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Background
Oocyte quality is an important factor in the success of animal development. Oocyte 
quality decreases with aging, thereby increasing errors in fertilization, chromosome seg-
regation, and embryonic cleavage [1–3]. However, the mechanisms underlying the age-
related decrease in oocyte quality remain incompletely understood.

Abstract 

Background: Oocyte quality decreases with aging, thereby increasing errors in ferti-
lization, chromosome segregation, and embryonic cleavage. Oocyte appearance also 
changes with aging, suggesting a functional relationship between oocyte quality and 
appearance. However, no methods are available to objectively quantify age-associated 
changes in oocyte appearance.

Results: We show that statistical image processing of Nomarski differential interfer-
ence contrast microscopy images can be used to quantify age-associated changes in 
oocyte appearance in the nematode Caenorhabditis elegans. Max–min value (mean dif-
ference between the maximum and minimum intensities within each moving window) 
quantitatively characterized the difference in oocyte cytoplasmic texture between 
1- and 3-day-old adults (Day 1 and Day 3 oocytes, respectively). With an appropriate 
parameter set, the gray level co-occurrence matrix (GLCM)-based texture feature Cor-
relation (COR) more sensitively characterized this difference than the Max–min Value. 
Manipulating the smoothness of and/or adding irregular structures to the cytoplasmic 
texture of Day 1 oocyte images reproduced the difference in Max–min Value but not 
in COR between Day 1 and Day 3 oocytes. Increasing the size of granules in synthetic 
images recapitulated the age-associated changes in COR. Manual measurements vali-
dated that the cytoplasmic granules in oocytes become larger with aging.

Conclusions: The Max–min value and COR objectively quantify age-related changes 
in C. elegans oocyte in Nomarski DIC microscopy images. Our methods provide new 
opportunities for understanding the mechanism underlying oocyte aging.
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The nematode Caenorhabditis elegans is a leading model for studying aging because of 
its short lifespan (~ 3 weeks) and the conservation of longevity pathways from C. elegans 
to humans [4]. In particular, C. elegans has been developed as a model for studying age-
related decline in fertility [5]. Mutant analyses using C. elegans have revealed various 
genes and signaling pathways that affect aging [6–8]. The molecular processes involved 
in the age-related regulation of oocyte quality are shared between C. elegans and mam-
mals [9].

In C. elegans hermaphrodites, sperms are produced during the larval stage and stored 
in the spermatheca; oocytes are produced continually during the adult stage. Mature 
oocytes are transported to the spermatheca for fertilization, and the resulting embryos 
are pushed into the uterus and then laid through the vulva (Fig. 1a). The number of prog-
eny produced on each day decreases with aging and self-reproduction ceases after about 
5 days of adult life [10, 11]. In young animals, almost all transported oocytes are ferti-
lized and almost all fertilized eggs are viable; in contrast, older animals produce a sub-
stantial number of unfertilized oocytes and inviable eggs, suggesting that oocyte quality 
declines with aging [9].

Age-related changes in oocytes are found not only in function but also in appearance 
[2, 5, 9]. In C. elegans, aged oocytes shrink, the contacts between oocytes become loose, 

a
b

c dDay 1 Day 2 Day 3 Day 3Day 1

Fig. 1 Observation of C. elegans oocytes by using Nomarski DIC microscopy. a Schematic representation of 
an adult hermaphroditic gonad. Oocytes mature and enter the spermatheca, where they are fertilized by the 
accumulated sperm. Embryos are pushed into the uterus and then laid through the vulva. b Representative 
DIC image of oocytes in a gonad. The dotted yellow line surrounds the oocytes. Scale bar 20 μm. c Examples 
of extracted images of the cytoplasmic texture in oocytes from Day 1, Day 2, and Day 3 adults. Scale bar, 
5 μm. d Cytoplasmic texture images and profile plots of Day 1 and Day 3 oocytes. The dotted black line 
indicates the position of the horizontal profile plot. Scale bar 5 μm
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and oocytes fuse into large clusters [5, 9]. Although there is no method that can objec-
tively quantify age-related changes in oocyte appearance, information provided by such 
a method could be used to clarify the relationship between changes in the quality of 
oocytes and their appearance with aging.

Image processing of cell appearance has been applied to various branches of biomedi-
cal research, including the identification of malignant cells and detection of cancer [12, 
13], analysis of morphological changes [14], and the classification of cell populations 
with different functions [15, 16]. Texture analysis is one method of classifying biomedi-
cal images [17]. In addition, modern machine learning methods, such as deep learning, 
have recently been applied to various biological applications [18]. The analysis of cell 
appearance by using image processing is an effective way to characterize and classify the 
status of cells.

The gray level co-occurrence matrix (GLCM) is a well-known statistical method for 
examining textures and is widely used to describe spatial properties [19]. The GLCM 
approach has been used in various biomedical applications, including cell recognition, 
evaluation of ultrastructural changes, and textural classification of medical images [14, 
20–22]. For an image with G gray levels, the GLCM is an estimate of the second-order 
joint probability P(i, j | d, θ) of two pixels with gray levels i and j (0 ≤ i < G, 0 ≤ j < G) that 
are d pixels apart from each other along direction θ.

To objectively describe changes in the appearance in oocytes with aging, we used 
Nomarski differential interference contrast (DIC) microscopy to view and characterize 
C. elegans oocytes. Nomarski DIC microscopes produce contrast by visually displaying 
the optical phase gradient. DIC microscopy can capture images of transparent objects 
without chemical staining and is widely used to observe nuclei, nucleoli, and granu-
lar structures within C. elegans cells [23, 24]. We focused on the cytoplasmic texture 
because we consider that it reflects the internal status of oocytes more directly than does 
morphologic appearance, such as the size or shape of oocytes. To quantify the age-asso-
ciated changes in the cytoplasmic texture of C. elegans oocytes, we propose the image 
feature “Max–min Value” (Mm Value) for measuring textural roughness. We used Mm 
Value and the GLCM approach to reveal quantitative differences between young and 
aged oocytes.

