulting from unspecific searches, we analyzed
data generated by a low-specificity (elastase) enzyme diges-
tion and a specific (trypsin) digest of HeLa cell lysates. The
Mol Cell Proteomics (2021) 20 100124 3
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FIG. 1. Comparison of search engine performance at 1% FDR. A, number of peptide sequences detected at 1% FDR for each dataset/
search engine. B, amino acid length distribution for peptides identified by each search engine for each dataset at 1% FDR. C–E, overlap and
unique peptide identifications made by each search engine for the regarding dataset at 1% FDR for (C) all immunopeptidomic (D) elastase
digestion and (E) tryptic digestion datasets.

Search Engine Bias in Immunopeptidomics Data Analysis
low-specificity digest was able to recapitulate the changes in
peptide identification rate observed in immunopeptidomic
datasets (Fig. 1D). In contrast, high consistency (82%)
4 Mol Cell Proteomics (2021) 20 100124
between the search engines was observed for the specific
(tryptic) search space using Peaks for tryptic data as observed
previously (Fig. 1E) (23).



Search Engine Bias in Immunopeptidomics Data Analysis
Peptide Binding Prediction and Motif Analysis Reveal
Search Engine-Specific Differences in the Extent of
Reported HLA Allele-Assigned Peptide Repertoires

Next, we used NetMHCpan 4.1 to deconvolute the HLA
binding affinity of all 8 to 14 mer peptides in the DoTc2, GLIO,
and MM15 datasets from the melanoma cohort (27). Given a
NetMHCpan normalized affinity rank score of <0.5, we
observed that for each search engine a similar proportion
(0.61–0.79) of peptide sequences was predicted to bind to an
allele (Fig. 2A). For search-engine-specific peptides, Peaks
achieved a higher fraction of predicted binders when
FIG. 2. Stratification of observed peptides by HLA allele using NetM
bind (rank score < 0.5) to concomitant HLA molecules by NetMHCpan
search engine. C–E, panels show from left to right the sequence logo for p
sequences predicted to bind (rank < 0.5) to concomitant HLA molecules
compared with COMET, MS-GF+, or Maxquant (Peaks =
58%–77%) (Fig. 2B). After stratifying peptides by the pre-
dicted HLA allele of origin, we found that the relative propor-
tion of peptides assigned to each allele was varying for each
search engine (Fig. 2, C–E). For example, COMET, Maxquant,
and MS-GF+ identified a higher proportion of peptides that
were predicted to bind A*03:01 (Dotc2), A*68:01 (MM15), and
B*44:02 (GLIO) than Peaks. In parallel, COMET, Maxquant,
and MS-GF+ identified a lower proportion of B*55:01, C*03:03
(Dotc2), B*27:05, C*04:01 (MM15), B*27:05, and C*05:01
(GLIO) peptides when compared with Peaks (Fig. 2, C–E).
HCpan binding prediction. A, proportion of all peptides predicted to
4.1. B, proportion of predicted binders exclusively identified by each
eptide 9-mer motif, total number (n), and proportion (n/total) of peptide
by NetMHCpan 4.1 for each immunopeptidomic dataset investigated.

Mol Cell Proteomics (2021) 20 100124 5
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Additionally, MS-GF+ identified a higher proportion of B*44:02
peptides than in Peaks, Maxquant, or Comet. In order to
validate that the observed differences were not introduced by
biases in binding prediction, we performed this analysis with
different NetMHCpan binding rank thresholds and found
identical trends for all rank score cutoffs chosen (Fig. S5). We
also cross-validated the NetMHCpan results with an unsu-
pervised clustering approach, which assigns peptides to a
sequence cluster independent of MHC binding prediction
(MixMHCp). We observed a similar proportion of peptides
from each search engine assigned to a recognizable motif by
MixMHCp than we had obtained for NetMHCpan analysis and
found overall correlation between both analyses in all three
datasets (Figs. S6–S8).
To explore these findings independent of HLA binding

