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Bats, as the only flying mammals, have ‘emerged’ in both the sci-
entific and general public arenas due to their ability to asymp-
tomatically host a large number of high-profile viruses. Such 

examples include Ebola virus, Nipah virus, severe acute respiratory 
syndrome (SARS) and Middle East respiratory syndrome (MERS) 
coronaviruses, which are capable of causing severe, and often 
deadly, disease in humans and animals1–4. These viruses, predomi-
nantly RNA viruses, are highly pathogenic in humans and are often 
linked to an aberrant innate immune activation5–8. Importantly, 
bats, when challenged by these viruses, exhibit no or minimal signs 
of disease, even when high viral loads are detected in the sera or  
tissues9–12. In addition, they are special in that they harbour a higher 
proportion of zoonotic viruses than all other mammalian orders13. 
Bats also have an extraordinarily long lifespan relative to their body 
size, despite their elevated metabolic rates14,15.

These observations have triggered increasing interest and 
efforts to characterize the bat immune system, primarily through 
genomic16,17 and transcriptomic analysis18–20, and especially with 
regard to type I interferon and antiviral activities21–23. However, how 
bats limit excessive inflammation while asymptomatically hosting a 
greater variety of viruses is unknown.

NLR family pyrin domain containing 3 (NLRP3) is an important 
sensor that recognizes both cellular stresses (such as extracellular 
adenosine triphosphate (ATP), mitochondrial damage and oxidized 
DNA)24–26 and viral or bacterial infections27,28. NLRP3-mediated 
inflammation has been causally linked to aging and multiple age-
related chronic diseases29,30. NLRP3 is increasingly recognized for 
its role in response to multiple viruses31, including those associated 
with bats, such as influenza A virus (IAV)32,33 and rabies virus34,35. 

Over-activation of the NLRP3 inflammasome has been linked to 
a hyper-inflammatory state and immunopathology in viral infec-
tion with minimal effect on the viral load36–39. However, nothing is 
known about NLRP3-mediated inflammation in bats. On the basis 
of the observations of increased longevity and viral asymptoma-
ticity in bats, we hypothesize that the NLRP3 inflammasome, as a 
central player in viral infection and aging, differs between bats and  
other mammals.

Here, we report a mechanism by which bats dampen host inflam-
mation in response to both ‘sterile’ danger signals and infections 
with three different zoonotic RNA viruses, without affecting the 
viral loads in primary immune cells. This involves dampened tran-
scriptional priming and a lower functional capacity of bat NLRP3. 
We also discover that bat-borne Pteropine orthoreovirus 3 (PRV3M, 
previously known as Melaka virus) and MERS coronavirus (MERS-
CoV) induce NLRP3-mediated inflammation in mouse or human. 
Bats have naturally dampened stress-related and virus-induced 
host inflammatory responses, with implications for longevity and 
asymptomatic viral reservoir status.

Results
Activation of NLRP3 inflammasome is dampened in bat primary 
immune cells. Following priming (signal 1) and activation (signal 2),  
NLRP3 triggers assembly of the diffuse cytosolic apoptosis-associ-
ated speck-like protein containing a CARD (ASC) protein to form 
ASC specks40. These then recruit and activate caspase-1 to promote 
inflammatory cell death via pyroptosis and cleavage/secretion of the 
potent pro-inflammatory cytokine interleukin-1β (IL-1β) (Fig. 1a).  
To assess the activation of the NLRP3-inflammasome in primary 
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immune cells, peripheral blood mononuclear cells (PBMCs) of bat 
(Pteropus alecto) and human, or bone-marrow-derived macrophages 
(BMDMs) or dendritic cells (BMDCs) of bat and mouse, were tested. 
Cells were primed with lipopolysaccharide (LPS) and then stimu-
lated by potent NLRP3 activators, ATP or nigericin, representing a 
host- or pathogen-derived danger signal, respectively25. ASC specks 

in bat cells were visualized with a monoclonal antibody specifi-
cally raised against P. alecto ASC protein (Supplementary Fig. 1a–c).  
Quantification of ASC specks in human and bat PBMCs was first 
validated by confocal microscopy (Supplementary Fig. 1d) and 
ImageStream imaging flow cytometry (Fig. 1b). Both approaches 
similarly detected ASC specks formation on treatment of human 
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Fig. 1 | Activation of the NLRP3 inflammasome is dampened in bat PBMCs, BMDMs and BMDCs. a, Schematic model for NLRP3 inflammasome 
activation. b, Representative single-cell images of gated monocytes of human (left) and bat (right) PBMCs, primed with LPS for 3 h, with or without 
stimulation by ATP or nigericin for 30 min. Cells were acquired using ImageStream. DAPI, blue; ASC, red; arrowheads, ASC specks. Scale bars, 10 μm.  
c, Quantification of ASC specks in gated monocytes of PBMCs (left), BMDMs (middle) or BMDCs (right) by ImageStream, unprimed (Un.) or primed with 
LPS for 3 h, with or without stimulation with ATP or nigericin for 30 min. d, LDH release in cell-free supernatants of PBMCs (left), BMDMs (middle) or 
BMDCs (right), primed with LPS for 3 h, with or without stimulation by ATP or nigericin for 1 h. e,f, Detection of human (e) and bat (f) C-terminal pro-IL-1β 
peptides in cell lysates (left) or supernatants (right) of PBMCs as in d, using PRM-based targeted mass spectrometry with heavy isotope-labelled internal 
standards. K indicates heavy labelled lysine (13C6, 15N2); ND, not detected; NS, not significant. g, Secretion of IL-1β by ELISA in the supernatant of BMDMs 
(left) or BMDCs (right) as stimulated in d. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; two-tailed unpaired t-test. Exact P values are provided in 
Supplementary Table 5. Data are representative of three biological replicates (n = 3) in b, or mean + s.d. of three biological replicates (n = 3) in c–g.
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PBMCs with ATP or nigericin (Fig. 1c and Supplementary Fig. 1e). 
To quantify the specks in high throughput, we used ImageStream 
for the remainder of the experiments. We detected low-level ASC 
specks in LPS-primed bat cells, with negligible induction in ATP- or 
nigericin-treated cells, in contrast to treated human PBMCs, mouse 
BMDMs or BMDCs (Fig. 1c). A key feature of pyroptotic cell death 
is destabilization of the cell membrane and release of cytosolic con-
tents41. We measured pyroptosis by the release of lactate dehydroge-
nase (LDH) and observed less LDH release in treated bat immune 
cells (Fig. 1d). To examine the downstream secretion of IL-1β in 
limited amounts of bat PBMCs, we used highly sensitive and spe-
cific parallel reaction monitoring (PRM)-based targeted mass spec-
trometry with heavy isotope-labelled peptide standards42. Levels of 
human N- or C-terminal pro-IL-1β peptides decreased in cell lysates 
from treated PBMCs, correlating with significantly increased levels 
in supernatants (Fig. 1e and Supplementary Fig. 2a,c). In contrast, 
levels of pro-IL-1β peptides in bat cells did not decrease with treat-
ment, correlating with a lack of detection of endogenous peptides 
in supernatants, despite the detection of spiked internal standards 
(Fig.1f and Supplementary Fig. 2b,d). In addition, an in-house sand-
wich enzyme-linked immunosorbent assay (ELISA) for bat IL-1β 
was generated with cross-reactive antibodies (Supplementary Fig. 3).  
Secretion of IL-1β was also lower in bat BMDMs or BMDCs as 
measured by ELISA of IL-1β (Fig. 1g). Altogether, activation of the 
NLRP3 inflammasome is dampened in primary bat immune cells.