Results
Mm value reflects age‑associated changes in the cytoplasmic texture of C. elegans oocytes

To quantify age-associated changes in oocyte appearance, we used Nomarski DIC 
microscopy to observe the oocytes of 1-, 2-, and 3-day-old C. elegans adults (hereaf-
ter called Day 1, Day 2, and Day 3 adults, respectively). We observed that the fertilized 
embryos developed successfully in the Day 1 and Day 2 adults, whereas those in the Day 
3 adults exhibited developmental failure, such as errors in egg shell formation or embry-
onic cleavage (Additional file 1: Movie S1, Additional file 2: Movie S2, and Additional 
file 3: Movie S3), suggesting that fertility declines in the first 3 days of the reproductive 
span. We therefore focused on quantifying age-associated changes in oocyte appear-
ance in the DIC images over this 3-day period. In DIC microscopic images, the nucleus 
appears as a smooth, round region in the center of the oocyte, and the cytoplasm is 
rough (Fig. 1b). As previously reported [5, 9], we noted various morphologic differences 
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(accumulation of oocytes, oocyte size, cavities, and cluster formation) between Day 1 
and Day 3 adults. In addition, visual comparison of the images showed that the oocyte 
cytoplasmic texture was rougher in appearance in Day 1 than Day 3 worms (Fig. 1c). In 
a simple comparison of pixel intensities along a line across the oocytes, Day 1 worms 
showed larger changes in pixel intensity than Day 3 worms (Fig. 1d).

To examine whether the texture changes can be characterized quantitatively, we per-
formed a computational texture analysis of the oocyte cytoplasm. To this end, we defined 
an image feature, the “Max–min Value (Mm Value),” as follows. Mm Value is calculated 
by a moving window operation. The maximum and minimum intensities within a mov-
ing window of W × W pixels are obtained. Then the difference between maximum and 
minimum intensities is calculated. Mm Value is defined as the mean of the differences 
calculated by applying the moving window to the entire image (Fig. 2a). In a rough-tex-
ture image, the Mm Value is expected to be high, whereas in a smooth-texture image, 
the Mm Value is expected to be low.

We observed that the Day 3 Mm Value was significantly smaller than that for Days 1 
and 2 when a moving window of 3 × 3 pixels was used (n = 12 animals in each age group; 
Fig.  2b; and Additional file  4: Fig. S1). Mm Value did not differ significantly between 
Days 1 and 2. These results suggest that the Mm Value decreases with aging and can be 
used to quantitatively characterize the age-associated changes in the cytoplasmic texture 
of C. elegans oocytes.

To examine whether general first-order statistics quantitatively characterize the age-
associated changes in cytoplasmic texture, we calculated “SD” and “entropy”, which are 
the mean standard deviation and entropy of local pixel intensities in a moving window. 
We set the size of the moving window to 3 × 3 pixels. Similar to the Mm Value, the SD 
was significantly smaller on Day 3 than Days 1 and 2 and did not differ significantly 
between Days 1 and 2 (n = 12 animals in each age group; Fig. 2c). In contrast, entropy 
was similar among all 3 age groups (n = 12 animals in each age group; Fig. 2d). There-
fore, the change in cytoplasmic texture in aging C. elegans oocytes could be character-
ized quantitatively by using the Mm Value or SD.

To compare the performance of Mm Value, SD, and entropy, we used various sizes 
of moving window ranging from 3 × 3 to 29 × 29 pixels (Fig. 2e–g). The Mm Value and 
SD were significantly smaller on Day 3 than Day 1 for smaller window sizes (3 × 3 to 
17 × 17 pixels for Mm value and 3 × 3 to 7 × 7 pixels for SD; Fig. 2e, f ); the difference 
between Day 3 and Day 1 was significant for a broader range of window sizes in the case 
of Mm value. Entropy showed no significant difference between the three age groups at 
any window size (Fig. 2g).

To examine whether the properties of the first-order statistics are consistent in other 
datasets, we calculated the Mm Value, SD, and entropy in another dataset (n = 10 ani-
mals each at Day 1 and Day 3). As with the first dataset, the Mm Value and SD were sig-
nificantly smaller on Day 3 than Day 1 for smaller window sizes (3 × 3 to 25 × 25 pixels 
for Mm value and 3 × 3 to 11 × 11 pixels for SD; Additional file 5: Fig. S2a and b), and the 
difference between Day 3 and Day 1 was significant for a broader range of window sizes 
in the case of Mm value. However, unlike with the first dataset, the entropy was signifi-
cantly smaller on Day 3 than Day 1 when using smaller window sizes (3 × 3 to 11 × 11 
pixels; Additional file 5: Fig. S2c).
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Fig. 2 First-order statistical analysis of the age-associated changes in the cytoplasmic texture of C. elegans 
oocytes. a Algorithm for calculating the Max–min Value (Mm Value), which is the mean of the difference 
between the maximum and minimum intensities within each moving window. b–d Comparison of the 
first-order statistical features of b Mm Value, c SD, and d entropy (3 × 3-pixel window) between Day 1, Day 
2, and Day 3 oocytes. Circles indicate individual animals (n = 12 animals in each age group, pooled from 
two experiments); red bars indicate the mean values. Error bars indicate SEM. Asterisks indicate statistical 
significance (*P < 0.05; **P < 0.01; Tukey–Kramer test). e–g Comparison of e Mm Value, f SD, and g entropy 
between Day 1, Day 2, and Day 3 oocytes by using window sizes of 3 × 3 to 29 × 29 (n = 12 animals in each 
age group, pooled from two experiments). Symbols indicate statistical significance (Tukey–Kramer test) 
between Day 1 and Day 3 oocytes (*P < 0.05; **P < 0.01) or Day 2 and Day 3 oocytes (†P < 0.05). Error bars 
indicate SEM
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Our finding that, in both datasets, the Mm Value was significantly smaller on Day 3 
than Day 1 for a broader range of window sizes than that observed for SD and entropy 
(Fig. 2e–g; Additional file 5: Fig. S2) suggests that, compared the other two first-order 
statistics, Mm Value more robustly characterizes the age-associated changes in cytoplas-
mic texture.
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Fig. 3 Second-order statistical analysis of the age-associated changes in the cytoplasmic texture of C. elegans 
oocytes. a Algorithm for calculating the Gray Level Co-occurrence Matrix (GLCM). First, we define a spatial 
relationship by using the parameters distance (d) and angle (θ). We then calculate the second-order joint 
probability P(i, j | d, θ) of two pixels with gray levels i and j (0 ≤ i < G, 0 ≤ j < G). To calculate P(i, j | d, θ), we sum 
the number of pixels with paired intensities (i and j) in the defined spatial relationship. For example, when 
d is 1 pixel and the θ is 90°, the calculated number of pixels with i = 1 and j = 2 or i = 2 and j = 1 is 2. The 
co-occurrence matrix defined is symmetric. b–e Effect of oocyte age on Correlation (COR). Curves of mean 
COR as a function of distance d for Day 1, Day 2, and Day 3 oocytes are shown for θ set at b 0, c 45, d 90, and 
e 135°. Data are means ± SEM (n = 12 animals in each age group, pooled from two experiments). Symbols 
indicate significant difference (Tukey–Kramer test) in COR between Day 1 and Day 3 oocytes (*P < 0.05; 
**P < 0.01) or Day 2 and Day 3 oocytes (†P < 0.05, ††P < 0.01). f–h Effect of θ on COR. Curves of mean COR as a 
function of distance d when θ is set at 0°, 45°, 90°, or 135° are shown for f Day 1, g Day 2, and h Day 3 oocytes. 
Data are means ± SEM (n = 12 animals in each age group, pooled from two experiments). Symbols indicate 
significant difference (Tukey–Kramer test) in COR between 0° and 135° (*P < 0.05; **P < 0.01), 45° and 135° 
(†P < 0.05; ††P < 0.01), or 90° and 135° (§P < 0.05; §§P < 0.01)
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The second‑order statistic GLCM varies with the age‑associated changes in cytoplasmic 