prediction and sequence clustering, we investigated immu-
nopeptidomic data for 13 single allele expressing cell lines
(SACL) with divergent peptide binding motifs PXD009531 and
MSV000080527 (28, 29) (Fig. 3A). Consistent with the obser-
vations in “mixed” immunopeptidomes, Peaks achieved a
higher number of peptide identifications for all datasets
investigated, while MixMHCp analysis found that a similar and
generally high proportion of these peptides contained the
appropriate motif regardless of search engine choice (Fig. 3A).
It stood out that all search engines identified the least peptides
matching the relevant sequence cluster for B*35:01, B*51:01,
and B*57:01 containing P and W at P2 and C-terminus,
respectively. We created heat maps to monitor the relative
frequency of which specific amino acids were reported by
each search engine, and we noted that other amino acids
were also over- or underrepresented across the datasets
(Fig. 3B). In order to assess statistically significant (p ≤ 0.001)
enrichment and depletion of amino acids between the search
engines, the Composition Profiler tool (18) was utilized. When
comparing the peptide lists identified by Peaks against the
three other search engines, we observed an overall reduced
frequency of basic and acidic amino acid residues and an
enrichment of hydrophobic residues (with exception of F,
which was depleted) in the Peaks peptide lists. Specifically, a
consistently higher frequency of L/I/P/V was reported in Peaks
versus the three other search engines (Fig. 3C). Finally, we
calculated the overall hydrophobicity (GRAVY) index for pep-
tides and found that peptide identified by Peaks exhibited
significantly higher hydrophobicity than those identified by
MS-GF+, Maxquant, and Comet in alignment to the amino
acid frequency analysis (Fig. 3C).

Assessment of Search Engine Sensitivity and Validation of
Observed Biases in Reported Allele-Specific Repertoires
Using a Synthetic Standard Library for Four Common HLA

Alleles

To validate the observed biases between the different
search engines, we synthesized a library consisting of 2000
peptides for four frequent and diverse HLA molecules with
6 Mol Cell Proteomics (2021) 20 100124
distinct anchor residues (A*02:01, A*03:01, B*44:02, B*07:02).
We decided to partition the library in two main peptide pools:
Using IEDB we chose at random 1000 peptides previously
observed in mass spectrometry experiments (250 for each
selected allele, “observed” partition), and 1000 peptides that
had not been previously observed that originated from the
same source proteins but were predicted to bind to the same
HLA allele (250 for each selected allele, “predicted” partition)
(Fig. S9A). This workflow resulted in a library that exhibited
characteristic of HLA-associated peptides in length and an-
chor residues for the chosen alleles (Table S1 and Fig. S9B).
The length distribution of peptides measured previously
(observed) had a higher relative proportion of 10 to 14 mers
when compared with peptides predicted by NetMHCpan
(predicted) (Fig. S9B). After LC-MS acquisition (see
Experimental Procedures for details) and identical data pro-
cessing, we observed substantially more hits for library pep-
tides with Peaks, which was similar to our observations in
mixed immunopeptidomic datasets (Fig. 4A). With these data
we determined the proportion of true-positive peptide identi-
fications made by each engine at <1% FDR (COMET = 41%,
Maxquant = 59% MS-GF+ = 58% and Peaks = 68%) and
observed the highest identification rate for Peaks (Fig. 4B).
This observation was consistent for both “predicted” and
“observed” partitions of the library (Fig. 4B) and, as expected,
improved sensitivity and more accurately reflected the length
distribution of the synthetic peptide library (Fig. 4C).
All search engines identified a considerable number of

additional peptide sequences that were not targeted for syn-
thesis during library creation (Fig. 4A). This indicated that
either the library contained many other peptides next to the
anticipated synthesis targets (hereinafter termed “target”
peptides) or that false-positive peptide sequences were re-
ported despite the application of a global FDR of 1%.
Sequence analysis of the additional peptide identifications
revealed that a high proportion of these sequences were
subsequences of the target peptide sequences and that they
were overall shorter and lower in abundance (Fig. 4A,
Figs. S10, A–C and S11). If we combined all sequences that
were likely physically present in the library (target peptides and
any subsequences of such) 80% to 91% of all peptides
identified by a search engine could be accounted for (Fig. 4A).
After stratification by allele, we observed that Peaks more
accurately reflected the expected equal proportion of peptides
binding to each allele as present in the library (Fig. 4D). All
search engines underestimated the proportion of the hydro-
phobic A*02:01 peptides (which has mainly L at P2, and L/V at
the C-terminal anchor), and Peaks identified the highest pro-
portion of A*02:01 peptides. Maxquant, Comet, and MS-GF+
also underestimated hydrophobic B*07:02 peptides, that
binds predominantly peptides with a P at P2; and over-
estimated the proportion of basic/acid A*03:01, B*44:02
peptides (Fig. 4D). On further examination we also found that
peptides from the four different alleles resulted in different