Transcriptional priming of bat NLRP3 is impaired, independent 
of TLRs. Lack of ASC speck formation and downstream activation 
can be attributed to either the adaptor ASC or the sensor NLRP3, 
or both. NLRP3 expression is rate-limiting and transcriptional 
upregulation by NF-κB through Toll-like receptors (TLRs) is an 
essential first step required for the inflammasome activation43,44. 
We thus examined the transcriptional priming of both NLRP3 and 
IL-1β, along with classical NF-κB-induced genes IL-6 and TNF-α.  
BMDMs, BMDCs or PBMCs of bat and mouse or human were 
treated with various doses of four different NF-κB-activating TLR 
agonists: LPS (bacterial lipopolysaccharide) for TLR4, Pam3CSK4 
(bacterial triacylated lipopeptide) for TLR1/2, CL264 (adenine ana-
logue) for TLR7 and poly(I:C) (viral dsRNA analogue) for TLR3. The 
majority of the TLR stimulations induced IL-1β, IL-6 and TNF-α,  
up to 115-, 67- and 57-fold, respectively, in bat BMDMs (Fig. 2a), 
40-, 38- and 39-fold in bat BMDCs (Fig. 2c) and 40-, 552- and 
95-fold in bat PBMCs (Fig. 2e), suggesting robust NF-κB activation 
in these bat immune cells. However, NLRP3 was not induced with 
most of the TLR stimuli, except at higher doses when it was up to 
only threefold in bat BMDMs, fourfold in bat BMDCs and nine-
fold in bat PBMC (Fig. 2a,c,e). In contrast, NLRP3 was significantly 
induced with higher amplitude for most stimuli in mouse BMDMs 
or BMDCs and human PBMCs (Fig. 2b,d,f). Despite the differ-
ences in the amplitude of IL-1β, IL-6 or TNF-α responses to various  
stimulations between species, a more robust induction of NLRP3  
in mouse or human cells compared to bat cells was observed  
with the TLR stimuli of similar potency for IL-1β, IL-6 or TNF-α  
between species, such as CL264 in bat and mouse BMDMs  
(Fig. 2a,b), CL264 and poly(I:C) for bat and mouse BMDCs, respec-
tively (Fig. 2c,d), and CL264 and LPS for bat and human PBMCs 
(Fig. 2e,f). We excluded the possibility of a difference in NLRP3 
basal expression level by comparing mRNA levels across bat and 
mouse tissues (Supplementary Fig. 4). Comparable levels of NLRP3 
transcripts relative to housekeeping genes between bat and mouse 
tissues were observed. Basal NLRP3 expression across bat tissues 
was 100 to 1,000 times lower than constitutively expressed inflam-
masome genes such as ASC and caspase-1, which is also consistent 
with the pattern seen in mouse tissues (Supplementary Fig. 4). 
Collectively, these data indicate that bat NLRP3 has dampened tran-
scriptional priming independent of TLR signalling.

The function of all four bat NLRP3 isoforms, but not ASC, is 
dampened. To characterize NLRP3 and ASC functions, we exam-
ined their major isoforms in bat immune cells. Transcriptome anal-
ysis revealed only one ASC isoform, yet a NLRP3 splice-variant was 
identified. The alignment of full-length human and P. alecto NLRP3 
proteins revealed 79% identity with two potential start codons in 
bat NLRP3 (Fig. 3a). De novo assembly of mapped RNA–seq reads 
from P. alecto splenocyte subsets revealed an exon 7-skipping splice 
variant in bat NLRP3, not previously described in other mammalian 
orders (Fig. 3b). The exon 7 region was located within the leucine-
rich repeat (LRR) domain of NLRP3. Both exon 7-positive and exon 
7-negative variants were validated by PCR and sequencing from 
spleen and thymus cDNA. This exon 7-negative isoform consti-
tuted more than 60% of NRLP3 transcripts in different P. alecto tis-
sues (Fig. 3c). The four isoforms with different start codons and/or 
alternative splicing are designated 1 to 4 (Fig. 3d). Human embry-
onic kidney (HEK293T) reporter cells stably expressing human/
bat ASC–mPlum fusions and transiently expressing human/bat 
NLRP3–mCitrine fusions were used for ImageStream and immu-
noblot analysis. For ImageStream analysis, double-positive cells of 
similar fluorescent intensity for ASC–mPlum and NLRP3–mCitrine 
were gated. This revealed that formation of bat ASC specks and their 
downstream cleavage of IL-1β was not different from human ASC, 
in response to all NLRP3 variants (Fig. 3e,f,i). In addition, the micro-
scopic structures of specks including size, density and shape were 
comparable between human and bat ASC (Supplementary Fig. 5).  
In contrast, ASC speck and IL-1β cleavage by bat NLRP3 isoforms 
was lower than that of human NLRP3 (Fig. 3e–h). Notably, exon 
7-negative isoforms 2 and 4 were less functional than exon 7- 
positive isoforms 1 and 3. The alternative translational start resulted 
in no difference in activity. Together, these data show that the 
function of all four NLRP3 isoforms but not ASC is dampened  
compared to the human NLRP3 and that alternative splicing of exon 
7 contributes to further dampening of bat NLRP3 activity.