texture in C. elegans oocytes

GLCM is an estimate of the second-order joint probability P(i, j | d, θ) that two pixels 
with gray levels i and j are d pixels apart from each other in the direction θ (Fig. 3a) [19]. 
To examine whether a second-order statistic more significantly characterizes age-asso-
ciated texture changes than Mm Value, we used the GLCM-based texture feature Cor-
relation (COR), which is a measurement of the gray-level linear dependencies of pixels 
at specified positions relative to each other. We calculated the COR of the cytoplasmic 
texture of Day 1, Day 2, and Day 3 oocytes.

As the d value increased, COR decreased and converged to around zero (Fig. 3b–e). 
For various θ values, the d value at which COR converged to zero was larger in Day 3 
oocytes than in Day 1 or 2 oocytes; for example, for θ = 135, COR in Day 3 oocytes con-
verged to zero when d = 5, whereas COR in Day 1 or Day 2 oocytes converged to zero 
when d = 2 (Fig. 3e). We found that, at several levels of the parameters d and θ, COR was 
significantly larger in Day 3 oocytes than in Day 1 and Day 2 oocytes. In particular, the 
smallest P value was obtained for the comparison of COR in Day 3 oocytes versus Day 1 
oocytes when d = 1 and θ = 135 (P = 1.0 × 10–8; n = 12 animals in each age group; Tukey–
Kramer test). The P value for this parameter set was four orders of magnitude lower than 
the lowest P value obtained by using Mm Value (window size, 3 × 3 pixels; P = 6.0 × 10–4; 
n = 12 animals in each age group; Tukey–Kramer test). These results suggest that COR 
effectively characterized the age-associated changes in cytoplasmic texture. COR was 
able to more significantly characterize the differences between Day 1 and Day 3 oocytes 
than the Mm Value did when using an appropriate parameter set. In addition to COR, 
we tested several texture-associated features based on GLCM, including Angular Second 
Moment (ASM), Contrast (CON), Inverse Difference Moment (IDM), and Entropy (ENT), 
but COR continued to yield the best characterization (Additional file 6: Fig. S3).

In general, for all oocytes regardless of age, COR obtained when θ = 135 was smaller 
than that obtained with the other angles tested at equivalent d (Fig. 3f–h).

Sample orientation does not influence the dependency of COR on the angle θ

Images from DIC microscopy have a shadow-cast appearance oriented in the shear 
direction of the prism [25]. The texture characterized by using COR was dependent on θ, 
i.e., COR was smaller at θ = 135 than at any other angle (Fig. 3f–h). To examine whether 
this angle dependency is due to either the orientation of the worm or the imaging system 
itself, we calculated COR after rotating worm samples to 0°, 45°, 90°, or 135° relative to 
horizontal (i.e., 0°) (Fig. 4a–d). If sample orientation causes the angle dependency, then 
the angle-dependent property of COR should change depending on sample orientation. 
Conversely, if the angle dependency is due to the imaging system itself, then orientation 
should have no effect on this property. We found that, regardless of sample orientation, 
COR was smaller at θ = 135 than at other angles (n = 10 animals in each angle group; 
Fig.  4e–h). This result indicates that the angle-dependent property of COR measure-
ments of oocyte cytoplasmic texture is due to the imaging system itself, rather than to 
the orientation of the worm imaged.
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The optimal choice of distance parameter d depends on the resolution of the image

To examine whether the optimal choice of the GLCM parameter d to characterize the 
age-associated changes depends on the resolution of the image, we calculated the COR 
in upscaled and downscaled images created by artificially changing the resolution of the 
original images (Fig. 5a–c). The COR in Day 1 and 3 oocytes converged to zero at smaller 
d in the downscaled images than in the original images (Fig.  5d, e). In contrast, COR 
converged at larger d in the upscaled images than in the original images (Fig. 5e, f ). In 
both the original and rescaled images, the d value at which COR converged was larger in 
Day 3 oocytes than in Day 1 oocytes (Fig. 5d–f). The smallest P value was obtained for 
the comparison of COR in Day 3 oocytes versus Day 1 oocytes in the downscaled, orig-
inal, and upscaled images when d = 1, 3, and 5, respectively (P = 8.5 × 10–5, 5.7 × 10–5, 
and 5.5 × 10–5; n = 10 animals in each age group; Welch’s two-tailed t test; Fig.  5d–f). 
These results suggest that the d value at which COR converges to zero and the optimal 
d value to characterize the age-associated changes in cytoplasmic texture increase as the 
image resolution increases, but the marked difference in the convergence properties of 
COR between Day 1 and Day3 oocytes is not changed by image resolution.

