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Systems virology integrates host-directed approaches with molecular profiling to understand viral pathogenesis. Self-contained
statistical approaches that combine expression profiles of genes with the available databases defining the genes involved in the
pathways (gene-sets) have allowed characterization of predictive gene-signatures associated with outcome of the influenza virus
(IV) infection. However, such enrichment techniques do not take into account interactions among pathways that are responsible
for the IV infection pathogenesis. We investigate dendritic cell response to seasonal H1N1 influenza A/New Caledonia/20/1999
(NC) infection and infer the Boolean logic rules underlying the interaction network of ligand induced signaling pathways and
transcription factors.Themodel reveals several novel regulatorymodes and provides insights intomechanism of cross talk between
NF𝜅B and IRF mediated signaling. Additionally, the logic rule underlying the regulation of IL2 pathway that was predicted by the
Boolean model was experimentally validated. Thus, the model developed in this paper integrates pathway analysis tools with the
dynamic modeling approaches to reveal the regulation between signaling pathways and transcription factors using genome-wide
transcriptional profiles measured upon influenza infection.

1. Introduction

Systems virology facilitates deeper understanding of
how viruses cause diseases by integrating host-directed
approaches to study viral pathogenesis [1]. Genome-wide
transcriptional profiling studies have been instrumental in
measuring large-scale changes in the host upon viral infec-
tions. Pathogenic viruses, in particular influenza virus
(IV), frequently cause mild respiratory disease, whereas
some strains such as 1918 pandemic virus can cause severe
respiratory illness [2, 3]. Understanding underlying molec-
ular signature of IV infection outcome is critical towards
designing efficient therapeutics and vaccines. The genome-
wide transcriptional profiles of IV pathogenesis have identi-
fied several transcription factors (TFs) such as IRF7, STAT1,
and NF𝜅B1, and signaling pathways such as RIG-I, MDA5,
and Type I IFNs involved in early innate immune responses
against IV infections [4, 5]. Transcriptomic studies have

also been instrumental in identifying markers associated
with severe IV infections, which are generally character-
ized by an early, sustained, and excessive inflammatory
response that is regulated by NF𝜅B, HMGA1, and NFATC4
TFs [6–10]. The identification of pathways and TFs from
transcriptomic data is currently achieved by using statistical
approaches that combine the expression profiles of genes
with the available databases defining the genes involved in the
pathways (gene-sets). However, such enrichment techniques
do not take into account interactions among pathways
responsible for the generation of dynamic response to IV
infection.

Combining these high-throughput data with the com-
putational techniques, particularly the ones embedded in
the theory of dynamical systems, improves our understand-
ing about the emergent properties of the system that are
clinically relevant [11]. Dynamic models can bridge this
gap by integrating the static network with a mathematical
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framework to describe the status of the system over time.
Qualitative approaches such as discrete dynamic modeling
can be developed for large systems even when knowledge of
kinetic parameters is limited [12]. Hence, they are ideal for
understanding system-wide high-throughput assays. Partic-
ularly, Boolean networks [13] have been used for modeling
cellular and intracellular interactions relevant to immunol-
ogy [14–18]. Moreover, various observations, such as the
sigmoidal (S-like) shape of the input-output curves of regula-
tory relationships and the robustness of biological networks
when faced with fluctuations in concentrations and reaction
rates, lend support to the applicability of Boolean and other
qualitative models [12, 19]. Hence, to study emergent prop-
erties of the network underlying antiviral responses induced
upon IV infections, we used a combination of laboratory
experiments and network-based discrete dynamic modeling
approach.

Particularly, we investigate dendritic cell (DC) response
to seasonal H1N1 influenza A/New Caledonia/20/1999 (NC)
infection and infer the Boolean logic rules underlying the
ligand induced signaling pathways and TFs interactions. The
model revealed several novel regulatory modes and provides
insights into mechanism of cross talk between NF𝜅B and
IRF mediated signaling. Additionally, the logic rule under-
lying the regulation of IL2 pathway that was predicted by
the Boolean model was experimentally validated, providing
novel insight into the regulation of IL2 pathway.

2. Methods

2.1. Brief Description of the Dataset and Assembly of the
Networks. Raw expression data of seasonal NC infected and
mock-infected DCs was obtained from our previous work
(GEO ID GSE41067) [5]. Briefly, NC stocks were added into
pelleted monocyte-derived DCs at multiplicity of infection
(MOI) of 1. RNA was collected at seven time points: before
infection and 2, 4, 6, 8, 10, and 12 hours after infection.
The samples were hybridized to HumanHT-12 v4 Expression
BeadChip Kit (Illumina, San Diego, CA). Illumina arrays
were log-transformed and quantile-normalized by using
Lumi package [22]. The normalized expression levels were
used to find activity of TFs and signaling pathways using
QuSage [10, 20]. The target genes of TFs and the genes
involved in the pathways were obtained from MSigDB [21].
Particularly, gene-sets for ligand induced signaling pathways
were obtained from BIOCARTA, which had highest number
of ligand induced pathways. The ligand induced signaling
pathways and TFs which were found to be significant were
used to assemble a network of causal relationships using
MSigDB as performed in our previous studies [5, 21]. This
is a first step towards construction of a Boolean model to
study emergent properties of the signaling networks induced
upon IV infection. Specifically, direct links were assembled
to/from TFs to the ligand induced signaling pathway and
between TFs. Direct link between two ligand induced signal-
ing pathways was not allowed since its activation will require
expression of a ligand. The network assembly and activity
measurements were performed using the BioConductor soft-
ware package in R [23].