NLRP3 isoform activity in bat cells from both major bat lineages 
is reduced. Chiroptera is a diverse order consisting of more than a 
thousand bat species. To further examine whether our findings for 
NLRP3 in P. alecto from the Yinpterochiroptera suborder are also 
true in evolutionally distant bats, we extended our observations to 
Myotis davidii in the other suborder, Yangochiroptera. Only one start 
codon matching the second start of the P. alecto protein was identi-
fied in M. davidii NLRP3 (Fig. 4a). Similarly, both exon 7-positive 
(isoform 1) and exon 7-negative (isoform 2) isoforms were iden-
tified by PCR and sequencing from spleen and kidney cDNA. To 
assess NLRP3 function in native bat cells of different species origin, 
we established P. alecto kidney (PaKi) and M. davidii kidney (MdKi) 
cells stably expressing the homologous ASC–mPlum reporter 
construct. Overexpression of human NLRP3–mCitrine in both 
bat cell types led to redistribution of diffuse bat ASC into specks  
(Fig. 4b–d). In comparison, the activity of all bat NLRP3 isoforms 
was significantly lower than that of the human protein (Fig. 4b–d).  
Importantly, both forms of M. davidii NLRP3 also displayed 
reduced activation. Consistent with previous findings in HEK293T 
cells, lack of exon 7 resulted in additional dampening of NLRP3 
function. To map the region responsible for the reduced func-
tion of exon 7-positive isoforms, we generated chimaeras between 
human NLRP3 and P. alecto NLRP3 isoform 1 by substituting the 
human PYRIN, NACHT and LRR domains, respectively (Fig. 4e). 
While chimaeras 1 and 2 showed increased activity, only chimaera 
3 exhibited lower activity than the wild-type human protein, sug-
gesting that the LRR domain is responsible for the reduced func-
tion. Evolutionary analysis using 10 bat and 17 non-bat mammalian 
NLRP3 sequences confirmed NLRP3 was under higher selection 
pressure in the bat ancestor lineage compared to other mammals 
and the LRR domain was the only domain under significant positive 
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selection (Supplementary Tables 1–3), consistent with our chimae-
ric functional analysis. Overall, these data show that a bat-specific 
splice variant and/or an altered LRR domain are responsible for the 
dampened activity of all NLRP3 isoforms.

NLRP3-mediated inflammation is dampened in bat immune 
cells in response to three different types of RNA virus. To con-
firm our results in a more physiological setting of immune cells, we 
reconstituted mouse NLRP3-knockout immortalized macrophages 
(iMACs) with human or P. alecto NLRP3–mCitrine. Induction of 
ASC specks and secretion of IL-1β in reconstituted iMACs by ATP 
or nigericin was significantly reduced in cells expressing bat NLRP3 
isoforms compared to the human NLRP3 (Supplementary Fig. 6).  
To characterize the bat NLRP3 in response to virus infection,  
LPS-primed iMACs were infected with H1N1 influenza A virus 

(IAV), strain A/NWS/33. It is a negative-sense single-stranded RNA 
(−ssRNA) virus, known to activate the NLRP3 inflammasome27. 
All bat NLRP3 isoforms were significantly less responsive to IAV 
infection, while viral titres from supernatants were not affected 
(Fig. 5a–c). To validate this finding in freshly derived myeloid 
cells, we infected LPS-primed mouse or bat BMDMs or BMDCs 
with IAV at different multiplicities of infection (MOI = 1, 2, 5 or 
10). MOI-dependent induction of ASC speck and IL-1β secretion 
was observed in infected mouse BMDMs or BMDCs (Fig. 5d,e 
and Supplementary Fig. 7a,b). Although the IAV titre was simi-
lar between mouse and bat cells, ASC speck formation and IL-1β 
secretion were minimally or not induced in infected bat BMDMs or 
BMDCs (Fig. 5d–f and Supplementary Figs. 7a–c and 8a).

To confirm that the observation is not IAV-specific, PRV3M45, 
a bat-borne zoonotic reovirus of double-stranded RNA (dsRNA), 
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3 h. LPS = 10, 100, 1,000 ng ml−1; Pam3CSK4 = 10, 100, 1,000 ng ml−1; CL264 = 0.1, 1, 10 μg ml−1; poly(I:C) = 0.1, 1, 10 μg ml−1. Fold induction of cytokines is 
relative to mock-treated samples (control) after normalizing with GAPDH. *P < 0.05 (only labelled for NLRP3), NS, not significant (labelled for IL-1β, IL-6, 
TNF-α and NLRP3), by one-way analysis of variance (ANOVA) with Bonferroni’s multiple comparisons test for log fold changes. Exact P values are provided 
in Supplementary Table 5. Data are presented as mean + s.e.m. of three biological replicates (n = 3) in a–f.
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was used to infect reconstituted iMACs. Viruses from the dsRNA 
group have not been demonstrated to activate the NLRP3 inflam-
masome. Our data show that PRV3M activated the inflamma-
some in an NLRP3-dependant manner as measured by ASC speck  
and IL-1β secretion, with decreased activation from bat NLRP3 

compared to the human counterpart (Fig. 5g,h and Supplementary 
Fig. 8d). Additionally, there was a decrease in viral titres with 
NLRP3 but no obvious difference between human and bat isoforms 
(Fig. 5i). PRV3M infection (MOI = 1, 2, 5 or 10) in bat BMDMs 
or BMDCs also triggered less inflammasome activation without 
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the MOI-dependent increase in ASC speck formation and IL-1β 
secretion seen in infected mouse cells, despite the similar viral 
titres between mouse and bat cells (Fig. 5j–l and Supplementary  
Figs. 7d–f and 8b).

To expand this investigation to a third type of RNA virus, we 
interrogated inflammasome activation in response to MERS coro-
navirus (MERS-CoV) infection, a positive-sense (+)ssRNA zoo-
notic virus from a recent epidemic with potential bat ancestry46. 
As mouse cells are not permissive to MERS-CoV47, human and bat 
PBMCs were infected. MERS-CoV infection (MOI = 0.25, 0.5 or 1)  
activated ASC speck and IL-1β secretion in a MOI-dependent 
manner in human PBMCs (Fig. 5m,n). This activation, abolished 
by pharmacological inhibition of NLRP3 with a small-molecule 
inhibitor MCC95048, suggests NLRP3-dependent activation of the 
inflammasome by MERS. In contrast, MERS-CoV infection failed 
to trigger an inflammasome response in bat PBMCs, although viral 
titres only differed minimally between human and bat PBMCs 
(Fig. 5m–o and Supplementary Fig. 8c). Taken together, our find-
ings demonstrate dampened activity of bat NLRP3 in immune cells 
and reduced activation of the NLRP3 inflammasome in response to 
infection with three very different viruses of public health concern, 
without affecting viral load.