Changing smoothness or simulating large structures did not reproduce the age‑associated 

changes in cytoplasmic texture

To elucidate the factor that causes the age-associated texture change that is character-
ized by Mm Value or COR, we visually compared Day 1 and Day 3 oocytes. We consid-
ered two factors that might underlie the age-associated texture change characterized by 
Mm Value and COR: (1) cytoplasmic smoothness in oocytes (i.e., the cytoplasm of Day 3 
oocytes appeared smoother than that of Day 1 oocytes) and (2) the distribution of large 
structures (i.e., large structures were distributed irregularly in the cytoplasm of Day 3 
oocytes but the structure was homogenous throughout that of Day 1 oocytes) (Fig. 6a).

To examine whether these factors caused the texture changes, we created ‘Day 3-fied 
images’ by applying image processing to Day 1 images. We created three patterns of Day 
3-fied images by manipulating the factors. The first pattern, ‘Smoothed Pattern,’ was cre-
ated by smoothing the images of Day 1 oocytes. That is, the maximum and minimum 
intensities of Smoothed pattern images were normalized to minimum + offset and maxi-
mum − offset, respectively by using the minimum and maximum intensities from Day 
1 oocytes. The second pattern, ‘Large Structure Pattern’, was generated by applying 
a Gaussian filter multiple times to the center part of the Day 1 images; the parameter 
iteration dictates the number of times the filter is applied. We created the third pattern, 
‘Combination Pattern’, by first smoothing the Day 1 images and then generating large 
structures on them (Fig. 6b).

We then compared Mm Value and COR between Day 3-fied, actual Day 1, and actual 
Day 3 oocyte images (n = 10 animals in each age group; Fig. 6c). We set the parameter 
offset in the Smoothed pattern to 50, 100, or 200 and the parameter iteration in the Large 
Structure pattern to 1, 3, or 5. If the properties of the Day 3-fied images are similar to the 
actual images, the features of the Day 3-fied images would be expected to be similar to 
those of actual Day 3 images and differ from those of actual Day 1 images. For Smoothed 
pattern images, Mm Value at a window size of 3 × 3 pixels for the Day 3-fied images did 



Page 10 of 21Imakubo et al. BMC Bioinformatics           (2021) 22:73 

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7

100

150

200

250

300

350

a

b

c

M
m

 V
a

lu
e

Smoothed 
pattern

Large structure 
pattern

Combination
pattern

of
fs

et
 =

 5
0

of
fs

et
 =

 1
00

of
fs

et
 =

 2
00

ite
ra

tio
n 

=
 1

ite
ra

tio
n 

=
 3

ite
ra

tio
n 

=
 5

of
fs

et
=

 5
0

Ite
ra

tio
n 

=
 1

of
fs

et
=

 5
0

Ite
ra

tio
n 

=
 3

of
fs

et
=

 5
0

Ite
ra

tio
n 

=
 5

D
ay

 1

D
ay

 3

d

e

C
O

R
 (

=
1

3
5

 d
e

g
re

e
s)

d  (pixels)

d  (pixels)

**
N.SN.S

**
N.S

**
N.SN.S

**
N.S

**
N.S

**
N.S

**
N.S

**

Day 1 (n = 10)

offset = 50

Day 3 (n = 10)

offset = 200

Day 1 (n = 10)

iteration = 1

Day 3 (n = 10)

iteration = 5

Day 1 Day 3 (smooth) Day 3 (large structure)

ra
w

e
xt

ra
ct

e
d

C
O

R
 (

=
1

3
5

 d
e

g
re

e
s)

Fig. 6 Day 3-fied images created from Day 1 images. a Comparison of cytoplasmic texture between Day 
1 and Day 3 oocytes. Top, oocyte images; yellow areas indicate representative extracted areas. Scale bar 
20 μm. Bottom, images of the extracted areas. The extracted area of the Day 3 oocyte (middle) appears to 
have a smoother texture than that of the Day 1 oocyte (left). The extracted area of the Day 3 oocyte (right) 
contains large structures (marked by a dotted white line), whereas that of the Day 1 oocyte is homogeneous. 
b Extracted areas of a Day 1 image and three Day 3-fied images (left, Smoothed pattern; middle, Large 
Structure pattern; right, Combination pattern) created from the Day 1 image. The dotted white line indicates 
the filtered area. c Mm Values (3 × 3-pixel window) of actual Day 1 and actual Day 3 images, and the three 
patterns of Day 3-fied images. The Smoothed pattern parameter offset was set to 50, 100, and 200. The Large 
Structure pattern parameter iteration was set to 1, 3, and 5. The Combination pattern parameters (offset, 
iteration) were set to (50, 1), (50, 3), and (50, 5). Circles indicate the Mm Values of individual animals (n = 10 
animals in each age group; orientation of the worms is 0°); red bars indicate the mean values. Error bars 
indicate SEM. Asterisks indicate statistical significance (Tukey–Kramer test) between actual Day 1 and actual 
Day 3 images or actual Day 1 and Day 3-fied images (**P < 0.01); N.S., no significant difference between actual 
Day 3 and Day 3-fied images. d, e Curves of mean COR as a function of distance d when θ = 135 are shown 
for actual Day 1, actual Day 3, and Day 3-fied oocyte images created with d Smoothed pattern (offset = 50 or 
200) or e Large Structure pattern (iteration = 1 or 5). Data are means ± SEM (n = 10 animals in each age group; 
orientation of the worms is 0°)
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not differ significantly from actual Day 3 images but was significantly smaller than that 
of actual Day 1 images (Fig. 6c; offset = 100, 200). When the Day 3-fied images were com-
pared with Day 1 images, all of the three patterns of Day 3-fied images reproduced the 
difference in Mm Value between Day 1 and Day 3 oocytes (Fig. 6c). In addition, for all 
patterns, the Day 3-fied images reproduced the differences in general first-order statisti-
cal features, SD and entropy, between Day 1 and Day 3 oocytes (Additional file 7: Fig. 
S4). Therefore, in terms of these features, all three patterns of Day 3-fied images were 
similar to actual Day 3 images.