FIG. 3. Comparison of search engine results in single allele expressing cell line (SAEC). A, sequence motifs for peptides identified from
data acquired on 13 different SAEC’s. B, bar plots showing the total number of peptides identified (left) and bar plots giving the proportion of 8-
to 14-mer peptides that cluster into the single motif as determined by MixMHCp (right). B, heatmap showing the proportional frequency at which
an amino acid is present in identified peptides, stratified by choice of search engine. C, composition profiler analysis results shown as a heatmap
of amino acids that are enriched, depleted, or unchanged (p < 0.05, Bonferroni corrected). Peptides identified by Peaks were utilized as a
background from which to compare the other three search engines. The entire peptide, C-terminal, and P2 amino acids were analyzed and
plotted with search engine on the x-axis. D, boxplot of the GRAVY hydrophobicity score of peptides identified by each search engine (ANOVA
with a Tukey's range test for multiple comparisons *Q < 0.05, **Q < 0.01, ***Q < 0.001)
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FIG. 4. Search engine sensitivity assessment using a synthetic standard library. A, total number of library target sequences (black), target
subsequences (gold), and other sequences (grey) identified at 1% FDR. The % given is the total proportion that was either a target of synthesis
or a sub-sequence of a target. B, fraction of library peptides identified by each search engine at 1% FDR cutoff, stratified by peptide origin for
either “observed” in IEDB or “predicted” by NetMHCpan 4.1, as indicated. C, peptide length distribution identified by each search engine for
each data set at 1% FDR cutoff, stratified by peptide origin for “observed” in IEDB or “predicted” by NetMHCpan 4.1, as indicated. D, the
sequence logo for peptide 9-mer motif (left) and the number and fraction of target library peptides identified by each search engine at 1% FDR
cutoff stratified by allele and peptide origin for “observed” in IEDB or “predicted” by NetMHCpan 4.1. The expected proportion of 0.25 is marked
by a red dashed line. E, bar plot showing how database size affects (i) the number of peptides identified in the synthetic standard (library target
sequences (black), subsequence (gold), and other peptides (grey) identified at 1% FDR, (ii) the fraction of true-positive (sensitivity) library
peptides identified, (iii) the relative change in sensitivity.
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score distributions for the same search engine, with synthetic
peptides that have hydrophobic anchors scoring worse than
their polar counterparts (Fig. S12). These observations re-
flected the search engine bias observed for peptides with
regarding amino acid anchors in both the mixed and single
allele immunopeptidomic datasets.
Identification of neoantigens in immunopeptidomic data

often requires the interrogation of larger search spaces
generated from bespoke genomic analyses. Since we had
previously observed a possible dependency of the search
engine performance on the search space in tryptic versus
nontryptic analyses, we assessed the effect of a larger search
space on peptide identification sensitivity. We used the orig-
inal human SwissProt database and expanded it by random-
ization to contain two and fivefold the number of unique
protein sequences and amino acid residues. We then used
these significantly larger databases, both still containing the
original SwissProt defined human proteome and additional
randomized sequences, and appended an equally sized, fully
randomized database for unbiased FDR evaluation as before.
We reanalyzed the data acquired for the synthetic peptide li-
brary with each search engine. Results demonstrate that
increasing search space reduced the overall number of pep-
tide identification reported for each search engine (Comet 30
and 41%, Maxquant 30 and 44%, MS-GF+ 12 and 17%,
Peaks 8 and 18% for 2 and 5x databases, respectively)
(Fig. 4E). This affect was also reflected in a reduction in
sensitivity (identification rate of target peptides): Comet 12
and 17%, Maxquant 18 and 27%, MS-GF+ 4 and 11%, Peaks
2 and 5% for the 2 and 5x database expansion, respectively.
Overall Peaks exhibited the lowest loss of sensitivity in the
larger search spaces, and the effects of DB size appeared to
be independent of allele (Fig. 4E).
DISCUSSION

Ideally, a database search analysis tool should provide a
sensitive and representative identification of as many correct
peptide spectrum matches as possible (30). In the immuno-
peptidomic search space, the four programs investigated here
varied considerably in sensitivity and the proportion of pep-
tides assigned to each HLA allele, while performing equally
well for the identification of tryptic peptides. Using single allele
expressing cell lines, we recapitulated differences in sensitivity
and allele-specific differences observed in mixed allele data-
sets. We further observed that the bias in identification of
allele-specific peptide fractions is related to the biochemical
properties of amino acids in peptides and is driven by an
underrepresentation of hydrophobic amino acids. We
confirmed our findings through analysis of a synthetic peptide
library.
Using the widely accepted target/decoy approach to control