Discussion
In summary, our results demonstrate an overall dampening of 
NLRP3 inflammasome activation in bat primary immune cells 
(Supplementary Fig. 9). Dampened transcriptional priming, a bat-
specific splice variant and an evolutionarily adapted LRR domain 
of NLRP3 are responsible for the reduction of inflammation from 
‘sterile’ danger signals (ATP) and infection of different zoonotic 
RNA viruses. Additionally, we discovered that both PRV3M and 

MERS-CoV activate the NLRP3 inflammasome in mouse and 
human, which also expands our current knowledge of the role of 
the NLRP3 inflammasome in the dsRNA virus group and family 
Coronaviridae. A clear demonstration of dampened host inflam-
matory responses without affecting viral load is consistent with the 
unique asymptomatic viral reservoir status of bats.

We report multiple mechanisms, at both the mRNA and protein 
level, underlying the dampened NLRP3-mediated inflammation. 
Our data demonstrate dampened transcriptional priming, spe-
cific for NLRP3, following different TLR stimulations in P. alecto 
immune cells. A robust induction of IL-1β, IL-6 and TNF-α suggests 
functional NF-κB signalling in bat immune cells, consistent with the 
previous report using CL097 (TLR7/8 agonist) in P. alecto myeloid 
cells49. This NLRP3-specific effect with intact NF-κB signalling 
might be attributed to a change in the promoter or cis-regulatory 
elements. The induction of IL-1β, IL-6 or TNF-α varies substan-
tially between different TLRs within a species and between bat and 
human/mouse for a particular TLR, which supports the increasing 
evidence for intra- and inter-species variation in TLRs50,51. Further 
investigation is required to determine if there is a difference in over-
all NF-κB signalling in bats.

The exon 7-skipping alternative splice variant identified in both 
P. alecto and M. davidii has not been described previously in other 
mammalian orders based on the NCBI protein database. At the pro-
tein level, while an altered LRR domain is responsible for reduced 
function for the full-length protein, loss of exon 7 located within 
the LRR domain results in further dampened activity. Notably, the 
‘weaker’ exon 7-negative isoforms are the predominant isoforms in 
P. alecto tissues. Our functional study is supported by evolutionary 
analysis (PAML branch model), which indicates a positive selec-
tion in the LRR domain in the bat ancestral lineage. The branch-site 
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model, however, failed to identify a positively selected residue of 
NLRP3 in the bat ancestral lineage. This suggests that an altered LRR 
domain is probably a conserved feature in bats and possibly involves 
accumulated changes in different residues in different lineages of 
bats. At the steady sate, the LRR domain plays a role in auto-inhibi-
tion by preventing oligomerization of NLRP340. Auto-inhibition of 
the LRR domain in bat NLRP3 could possibly be enhanced, hence 
making it harder for NLRP3 to trigger downstream activation. 
Interestingly, the same priming step for transcriptional upregula-
tion also licenses NRLP3 activation by inducing post-translational 
modifications including deubiquitination in the LRR domain52. No 
key residues have been identified for auto-inhibition or ubiquitin 
modifications in the human/mouse LRR domain so far, and their 
roles are yet to be determined in the altered bat LRR.

The NLRP3 inflammasome is increasingly being recognized to 
play a critical role in the immune response to viruses. In this study, 
we have discovered NLRP3-dependent activation of inflamma-
tion for a bat-related dsRNA virus (PRV3M)45 and a coronavirus 
(MERS-CoV) with significant human spillover events. NLRP3 has 
no effect on viral titres for IAV and MERS-CoV infection in recon-
stituted iMACs and PBMCs, respectively. Interestingly, both human 
and bat NLRP3 mediated a similar decrease in viral titres from 
reconstituted iMACs infected by PRV3M, suggesting an NLRP3-
dependent and inflammasome-independent mechanism. NLRP3 
inflammasome activation by dsRNA virus has only been inferred 
from transfecting isolated dsRNA from another reovirus53. No uni-
fied mechanisms for activating the NLRP3 inflammasome have 
been identified for viruses. While genomic or intermediate dsRNA 
of PRV3M and viroporin encoded by MERS-CoV E protein54 are 
possible candidate NLRP3 activators, further studies are needed to 
determine the activation mechanisms.

Observations in both wild-caught and experimentally infected 
bats suggest the ability of bats to tolerate viral disease, even dur-
ing a transient phase of high viral load. For instance, in vivo virus 
challenge with high-dose Ebola virus9 and MERS-CoV11 caused 
no clinical disease and limited pathology, despite high viral titres 
detected in tissues or sera. The viral load can reach as high as 107 
TCID50 equivalents per gram of lung tissues for MERS-CoV and 
107 f.f.u. (fluorescent focus-forming units) ml−1 of sera for Ebola 
virus. While a ‘flight as fever’ theory55 and an ‘always on’ interferon 
(IFN) system56 might suggest elevated antiviral immunity in bats, a 
dampened STING-dependent IFN response to a DNA virus21 and 
an inhibitory state of natural killer cells inferred from genome anal-
ysis support enhanced immune tolerance16. These hypotheses still 
largely lack functional confirmation, particularly with RNA virus 
infection. A recent study demonstrated a temperature-independent 
replication of Filoviruses on bat cells, as opposed to the ‘flight as 
fever’ hypothesis57. We demonstrate here a dampened NLRP3-
mediated inflammatory response to three different types of RNA 
virus in bat immune cells, with no or minimal difference in viral 
titres. This supports an enhanced innate immune tolerance rather 
than an enhanced antiviral defence in bats. This may also contribute 
to our understanding of the role of the inflammasome in disease 
tolerance in bats as reservoir hosts, in contrast to severe patho-
genesis in spillover hosts for many high-profile emerging zoonotic 
viruses. As NLRP3 is recognized to sense an increasing number of 
viruses, this finding may have broad application in a great variety 
of bat-borne viruses or viruses yet to be detected in bats. With the 
ongoing development of more experimental tools and reagents for 
bat immunology, a deeper characterization of immune responses in 
other cell types/tissues and in vivo will provide greater insight into 
the underlying mechanisms of viral disease tolerance in bats.