Next, we calculated COR for the three patterns of Day 3-fied images and the actual 
Day 1 and Day 3 images (n = 10 animals in each age group). As mentioned above, for 
the actual images, COR converged to zero at larger d values for Day 3 than for Day 1 
(Fig. 3b–e). However, COR of Day 3-fied images converged to zero at almost the same d 
as the Day 1 images for the Smoothed and Large Structure patterns (Fig. 6d, e), and the 
Combination Pattern (Additional file 8: Fig. S5). Therefore, none of the three patterns of 
Day 3-fied images accurately represented the differences in COR between actual Day 1 
and Day 3 images. This finding suggests that the age-associated changes in cytoplasmic 
texture cannot be artificially reproduced by manipulating the smoothness of the image 
or adding irregular large structures.

Synthetic images with different sizes of granules recapitulated the difference in COR 

between Day 1 and Day 3 oocytes

To investigate what factor causes the d value at which COR converges to zero to differ 
between Day 1 and Day 3 oocytes, we created simple synthetic images based on two 
hypotheses: that the (1) number or (2) size of granules in the cytoplasm changes with 
aging. We therefore evaluated the convergence of COR to zero in the synthetic images 
with different granule numbers (N) or sizes (R pixels) (Fig. 7a).

When we varied granule number but kept the granule size constant at R = 10, COR 
in the synthetic images converged to zero at approximately the same d regardless of 
whether 200 or 150 granules were present (Fig.  7b). In contrast, when we varied the 
granule size but kept the granule number constant at N = 200, COR converged at a 
larger d when the granule size was 12 pixels compared with 10 pixels (Fig. 7c). Therefore, 
merely altering the number of the granules did not recapitulate the difference in the con-
vergence of COR between Day 1 and Day 3 oocytes, but changing the size of cytoplasmic 
granules did recapitulate this difference.

To objectively assess whether changing granule size in synthetic images yields 
the anticipated difference in the d at which COR converges to zero, we exponentially 
approximated COR curves by using Eq. (1), where a is the amplitude, b is a constant that 
dictates the d value at which f(x) converges to zero, and c is the offset.

In the approximation function, as b increases, the d value at which f(x) converged to 
zero increases. The difference in the d at which COR converges to zero between Day 
1 and Day 3 oocytes should reflect the difference in b values. When we compared the 
b in the function approximating COR between Day 1 and Day 3 oocytes, the b of Day 
3 (b = 1.7) was larger than that of Day 1 (b = 0.7; Fig. 7d). Next, we approximated COR 

(1)f (x) = ae−
x
b + c
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of the synthetic images. The difference in b was greater when we manipulated granule 
size R (Fig. 7f; [N, R] = [200, 10], b = 3.0; [N, R] = [200, 12], b = 4.7) than when we varied 
granule number (N) (Fig. 7e; [N, R] = [200, 10], b = 3.0; [N, R] = [150, 10], b = 3.4). The b 
was larger for the larger granule size than the smaller granule size. These results indicate 
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Fig. 7 Synthetic images created by using different numbers and sizes of particles. a Synthetic images 
created by setting the number (N) and size (R pixels) of particles to (left) 200 and 10, (middle) 200 and 12, 
or (right) 150 and 10, respectively. b, c Curves of mean COR as a function of distance d when θ = 135 are 
shown for synthetic images with different b numbers (N) or c sizes (R pixels) of particles. Gray arrows indicate 
d converging to zero. d Exponential curves fitted to COR values as a function of d when θ = 135 are shown 
for actual Day 1 and Day 3 oocytes (n = 10 animals in each age group; orientation of the worms is 0°). e, f 
Exponential curves fitted to COR values as a function of d when θ = 135 are shown for synthetic images with 
different e numbers (N) or f sizes (R pixels) of particles
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that the difference of the COR property “d at which COR converges to zero” between 
Day 1 and Day 3 oocytes can be reproduced by changing the size of the granules.

Granules in C. elegans oocytes are larger on Day 3 than Day 1

In the synthetic images, changing the granule size reproduced the difference in COR 
between Day 1 and Day 3 oocytes, suggesting that cytoplasmic granules in C. elegans 
oocytes might change in size with aging. To examine whether granules in DIC images 
demonstrated age-associated size variation, we manually measured granules and com-
pared their size on Days 1 and 3 (n = 8 animals in each age group; Fig. 8a). Granules were 
significantly larger in Day 3 oocytes than Day 1 oocytes (Fig. 8b).

Discussion
In this study, we found that the texture of the cytoplasm in C. elegans oocytes varies 
with their age. These changes were characterized quantitatively through the DIC image 
features of Mm Value and COR, the second of which is based on the second-order sta-
tistic GLCM. In addition, with the use of appropriate parameter sets, COR characterized 
these age-associated changes in texture more significantly than Mm Value. Furthermore, 
analysis of synthetic images and measurement of the size of cytoplasmic granules sug-
gested that the cytoplasmic granules in C. elegans oocytes become larger with aging.

Mm Value, a measure of texture roughness, is calculated as the mean of the differ-
ence between the maximum and minimum intensities within successive moving win-
dows. The statistical significance of the difference in Mm Values between Day 1 and 
Day 3 oocytes decreased as the window size increased (Fig. 2e). If the texture contrast is 
uniform within an oocyte, calculating Mm Value by using a window size that is smaller 
than the granule size enables the Mm Value to fluctuate depending on the size or density 
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of granules. However, this variation in the Mm Value cannot occur when the window 
size used for determining Mm Value might contains multiple granules, such as 13 × 13, 
15 × 15, or 17 × 17 pixels. Mm Value for Day 1 oocytes remained significantly larger than 
that for Day 3 oocytes for these window sizes (P values < 0.05; Fig. 2e). Therefore, texture 
contrast might decrease with aging. However, the utility of Mm Value for characterizing 
the age-associated changes in cytoplasmic texture disappeared when window size was 
set to 19 × 19 pixels or larger (all P values > 0.05; Fig.  2e). When determined by using 
windows sufficiently large to contain multiple granules, the P values for age-associated 
differences in Mm Value increased as the window size increased. This may indicate that 
texture contrast changes in a spatially inhomogeneous manner.