FDR, a comparison of four programs investigated here iden-
tified considerable variation in sensitivity and the proportion of
peptides assigned to each HLA allele in immunopeptidomics
datasets. Higher sensitivity was consistently achieved by
analysis with Peaks, supporting previous observations (7). We
implemented two alternative allele deconvolution algorithms
(NetMHCpan and MixMHCp) and demonstrated that most of
the additionally identified peptides by Peaks were highly likely
to bind to HLA alleles present in the associated samples,
indicating an overall high accuracy in sequence assignment as
also observed by others (7). Additional peptides identified by
Peaks often had lower scores, indicating that Peaks can
stratify true from false peptide spectrum matches more
accurately despite poorer spectrum quality. In further support
of this, increasing the search space or a lowering the signal
intensity had a much lower effect on sensitivity in Peaks
compared with other search engines. This indicates that the
Peaks’ peptide scoring algorithm can maintain sensitivity in
large search spaces or where spectrum quality is lower. This
hypothesis was supported through our analysis of scan fate at
variable FDR cutoffs, in which a generally high proportion of
peptides identified by Peaks at FDR <1% were also matched
by the other search engines at a relaxed FDR of 5% (Fig. S4).
These observations support the idea that implementation of
“database independent score(s)” in a peptide identification
algorithm can greatly improve the sensitivity of large meta-
immunopeptidomic studies (31).
Improvements in the sensitivity of peptide identification by

rescoring through combining search engines have been
observed previously (13). Additionally, rescoring based on
semisupervised machine learning, where algorithms are
trained to discriminate between correct and decoy spectrum
identifications, has been developed for proteomic (32, 33), and
immunopeptidomic datasets (6, 8). Recently, retention time
and the Percolator rescoring information was applied to
search results from Comet, leading to increased sensitivity for
immunopeptidomic data to a similar performance than Peaks
(7). Importantly, a deep learning approach integrating non-
tryptic peptide fragmentation data led to highly improved
identification rates in immunopeptidomics datasets (14).
Beyond sensitivity, the extent of peptides reported by the

tested search engines to each of the alleles varied. The
number of naturally presented peptides by each HLA allele
present in the sample is driven by differences in HLA allele
expression levels and the peptide copy number. It is likely that
lower abundant and poorly detected peptide species are less
efficiently identified and that these groups will benefit most
from Peaks analysis or analysis utilizing novel algorithms that
are able to address these specific challenges in immuno-
peptidomics datasets (7, 13). Here, our observation con-
trasted with data reported by Bichmann et al., (7) where no
allele bias was reported. We observed that search engines
identified peptides with differing sensitivity that depended on
amino acid composition, with some algorithms preferring
peptides containing charged amino acids over hydrophobic
residues. The underlying mechanism for this bias is currently
Mol Cell Proteomics (2021) 20 100124 9
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unknown but could arise from probabilistic models based on
amino acid frequency or assumptions about peptide frag-
mentation used to train/develop the search engines tested
(22, 34, 35). In practice, the presence of basic amino acid side
chains enhances peptide ionization and fragmentation
resulting in rich spectral quality, whereas hydrophobic resi-
dues are uncharged and may influence charge and proton
mobility, generally resulting in less informative spectra (36, 37).
The influence that amino acids have on fragmentation is well
reviewed (38), and given our observations, it is highly likely
that with current tools the genetic makeup of HLA loci is
directly affecting the effort to sequence and accurately report
the immunopeptidome. Toward resolving these effects, work
done by Bichmann et al., (7) shows that rescoring peptides
initially identified by Comet through post-hoc training not only
results in a sensitivity equivalent to that observed in Peaks,
but appears to result in a similar proportion of peptides
assigned to each allele. Additionally, recent efforts to use
spectral libraries of synthetic peptides to train prediction al-
gorithms for peptide fragmentation provided greater sensitivity
for proteomics and immunopeptidomics datasets and will
have a high impact on the field of immunopeptidomics
(14, 39, 40).
Since the evaluated search engines were updated while this

manuscript was under review, we have compared the perfor-
mance of the latest release of each search engine (as of June
1, 2021) with the versions used for data analysis in this
manuscript. We observed that both sensitivity and peptide
repertoire bias for each engine were almost identical to that
we observed in the older versions and reported in this
manuscript, outlining that the biases have so far not been
addressed (Fig. S13).
In summary, our study highlights limitations of proteomic

search engines for the analysis of immunopeptidomics data-
sets. There is an urgent need for the development of novel or
adapted search engines that can provide high sensitivity and
reproducibility for analysis of the large and diverse immuno-
peptidomic space where distinct variations in amino acid
composition often occur and hamper their unbiased identifi-
cation by classical approaches.
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