Methods
Reagents. Ultrapure LPS-B5, ATP, nigericin, Pam3CSK4, poly(I:C), CL264 
and Hygromycin B Gold were obtained from InvivoGen. P. alecto ASC-specific 

monoclonal antibody (mouse IgG2b) was generated by GenScript’s monoclonal 
antibody service. Rabbit polyclonal anti-ASC (AL177) (human/mouse) was 
purchased from Adipogen. Goat polyclonal anti-dog IL-1β (ab193852) (cross-
reactive to P. alecto), rabbit polyclonal anti-mouse IL-1β (ab9722) and monoclonal 
antibody (mAb) to IAV nucleoprotein (ab20343) were from Abcam. mAb to 
β-actin (A2228) was from Sigma-Aldrich and mAb to GFP and variants (including 
mCitrine) were from Roche (11814460001). Anti-dsRNA mAb J2 was purchased 
from SCICONS and anti-mouse/rabbit/goat/monkey horseradish peroxidase 
(HRP)-conjugated secondary antibodies were from Santa Cruz. mPlum antibody 
from Origene was used to stain mPlum. Human mAb to MERS-CoV spike 
glycoprotein (m336) was provided by D. S. Dimitrov (NIH)58. Alexa 488/568/647 
Zenon labelling kits (Invitrogen) were used for direct labelling of antibodies for 
confocal microscopy and ImageStream. Protein G agarose beads (Millipore) 
were used to purify P. alecto IL-1β-Fc cloned and expressed from HEK293T cells. 
Polyclonal macaque serum (#5244 D42, infected by PRV3M, produced in-house) 
was used for immunoblot analysis.

Viruses. Human H1N1 IAV strain A/NWS/33 (ATCC # VR-219) was propagated 
in Vero, clone E6 cells in DMEM, 0.3% BSA, 25 mM HEPES and 1 µg ml−1 
TPCK-treated trypsin. P. orthoreovirus virus, PRV3M (Melaka virus) and MERS-
CoV were propagated in Vero B4 cells in DMEM, 2% FBS. At a virus-induced 
cytopathatic effect of 80–90%, viruses were harvested, clarified by centrifugation, 
and the virus-containing supernatant was stored at −80 °C. PRV3M was further 
purified using ultracentrifugation and resuspended in DPBS. To titrate IAV,  
A/NWS/33 Madin Darby canine kidney (MDCK, ATCC #CCL-34) cells were  
infected with IAV for 1 h at 37 °C. After 1 h incubation, the medium was replaced 
with plaque medium (DMEM, 0.8% Avicel, 0.3% BSA, 25 mM HEPES and 1 µg ml−1 
TPCK-treated trypsin). Plaques were fixed with 4% paraformaldehyde at 48 h 
post-infection and stained with 0.5% crystal violet, and titres were expressed in 
p.f.u. ml−1. PRV3M and MERS-CoV titres were determined by limiting dilution.  
In brief, tenfold serial diluted virus was added into a 96-well plate containing 1 × 104 
Vero B4 cells per well. Cells were observed for cytopathatic effect and the titres 
were expressed as TCID50 ml−1. All work with live MERS-CoV was performed in 
BSL3 containment.

Plasmids. Expression constructs for ASC–mPlum, NLRP3–mCitrine, IL-1β-
HA and empty vectors were generated in the retroviral backbone of pQCXIH 
(Clontech). NLRP3 chimaeras between human NLRP3 and the P. alecto NLRP3 
isoform 1 were generated by overlap extension PCR. ASC-3×Myc and 3×Myc 
construct were generated in pDual GC (Agilent Technologies). P. alecto IL-1β-Fc 
construct containing the IL-2 signal sequence was generated from pFUSE-hIgG1-
Fc plasmid (Invivogen). pVSV-G envelope vector for retroviral packaging was 
obtained from Clontech. pCI-Caspase-1 construct encoding human pro-caspase-1 
and pCMV-pro-IL-1β construct encoding mouse pro-IL-1β were from Addgene. 
P. alecto and M. davidii genes were cloned from Omniscript (Qiagen)-generated 
cDNA from bat tissues. All constructs were prepared with endotoxin-free plasmid 
maxi-prep kits (Omega Bio-tek).

Cells. All procedures in this study dealing with animal samples are in compliance 
with all relevant ethical regulations. Specifically, capturing and processing of bats 
(P. alecto) in Australia was approved by the Queensland Animal Science Precinct & 
University of Queensland Animal Ethics Committee (AEC#SVS/073/16/USGMS) 
and the Australian Animal Health Laboratory (AAHL) Animal Ethics Committee 
(AEC#1389 and AEC#1557). Where possible, wild bats with irreparable physical 
damage (torn wings) already scheduled for euthanasia were utilized. Processing 
of bats has been described previously59. Human blood was obtained from 
healthy donors with consent, approved by the National University of Singapore 
Institutional Review Board (NUS-IRB reference code H-18–029). PBMCs were 
isolated by Ficoll-Paque Plus (GE Healthcare) density gradient centrifugation 
from P. alecto or human blood samples and stored in liquid nitrogen. Wild-type 
C57BL/6 mice were obtained with permission from the Singhealth IACUC 
committee. P. alecto and mouse splenocytes were isolated by grinding the spleen 
through a 100 μm cell strainer followed by red blood cell lysis. P. alecto bone 
marrow cells were processed and differentiated with recombinant P. alecto 
macrophage colony-stimulating factor (M-CSF) over 6 days into BMDMs or over 
8 days with recombinant P. alecto granulocyte-macrophage colony-stimulating 
factor (GM-CSF) into BMDCs, as described previously49. Mouse bone marrow cells 
were harvested and differentiated into BMDMs or BMDCs over 6 days or 8 days of 
cultures using 10 ng ml−1 mouse M-CSF or 20 ng ml−1 mouse GM-CSF recombinant 
proteins (R&D System)60. Immortalized P. alecto and M. davidii kidney cells have 
been described previously59,61. GP2–293 retroviral packaging cells were obtained 
from Clontech. The NLRP3-knockout iMACs have been described previously62 
and were provided by E. Latz (University of Bonn). Frozen PBMCs, splenocytes 
and bone marrow cells were thawed in 37 °C for 2 min, washed twice with warmed 
medium and recovered at 37 °C for 2 h in RPMI 1640 medium containing 10% (vol/
vol) FBS before experiments. PBMCs, splenocytes, BMDMs and reconstituted 
iMACs were cultured in RPMI 1640 medium containing 10% FBS (Biological 
Industries). MDCK, Vero, GP2–293, HEK293T, PaKi and MdKi cells were cultured 
in DMEM (Gibco) medium supplemented with 10% FBS. Sodium pyruvate and 
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NEAA (Life Technologies) were supplemented into the culture media of GP2–293 
cells during retroviral packaging.

Generation of HEK293T, PaKi and MdKi reporter cells. GP2–293 cells, stably 
expressing gag and pol proteins, were co-transfected with pVSV-G envelope vector 
and human or bat ASC–mPlum, or mPlum-only empty vector for 48 h. Retroviral 
supernatants were collected, centrifuged at 500g for 10 min and filtered through a 
0.45 μm hydrophilic polyethersulfone filter (Millipore). HEK293T, PaKi or MdKi 
cells were transduced with a low MOI of retrovirus for 24 h to obtain a single viral 
copy per transduced cell, followed by Hygromycin B antibiotic selection 72 h post 
transduction for at least 1 month to ensure stable expression. HEK293T stable cells 
were further (fluorescence-activated cell sorting (FACS)-sorted for low mPlum-
positive cells of similar fluorescent intensity to ensure no spontaneous activation of 
ASC–mPlum.