Regardless of window size, the Mm Values of the Day 3-fied images based on the 
Smoothed pattern were significantly smaller than those of Day 1 images (Additional 
file 9: Fig. S6a). In addition, the Mm Values of the Day 3 images did not differ signifi-
cantly from those of Day 1 images when the window was 25 × 25 pixels or larger. Fur-
thermore, contrast in the Smoothed pattern image was decreased due to normalization 
to the overall texture contrast throughout the image. Therefore, the results suggest that 
texture contrast in oocytes does not change homogeneously from Day 1 to Day 3. The 
relationship between the Mm Values of Day 1 and 3 images may reflect the inhomo-
geneous changes of the texture contrast. Given that changes in the optical phase gra-
dient can alter contrast in DIC images, the age-associated decrease in texture contrast 
might reflect a change in granule content due to chemical modification or a difference 
in content quantity. Similar to the results for Mm Values of Day 3 images, the Mm Val-
ues of Day 3-fied images with the Large Structure and Combination patterns were not 
significantly different from Day 1 images when the window was 25 × 25 pixels or larger 
(Additional file 9: Fig. S6b and c). The Day 3-fied images based on the Large Structure 
and Combination patterns were created by changing the contrast of the Day 1 image in a 
spatially inhomogeneous manner.

Compared with SD and entropy, the Mm value characterized the age-associated dif-
ferences in cytoplasmic texture between Day 1 and 3 oocytes for a broader range of win-
dow size (Fig. 2e–g; Additional file 5: Fig. S2). SD and entropy were calculated by using 
the grey values of all pixels in the moving window, whereas the Mm Value was calculated 
by using the grey values of only the maximum and minimum intensities in the moving 
window. The applicability of the Mm Value across many window sizes may stem from 
the use of these two extreme values.

COR significantly characterized age-associated variations between the Day 1 and Day 
3 oocytes when using smaller d but not or less significantly when using larger d (Fig. 3b–
e). This finding suggests some small changes in structure with aging. Therefore, COR 
likely characterized age-associated changes in texture by recognizing small structures in 
the cytoplasm.

The d value at which COR converged to zero was larger in Day 3 oocytes than in Day 1 
oocytes (Fig. 3b–e). The d at which COR converged to zero in Day 3-fied images differed 
markedly from that in actual Day 3 images (Fig. 6d and e), and the d at which COR con-
verged to zero in the synthetic images was affected by the size of the granules rather than 
their quantity (Fig. 7b and c). These results suggest that granule size is the major factor 
affecting the convergence of COR to zero, and that the difference in the convergence 
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properties of COR between Day 1 and Day 3 images may reflect the larger size of gran-
ules in Day 3 oocytes. Supporting this notion, we found that cytoplasmic granules in Day 
3 oocytes were significantly larger than those in Day 1 oocytes (Fig. 8b); i.e., cytoplasmic 
granules in C. elegans oocytes become larger with age.

At the optimal parameter setting (d = 1, θ = 135) and a window of 3 × 3 pixels, COR 
characterized cytoplasmic texture with a lower P value than that obtained with the Mm 
Value. However, COR was not always superior to Mm value because the effectiveness of 
COR depended on the angle θ and distance d. The results of image analysis of rotated 
worms suggest that the age-associated differences in texture include an angle-dependent 
property that is intrinsic to the DIC imaging system. The results of analyzing rescaled 
images suggest that the age-associated differences also include a size-dependent prop-
erty intrinsic to the resolution of the imaging system. At appropriate parameters, COR 
characterized the changes in texture with lower P values than those obtained with Mm 
Value, but Mm Value was more informative at a broader range of parameters and was 
not particularly influenced by the angle-dependent property of DIC images. Mm Value 
may detect a feature of the age-associated changes that COR cannot detect. Further 
studies are needed to clarify the difference in the characteristics of the age-associated 
changes detected by Mm Value and COR.

Reported age-associated changes in the morphologic appearance of C. elegans oocytes 
include oocyte shrinkage, loosened contacts, and aggregation into large clusters [5, 9]. 
Here we have quantitatively characterized age-associated changes in the cytoplasmic 
texture of C. elegans oocytes through several statistical image features, such as Mm 
Value and COR. Cytoplasmic texture would reflect the internal status of oocytes more 
directly than the external morphologic appearance. Quantitative analysis of cytoplasmic 
texture and measurement of granules suggest that the cytoplasmic granules in C. elegans 
oocytes become larger with aging. Mm Value and COR can be used as objective methods 
to quantify age-associated differences in oocyte appearance, which may reflect oocyte 
fertility. To use the image features to classify the texture of oocytes according to their 
age, image features should differ markedly relative to oocyte age. Although Mm value 
and COR characterized age-associated changes in cytoplasmic texture, their distribution 
overlapped between age groups, and the values differed significantly between Day 1 and 
Day 3 oocytes but not between Day 1 and Day 2 oocytes. These results suggest that Mm 
value and COR may be insufficiently sensitive for accurate recognition and classification 
of small textural changes. To increase sensitivity, multi-dimensional analysis using addi-
tional image features or application of machine learning methods, such as deep learning, 
may be required. The age-associated changes in cytoplasmic texture can be subtle.

COR was similar on Day 1 and Day 2, and significantly increased on Day 3. Mm value 
was similar on Day 1 and Day 2, and significantly decreased on Day 3. A possible expla-
nation of these results is that the age-related change in oocyte quality is not reflected in 
the cytoplasmic texture of oocytes between Day 1 and Day 2. Alternatively, there could 
be almost no age-related change in the oocyte quality between Day 1 and Day 2. Given 
that almost all of the fertilized embryos developed successfully in the Day 1 and Day 2 
adults (Additional file 1: Movie S1 and Additional file 2: Movie S2), but not the Day 3 
adults (Additional file 3: Movie S3), it is likely that oocyte quality does not change much 
between Day 1 and Day 2, but remarkably decreases on Day 3.
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Some of the cytoplasmic granules in our DIC texture images may be yolk granules [26, 
27]. Yolk is a lipoprotein composed of lipids and lipid-binding proteins called vitello-
genins [28]. In C. elegans, vitellogenins are synthesized in the intestine and transported 
into maturing oocytes through endocytosis [29, 30]. Yolk provides essential nutrients to 
the eggs to support embryonic development [30]. During reproductive senescence, the 
intestine continues to produce and secrete large amounts of yolk protein. In adult C. 
elegans hermaphrodites, yolk accumulates towards the end of the self-fertile reproduc-
tive period [31, 32]. Provisioning of vitellogenin to embryos increases with maternal age 
[33] and might increase the lipid content in embryos and oocytes, given that vitellogen-
ins transport lipids into embryos [28, 33]. Taking these findings together with our data, 
we propose that the cytoplasmic granules in aged adults (Day 3 and later) might enlarge 
due to an increase in vitellogenin content or in vitellogenin-transported embryonic lipid 
content.

What is the relationship between decreased fertility and yolk accumulation with aging? 
Yolk accumulation may contribute to the decrease in fertility. High levels of yolk appear 
to be detrimental and decrease the lifespan of C. elegans [34]. In contrast, knockdown 
of vitellogenin expression extends lifespan [35, 36]. Increased amounts of yolk might 
accelerate the aging of oocytes or animals, resulting in decreased fertility. Alternatively, 
decreased oocyte fertility might contribute to yolk accumulation. Moreover, we cannot 
exclude the possibility that yolk accumulation does not affect fertility directly. Further 
experiments are needed to clarify the relationship between yolk levels and fertility in this 
and other species.

Conclusions
Here, we found that the Mm Value and COR objectively quantify age-related changes in 
C. elegans oocyte in Nomarski DIC microscopy images. We are planning to apply these 
image features to publicly available Nomarski DIC microscopy images of C. elegans 
oocytes and embryos in public image databases such as Phenobank [37] and WDDD 
[38]. Such applications may provide clues to the molecular mechanisms of oocyte aging.

Methods
Caenorhabditis elegans strains and growth conditions

Caenorhabditis elegans (Bristol N2 strain) were grown under standard conditions [39]. 
The L4 larval stage was considered as Day 0; worms were defined as Day 1, Day 2, and 
Day 3 adults at 18–24 h, 43–46 h, and 67–70 h after L4, respectively.

Imaging of oocytes

Worms were immobilized in a polystyrene nanoparticle suspension [40] supplemented 
with 5-hydroxytryptamine [41] on agarose pads. The anterior gonad was observed by 
Nomarski DIC microscopy with the use of a Leica HCX PL APO 63 × /1.20 W CORR 
objective and an iXonX3 electron-multiplying CCD camera controlled with live-cell 
imaging software (Andor iQ). The plane of focus was through the oocyte nucleus. 
Images of nematodes at four angles (0, 45, 90, and 135°) were obtained by rotating the 
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Day 1 samples; 0° was defined as horizontal orientation. Digital images of 512 × 512 pix-
els were converted to 14-bit TIFF format (0.25 μm per pixel).

Calculation of image features

To calculate image features, random regions of 30 × 30 pixels were extracted from the 
cytoplasm, without including nuclei or cell boundaries. The 3 oocytes most proximal to 
the spermatheca in the anterior gonad were used for each animal, and one region was 
extracted from each oocyte. Image features of individual animals were defined as the 
mean of those in the extracted three regions.

The first-order statistical features Mm Value, SD, and entropy were calculated by mov-
ing the local window within the confines of the border of the extracted region. SD was 
defined as the mean of the standard deviations of the pixel intensities in the moving win-
dow. Entropy was defined as the mean of entropies (calculated according to the follow-
ing the equation) in the moving window:

where G is the number of gray levels, and P(k) is the probability of occurrence of gray 
level k in the moving window.

Second-order statistical features based on GLCM—Correlation (COR), Angular Sec-
ond Moment (ASM), Contrast (CON), Inverse Difference Moment (IDM), and Entropy 
(ENT)—were calculated by using the following equations and the co-occurrence matrix 
P(i, j | d, θ):

where µx , µy , σx , and σy are the means and standard deviations in the x and y direction 
given by
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P(i, j | d, θ) was defined as symmetric (see Fig. 3a).

Computational complexity

The computational complexity of the Mm Value is of the order of O(W2M2), where W 
is the window size, and M is the size of the input image. The computational complex-
ity of the COR is divided into two components: (1) creating the GLCM and (2) calcu-
lating the COR from the GLCM [42]; the computational complexity is of the order of 
O(L2) + O(G2), where L is the length of the neighborhood window in GLCM feature 
extraction, and G is the number of grey levels of the input image. Using our codes, it 
takes about 0.5 × 10–3 s per image to calculate the Mm Value for W = 3 pixels and M = 30 
pixels on our PC (Intel® Core™ i5, 1.6 GHz). The calculation of the COR for L = 1 pixel 
and G = 256 takes about 2.4 × 10–3 s per image on our PC (Additional file 10: Table S1).

Creation of the rescaled images

The images were rescaled using bilinear interpolation. We used data from worms ori-
ented at 0° (n = 10 animals) as the original images (30 × 30 pixels). To halve the reso-
lution of the original images, the images were downscaled to 15 × 15 pixels. To double 
the resolution of the original images, the images were upscaled to 60 × 60 pixels.

Creation of the synthetic images

Synthetic images were created by randomly locating N white granules with diameter 
R pixels on a black background image of 300 × 300 pixels. Granules could not overlap 
or protrude from the border of the image.

Fitting equations to the COR curves

To fit equations to the COR datasets (actual Day 1 and Day 3 images, and synthetic 
images) we performed nonlinear regression analyses using the exponential function 
described in the Results section:

We used the COR data for d of 1–7 pixels to estimate the curve for convergence of 
COR to zero. We used data from worms oriented to 0° (n = 10 animals).