Reconstitution of NLPR3 in macrophages. Retroviral supernatants for human 
or bat NLRP3–mCitrine, or mCitrine-only, were similarly generated to transduce 
mouse NLRP3-knockout iMACs by first centrifuging cells with the retroviral 
supernatants at 300g for 1 h at 37 °C, then incubating for 24 h. At 72 h after the 
transduction, cells were FACS-sorted for low mCitrine-positive cells of similar 
fluorescent intensity.

Inflammasome activation assays. PBMCs, BMDMs, BMDCs, splenocytes or 
reconstituted iMACs were seeded at 1 × 106 ml−1 into 96-well, 24-well or 12-well 
plates. Cells were primed with 10 ng ml−1 LPS for 3 h. The medium was removed 
and replaced with serum-free RPMI 1640 medium or medium containing 5 mM 
ATP or 6.7 μM nigericin for 30 min for detection of ASC specks or 60 min for 
LDH release assay and IL-1β detection by immunoblots, ELISA or targeted mass 
spectrometry. For ImageStream detection of ASC speck formation, HEK293T, PaKi 
and MdKi reporter cells were seeded overnight into 24-well plates and transfected 
with 100 ng (HEK293T) or 300 ng (PaKi or MdKi) per 24-well plate of the indicated 
NLRP3–mCitrine or mCitrine-only empty vectors using Fugene 6 (Promega) 
for HEK293T and Lipofectamine 3000 (Thermo) for Paki or Mdki, according to 
the manufacturer’s instructions. At 24 h (HEK293T) or 48 h (PaKi or MdKi) after 
transfection, cells were harvested by trypsinization and resuspended in FACS 
buffer for analysis. For immunoblotting, inflammasome system was reconstituted 
in HEK293T reporter cells by transfecting 50 ng indicated NLRP3–mCitrine, 10 ng 
human pro-caspase-1 and 190 ng mouse pro-IL-1β constructs per 24-well plate. 
Both supernatants and cells were collected for immunoblot analysis.

Viral infection of cells. For IAV and PRV3M infections, BMDMs, BMDCs or 
reconstituted iMACs were first primed with 10 ng ml−1 LPS for 3 h, washed and 
then infected with IAV (MOI = 0.5, 1, 2, 5 or 10) for 2 h or PRV3M (MOI = 1, 2, 
5 or 10) for 4 h. Subsequently, the medium was replaced with AIM V serum-free 
medium (Invitrogen). At 24 h post infection, cells were collected for detection 
of ASC specks and immunoblots, and the cell-free supernatant for IL-1β 
immunoblots or ELISA and virus titrations. For MERS-CoV virus infections, 
PBMCs were first primed with 10 ng ml−1 LPS for 3 h, washed and then infected 
with a series of MOIs (0.25, 0.5 or 1) for 1 h. Lower MOIs of MERS-CoV were able 
to elicit a robust activation of the inflammasome in human PBMCs and hence were 
used in this study. The medium was replaced with AIM V serum-free medium 
(Invitrogen) for an additional 23 h before harvesting the cells for detection of 
ASC specks post-fixation and the cell-free supernatant for IL-1β ELISA and virus 
titration. Inhibitor MCC950 (50 μM; Selleckchem) was added 1 h before the virus 
infection in human PBMCs.

Confocal microscopy. Human or bat PBMCs were seeded into 24-well plates with 
coverslips (#1.5 thickness) inside the wells. After treatment, the cells were fixed 
with 4% paraformaldehyde with 0.37% gluteraldehyde in Tris-buffered saline 
(TBS) at room temperature for 20 min. Cells were then washed twice with TBS, 
permeabilized with 0.1% Triton X-100 for 10 min, blocked with 5% BSA in TBS 
for 30 min, stained with primary antibody (anti-ASC) pre-labelled with Zenon 
labelling kits in TBS for 1 h and washed three times. Nuclei were stained with 
DAPI. Coverslips were subsequently mounted onto glass slides with Mowiol 4.88. 
Z-stack confocal images were acquired on a Leica TCS SP8 machine with a ×100 
objective, followed by quantification of ASC specks with Imaris 9.2.0 software for 
at least 10 fields per sample. Representative images were processed by maximum 
intensity projection of Z-stack with Image J 2.0.0.

ImageStream imaging flow cytometry. Cell supernatants were transferred to 
a 96-well V-bottom plate and centrifuged at 500g for 5 min at 4 °C. Cells were 
incubated with ice-cold 5 mM EDTA in PBS for 10 min, followed by pipetting to 
detach cells. Detached cells were combined with cell pellets from the supernatants, 
centrifuged again, and resuspended with 4% paraformaldehyde in TBS. Fixed 
cells were permeabilized with 0.3% Triton X-100 + 2% FBS + 1% NGS (normal 
goat serum) for 15 min at 4 °C, washed twice in wash buffer (TBS + 2% FBS), 
stained with pre-labelled primary antibodies for 1 h in TBS + 2% FBS + 1% NGS, 
washed twice, then resuspended in FACS buffer (PBS + 2 mM EDTA + 1% FBS). 
Nuclei were stained with DAPI. Cells were acquired using INSPIRE software on 

an Amnis ImageStreamX Mk II imaging flow cytometer using ×40 magnification. 
At least 10,000 single cells were acquired per sample and analysed with the inbuilt 
IDEAS software. First, cells in focus were gated using the bright-field gradient 
r.m.s. values. Single cells with an intermediate bright-field area and a high aspect 
ratio were selected. For PBMCs, the monocyte population was gated and separated 
from the lymphocyte population using bright-field area and side scatter. Based on 
the DAPI intensity, sub-G0/G1 cells were excluded. Double-positive cells of similar 
fluorescent intensity for ASC–mPlum and NLRP3–mCitrine or virus-infected cells 
with positive staining for IAV nucleoprotein, dsRNA or MERS-CoV spike protein 
were also gated. ASC speck formation was then analysed by gating on a small area 
and a high maximum pixel value of ASC signal. Mean pixel intensity, size and 
circularity score (average distance of the object boundary from its centre divided 
by the variation of this distance) were measured for detected ASC specks.