Quantification of the granule size

For each worm, we manually measured the cytoplasmic granules in the oocyte that 
was second-most proximal to the spermatheca. Granules were determined as non-
overlapping circular or nearly circular regions where signal intensity exceeded the 
background intensity. Many of the elongated and clustered granules in Day 3 oocytes 
were not measured.
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Statistical analyses

Statistical analyses were performed using R software. P values for pair-wise compari-
sons of data sets were calculated using Welch’s two-tailed t test. Those for multiple 
comparisons of data sets were calculated using Tukey–Kramer test.

Supplementary Information
The online version contains supplementary material available at https ://doi.org/10.1186/s1285 9-021-03990 -3.

Additional file 1: Movie S1. Fertilization in 1-day-old C. elegans adults observed by using Nomarski DIC microscopy. 
A worm was filmed at the start of fertilization. The time-lapse image was captured at a frame interval of 60 s using a 
Leica DM6000B microscope with HCX PL FLUOTAR 40×/0.75 objective at 0.16 μm per pixel.

Additional file 2: Movie S2. Fertilization in 2-day-old C. elegans adults observed by using Nomarski DIC microscopy. 
A worm was filmed about 24 h after the start of fertilization. The time-lapse image was captured under the same 
conditions as used for the Day 1 adults (Additional file 1: Movie S1).

Additional file 3: Movie S3. Fertilization in 3-day-old C. elegans adults observed by using Nomarski DIC microscopy. 
A worm was filmed about 48 h after the start of fertilization. The time-lapse image was captured under the same 
conditions as used for Day 1 adults (Additional file 1: Movie S1).

Additional file 4: Figure S1. Comparison of the Max–min Value (Mm Value) between Day 1, Day 2, and Day 3 
oocytes in each of two experiments. Mm Value was calculated by using a 3 × 3-pixel window in Day 1, Day 2, and 
Day 3 oocytes. Circles indicate individual animals (n = 4 or 8 animals each age group); red bars indicate the mean 
values. Error bars indicate SEM. Asterisks indicate statistical significance (*P < 0.05; Tukey–Kramer test).

Additional file 5: Figure S2. Comparison of a Mm Value,  b SD, and  c entropy between Day 1 and Day 3 oocytes. 
Various window sizes from 3 × 3 to 29 × 29 pixels were used. Data are means ± SEM (n = 10 animals in each age 
group). Asterisks indicate statistical significance between Day 1 and Day 3 oocytes (*P < 0.05; **P < 0.01; Welch’s 
two-tailed t test).

Additional file 6: Figure S3. Comparison of key texture features based on a Gray Level Co-occurrence Matrix 
(GLCM) between Day 1, Day 2, and Day 3 oocytes. Curves of the indicated texture features as a function of distance 
d when θ = 135 are shown. Data are means ± SEM (n = 12 animals each age group, pooled from two experiments). 
ASM, Angular Second Moment; CON, Contrast; IDM, Inverse Difference Moment; ENT, Entropy; COR, Correlation. 
Symbols indicate statistical significance (Tukey–Kramer test) between Day 1 and Day 3 oocytes (*P < 0.05; **P < 0.01) 
or Day 2 and Day 3 oocytes (†P < 0.05, ††P < 0.01).

Additional file 7: Figure S4. Comparison of SD and entropy between actual images and Day 3-fied images. a SD 
and b entropy of actual Day 1, actual Day 3, and the three patterns of Day 3-fied images were calculated using a 
window size of 3 × 3-pixels. The Smoothed pattern parameter offset was set to 50, 100, and 200. The Large Structure 
pattern parameter iteration was set to 1, 3, and 5. The Combination pattern parameters (offset, iteration) were set to 
(50, 1), (50, 3), and (50, 5). Circles indicate the image features of individual animals (n = 10 animals in each age group; 
orientation of the worms is 0°); red bars indicate the mean values. Error bars indicate SEM. Symbols indicate statistical 
significance (Tukey–Kramer test) between actual Day1 and actual Day 3 or Day 3-fied images (**P < 0.01) or between 
actual Day 3 and Day 3-fied images (†P < 0.05; ††P < 0.01); N.S., no significant difference between actual Day 3 and Day 
3-fied images.

Additional file 8: Figure S5. Correlation (COR) calculated for Day 1 and Day 3 oocyte images and Day 3-fied oocyte 
images with two different Combination patterns. Curves of mean COR as a function of distance d when θ = 135 are 
shown. Data are means ± SEM (n = 10 animals each age group; orientation of the worms is 0°). The parameters for 
the Combination pattern (offset and iteration) were set to a (50, 5) and (200, 5) or b (200, 1) and (200, 5), respectively.

Additional file 9: Figure S6. Comparison of Mm Values between actual Day 1, actual Day 3, and Day 3-fied oocyte 
images for various window sizes from 3 × 3 to 29 × 29 pixels. Data are means ± SEM (n = 10 animals each age 
group; orientation of the worms is 0°) a Day3-fied images were created with Smoothed pattern (offset was set 
to 100).b Day3-fied images were created with Large Structure pattern (iteration was set to 3). c Day3-fied images 
were created with Combination pattern [(offset, iteration) were set to (50, 1)]. Symbols indicate statistical signifi-
cance (Tukey–Kramer test) between Day 1 and Day 3 images (*P < 0.05; **P < 0.01) or Day 1 and Day 3-fied images 
(†P < 0.05; ††P < 0.01).

Additional file 10: Table S1. Processing time per image for Mm Value, SD, entropy and COR. The processing time 
was measured for input images of various sizes. The parameter settings were changed according to the image size. 
Processing time per image was calculated by averaging the processing time of 1000 images. The processing time 
for Mm Value was equivalent to that for SD, and that for entropy was greater than that for Mm Value or SD. The com-
putational complexities of the SD and entropy are of the order of O(W2M2) and O(W2M2) + O(GM2), respectively, 
where W is the window size, M is the size of the input image and G is the number of grey levels of the input image. 
The processing time for the first-order statistical features was less than that for COR when the input images were 
small (30 × 30 pixels), but greater than that for COR when the input images were large (150 × 150 pixels). This was 
because the processing times for the first-order statistical features increased with the image size, but the processing 
time for COR was largely unaffected by the image size.
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