LDH release assay. Cytosolic LDH is rapidly released into the supernatant medium 
following disruption of the plasma membrane. Cell culture media were collected 
and centrifuged at 500g for 5 min at 4 °C. The release of LDH was measured in the 
cell-free supernatants using a Cytotoxicity Detection Kit PLUS (LDH) from Roche. 
The kit was used according to the manufacturer’s instructions. The percentage of 
LDH release was calculated as LDH release (%) = (experiment value – low control)/
(high control – low control) × 100. Low control is the baseline LDH release from 
untreated cells, while high control is the maximum LDH release from cells treated 
with lysis solution.

Immunoblot analysis. Cells were lysed in lysis buffer63 containing cOmplete 
ULTRA protease inhibitor cocktail and PhosSTOP phosphatase inhibitors (Roche). 
Cell-free supernatants were directly used or concentrated by methanol–chloroform 
precipitation and dissolved in SDS–sample buffers. Proteins were separated by 
6–15% SDS–PAGE gels, transferred onto 0.45 μm polyvinylidene difluoride 
membrane with a Trans-Blot Turbo transfer system (Biorad). Membranes were 
blocked with 5% BSA in TBS-T (0.1% Tween-20) for 1 h and incubated with 
specific primary antibodies overnight in a cold room in 5% BSA in TBS-T. 
Membranes were washed and incubated with HRP-conjugated secondary antibody 
for 1 h. Membranes were developed using Amersham ECL Prime Western blotting 
detection reagent (GE Healthcare) and signals were detected with a myECL Imager 
(Thermo Scientific). Anti-GFP antibody was used to detect NLRP3–mCitrine  
by immunoblots.

ELISAs. ELISAs for human/mouse IL-1β in cell-free supernatants were performed 
according to the manufacturer’s instructions (R&D Systems; DY201 and DY401). 
Sandwich ELISA for bat IL-1β was generated using the goat anti-dog IL-1β 
(ab193852) as the capturing antibody and rabbit anti-mouse IL-1β (ab9722) as 
the detection antibody. Bicarbonate/carbonate coating buffer (50 mM), OptEIA 
assay diluent (BD bioscience), donkey anti-rabbit HRP-conjugated secondary 
antibody (Santa Cruz), 3,3′,5,5′-tetramethylbenzidine (TMB) chromogen solution 
(Invitrogen) and TMB stop solution (VWR) were used in the assay. Purified  
P. alecto IL-1β-Fc recombinant proteins were used as standards.

TLR stimulations and qPCR. BMDMs, BMDCs or PBMC of bat and mouse/
human were seeded at 1 × 106 ml−1 into a 96-well plate. Cells were stimulated by 
various concentrations of TLR ligands for 3 h: LPS-B5 (10, 100 and 1,000 ng ml−1), 
Pam3CSK4 (10, 100 and 1,000 ng ml−1), CL264 (0.1, 1 and 10 μg ml−1) and poly(I:C) 
(0.1, 1 and 10 μg ml−1). Harvested tissues of mice or bats were homogenized 
using silicon-carbide sharp particles (BioSpec Products) in the FastPrep-24 5G 
Homogenizer (MP Biomedicals). Tissue and cellular RNA was extracted using 
an RNeasy Mini kit and an RNeasy Plus Micro Kit (Qiagen), respectively. RNA 
was converted into cDNA using a QuantiTect reverse transcription kit (Qiagen). 
qPCR reactions were prepared using the SensiFAST SYBR No-ROX Kit (Bioline) 
and were run on the CFX96 Touch Real-Time PCR Detection System (Bio-Rad) 
using the following cycling condition: 95 °C for 5 min, 40 cycles of 95 °C for 10 s 
and 55 °C for 30 s, with a melt curve cycle. Targeted genes (NLRP3, ASC, caspase-1 
and IL-1β) were normalized to the geometric mean of three housekeeping genes 
(GAPDH, β-actin and SNRDP3) in P. alecto or mouse tissues after correction for 
PCR efficiency by standard curves from sample serial dilution. Fold induction 
of cytokines (NLRP3, IL-1β, IL-6 and TNF-α) was normalized to housekeeping 
(GAPDH) and compared to mock treated. The relative abundance of exon 
7-positive and exon 7-negative NLRP3 isoforms was determined by quantifying 
‘total’ NLRP3 and exon 7-positive isoforms using specific primers targeting a 
common region and exon 7, respectively. Serially diluted plasmids of both isoforms 
were used to perform standard curve analysis. qPCR primers for target and 
reference genes are listed in Supplementary Table 4.

Isoform analysis. Illumina HiSeq RNA–seq sequencing was performed on both 
CD11b+MHC-II− (putative monocytes/macrophages) and CD11b+MHC-II+ 
(putative DCs) of P. alecto splenocytes (n = 5) as described previously49. We used 
TopHat to map the pooled reads from all data sets to the genomic locus of P. alecto 
NLRP3 and used Cufflinks64 and Velvet65 to perform de novo assembly. TopHat  
was then used to map the pooled reads to the two splice variants identified.  
For PCR validation of isoforms, RNA extraction from the spleen and thymus of  
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P. alecto or the spleen and kidney from M. davidii was performed using the RNeasy 
mini kit (Qiagen) and cDNA was produced using an Omniscript (Qiagen) reverse 
transcription kit. PCR amplification was performed using Q5 polymerase (NEB).

Targeted mass spectrometry analysis. Cells and concentrated cell-free 
supernatants (methanol–chloroform precipitation) were lysed and denatured in 
8 M urea/50 mM Tris-HCl buffer pH 8.0. Proteins were reduced with 25 mM TCEP 
for 20 min at 25 °C and alkylated with 55 mM 2-chloroacetamide (CAA) for 30 min, 
in the dark, at room temperature. Before digestion, samples were diluted with 
100 mM triethylamonium bicarbonate buffer. Protease digestion was carried out 
with LysC enzyme (Wako) for 4 h, followed by trypsin (Promega) treatment for 18 h 
at 25 °C (1:100, enzyme:protein ratio). On the following day, samples were acidified 
with 1% trifluoroacetic acid and peptides were purified by Sep-Pak C18 cartridges 
(Waters). Elution of peptides was performed with 0.5% acetic acid, 80% acetonitrile 
followed by peptide concentration using a vacuum concentrator system. Vacuum 
dried peptides were subsequently analysed on an EASY-nLC 1000 (Thermo) 
chromatography system coupled with Orbitrap Fusion mass spectrometer 
(Thermo). Each sample was separated on 70 min gradient (0.1% formic acid in 
water and 99.9% acetonitrile with 0.1% formic acid) using a 50 cm × 75 μm inner 
diameter EASY-Spray Reverse Phase Column (C-18, 2 μm particles, Thermo). 
Data were acquired in targeted PRM mode together with IL-1β peptide internal 
standards and peptide mass inclusion list. For acquisition, an Orbitrap analyser 
with ion targets and resolution (OT-MS 4e5 ions 120k; PRM tMS/MS 3e5 ions 15k) 
was used. The total area MS1 of each peptide was analysed and exported using 
Skyline software (version 3.7.0)66. Values for endogenous peptides were normalized 
by those for the heavy isotope-labelled internal standards.

Evolutionary analysis of mammalian NLRP3. The coding sequences for NLRP3 
were collected form GenBank and Ensembl for 27 species representing the major 
groups of mammals (Supplementary Tables 2 and 3). After manual correction, the 
multiple sequence alignments for the full-length gene and its three domains (PYD, 
NACHT and LRR) were separately subjected to evolutionary analysis. The branch 
model from PAML was used to test whether the bat ancestor lineage is under 
positive selection and statistically different to the rest of the phylogeny, using a 
likelihood ratio test67.

Statistical analysis. Data are presented as mean and s.d. or s.e.m. of multiple 
biological replicates or independent experiments (as indicated). Statistical analysis 
was performed using GraphPad Prism software. Results were tested for significance 
using unpaired two-tailed Student’s t-tests when two conditions were compared. 
One-way or two-way ANOVA involving one or two independent variables and 
Bonferroni’s multiple comparisons test were performed if multiple samples or 
conditions were compared. Data were considered significant if *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001. Exact P values are provided in Supplementary Table 5.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the corresponding 
authors upon request. RNA–seq data used in this study have been deposited in 
the NCBI Sequence Read Archive (SRR8382151). The bat NLRP3 sequences 
generated in this study have been deposited in GenBank under accession numbers 
MK355440–MK355443. Supplementary figures and tables are provided in the 
Supplementary Information.
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NCBI Sequence Read Archive (SRA: SRR8382151). Bat NLRP3 sequences generated in this study have been deposited in the GenBank under the accession number 
MK355440-MK355443. Supplementary figures and tables are available in the Supplementary Information file. 
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Sample size Biological triplicates (n=3) were performed for primary tissues or cells.

Data exclusions No data exclusions.

Replication Three independent experiments were performed with technical duplicates or triplicates.

Randomization Bat materials were randomized by the bat caring group. Human blood materials were randomized by the blood collector. Mouse materials 
were randomized by the animal facility staff.

Blinding Standard measurements (such as absorbance, chemiluminescence, ImageStream acquisition) and same templates (such as ImageStream 
analysis and FACS gating) were applied to all samples.
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Unique biological materials
Policy information about availability of materials

Obtaining unique materials Bat materials can be requested from the corresponding authors, but subject to the availability.

Antibodies
Antibodies used Pteropus alecto ASC-specific monoclonal antibody (mouse IgG2b) was generated by GenScript’s monoclonal antibody service.  

 
Rabbit polyclonal anti-ASC (Clone: AL177; Cat#: AG-25B-0006) (human/mouse) was purchased from Adipogen.  
 
Goat polyclonal anti-dog IL-1β (ab193852) (cross-reactive to P. alecto), rabbit polyclonal anti-mouse IL-1β (ab9722), monoclonal 
antibody (mAb) to influenza A virus (IAV) nucleoprotein (Clone: AA5H; Cat#: ab20343) were from Abcam.  
 
mAb to β-actin (Clone:  AC-74; Cat#: A2228) was from Sigma-Aldrich. 
 
mAb to GFP and variants (including mCitrine) was from ROCHE (Clone: 7.1 and 13.1; Cat#:11814460001).  
 
Anti-dsRNA mAb (Clone:J2; Cat#:10010500) was purchased from SCICONS. 
 
Anti-mouse/rabbit/goat/donkey HRP-conjugated secondary antibody were from Santa Cruz (Cat#: sc-2005/2004/2020/2458).  
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Goat polyclonal antibody to mPlum from Origene (Cat#: TA150098)was used to stain mPlum.  
 
Human mAb against MERS-CoV spike glycoprotein (Clone: m336) was kindly provided by Dimiter S. Dimitrov (NIH, USA).  
 
Polyclonal macaque serum (#5244 D42, infected by PRV3M) was produced in-house.

Validation Pteropus alecto ASC-specific monoclonal antibody (mouse IgG2b) was validated with immunoblot and ImageStream analysis 
(Date provided in SI). 
 
Goat polyclonal anti-dog IL-1β (ab193852) and rabbit polyclonal anti-mouse IL-1β (ab9722) were validated to be cross-reactive to 
P. alecto IL-1β by immunoblot and ELISA analysis (Date provided in SI). 
 
Polyclonal macaque serum (#5244 D42, infected by PRV3M) was produced in-house and validated by immunoblot and 
ImageStream analysis (Date provided in SI). 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Human embryonic kidney fibroblast cells (HEK293T, ATCC#CRL-3216) were obtained from ATCC. 
 
Immortalized P. alecto and M. davidii kidney cells have been generated and described previously (Crameri, G. et al and Li, Y. 
et al. ).  
 
GP2-293 retroviral packaging cells were obtained from Clontech.  
 
The NLRP3-knockout immortalized mouse macrophages (iMACs) have been described previously and were kindly provided by 
Eicke Latz (University of Bonn, Germany).  
 

Authentication HEK293T cells were from ATCC with authentication. Bat cells made by ourselves were authenticated by species-specific qPCR 
and NGS.

Mycoplasma contamination We confirm that all cells were tested as mycoplasma negative.

Commonly misidentified lines
(See ICLAC register)

None of the cell lines used are listed in the ICLAC database.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57BL/6 mice from 9-14 weeks (male or females) were obtained with permission from the Singhealth IACUC committee. 

Wild animals Capturing and processing of bats (P. alecto) in Australia was approved by the Queensland Animal Science Precinct & University of 
Queensland Animal Ethics Committee (AEC# SVS/073/16/USGMS) and the Australian Animal Health Laboratory (AAHL) Animal 
Ethics Committee (AEC# 1389 and AEC# 1557). Where possible, wild bats (juvenile or adult bats; males or females) with 
irreparable physical damage (torn wings) already scheduled for euthanasia were utilized. Processing of bats has been described 
previously. Processed materials were frozen and transported by air shipping in dry ice.

Field-collected samples Study did not involve samples collected from the field.

Human research participants
Policy information about studies involving human research participants

Population characteristics Age of 21-60 years old, weight of at least 50kg, generally in good health without any symptoms of infection for at least one week.

Recruitment Human blood was obtained from healthy donors with consent, approved by the National University of Singapore Institutional 
Review Board (NUS-IRB Reference Code: H-18-029). Healthy volunteers meeting the above criteria were recruited by poster 
advertisements. 
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