2.2. Estimation of Logic Rules. To find the operational
network defining underlying regulatory logic between the
upstream regulators of each node in the network we identify
a Boolean model that best fits the activities of TFs and
signaling pathways. Since the kinetics and timescales of the
individual processes represented as edges are not known, a
random order asynchronous update was selected wherein
the timescales of each regulatory process were randomly
chosen in such a way that the node states were updated
in a randomly selected order during each time-step [24].
The asynchronous algorithm was 𝑋𝑡
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where 𝐹 is the Boolean transfer function, and 𝑡
𝑎
, 𝑡
𝑏
, and 𝑡

𝑐

represent the time points corresponding to the last change
in the state of the input nodes 𝑎, 𝑏, and 𝑐 and can be in the
previous or current time-step. The time-step (time unit) of
our model approximately corresponds to the difference in
the time points at which experimental measurements were
taken and is one hour. The randomized asynchronicity of
the model does not alter the steady states of the dynamical
system but causes stochasticity in the trajectory between
the initial conditions and the equilibria (attractors) [24,
25]; thus, it can sample more diverse behaviors compared
to traditional synchronous models. To determine the node
consensus activity over time (i.e., shared by trajectories with
different update orders) the simulations were run for 5–
1000 times. The simulated activity profiles for each node
were estimated by calculating the fraction of simulations in
which the nodes were in ON state at each time-step. The
simulated and observed activity profiles were compared using
least-square method. The sum of least-squares error (SSE)
values reached a plateau at 500 simulations, so for the further
analysis activity profiles were calculated from 500 runs. The
simulations were run by assigning initial state of all nodes
based on the observations at 2 hours after infection. To find
the optimumBoolean transfer functions two-stage procedure
was used. First, asynchronous algorithmwas run 10,000 times
upon randomly choosing Boolean transfer functions from
predefined percentage of AND, OR, and NOT logic rules.
Particularly, 45%, 45%, and 10% were chosen for AND, OR,
and NOT, respectively. The percentages were predetermined
for robust results of the optimization. Second, the best opera-
tional network obtained fromautomated search algorithm for
Boolean transfer functions was further simplified to ensure
the minimum usability of AND and NOT. Particularly, in the
absence of relevant perturbation data AND and NOT logic
rules are not identifiable. As a first step towards simplification
we replaced AND logic rules with OR logic rules iteratively.
The changes that led to increase in the error were not kept.
Similarly, NOT logic rules were also minimized. Additional
simplification was performed to study the state-transition
map (STM), which analyzes the evolution of a system over
time starting from different initial conditions leading to
identification of the steady states (attractors) of the system.
Since the focus of the STM is to monitor long-term behavior
chains of interactions can be collapsed into a single node,
replacing the node with its upstream regulator when there
is only one regulator. Furthermore, the minimum functional
network was obtained by choosing a node with highest
outdegree, when two regulators are connected by OR logic.
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2.3. NFAT Inhibitor Treatment of IV-InfectedDCs. Monocyte-
derived DCs were obtained from a healthy human blood
donor following a standard protocol [26]. Briefly, human
peripheral blood mononuclear cells (PBMCs) were isolated
from buffy coats in lymphocyte separation medium (Corn-
ing) by density gradient centrifugation at 1500 rpm. Then,
CD14+ monocytes were purified by using a MACS CD14 iso-
lation kit (Miltenyi Biotech). Monocytes were then differen-
tiated into DCs by incubating the cells during 5 days, at 37∘C,
in growth media containing RPMI 1640 (Invitrogen/Gibco),
8% FBS (Hyclone), 2mM glutamine, 100U/mL penicillin,
100 g/mL streptomycin, 500U/mL hGM-CSF (PeproTech),
and 1000U/mL hIL-4 (PeproTech). Before infection, DCs
were pretreated for 1 h at 37∘Cwith RPMImedium containing
the NFAT inhibitors cyclosporine A (CsA, Sigma, 1 𝜇M)
[27] or the VIVIT peptide (Tocris Biosciences, 100 𝜇M) [28].
Then, the cells were infected with the NC virus grown
in embryonated chicken eggs as described previously [29],
diluted in DMEM, and added directly to pelleted cells at
a MOI of 1. After incubation of 40 minutes at RT, fresh
RPMI medium containing CsA (1 𝜇M) or the VIVIT peptide
(100 𝜇M) was added back, and the cells were incubated at
37∘C during 2 h. Mock-infected cells underwent the same
experimental procedure.

2.4. RNA Analysis by qRT-PCR. Total RNAs from mock-
and IV-infected DCs were extracted at 2 hours postinfection
(hpi) using the RNeasy mini kit (Qiagen). For quantitative
reverse transcription PCR (qRT-PCR) of cellular and viral
genes, cDNAs were synthesized using the High Capacity
cDNA reverse transcription kit (Applied Biosystems) and
randomhexamers.The cDNAswere amplified by qPCRusing
Taqman gene expression assays specific for IL2 (Applied
Biosystems, Hs-00174114 m1), GAPDH (Applied Biosystems,
Hs-02786624 g1), and the IV gene M mRNA (Bei Resources
NR-15594, 15595, and 15596). Data were acquired with an
ABI PRISM7300 sequence detection system (Applied Biosys-
tems) and analyzed with ABI PRISM 7300 SDS version
1.0 software. Quantification was achieved using the 2−ΔΔCt
method [30].

3. Results and Discussions

3.1. TFs and Signaling Involved in IV Infection. To detect
ligand induced signaling pathways and TFs involved in
antiviral response to IV infections of human monocyte-
derived DCs we used a functional class scoring method.
Specifically, QuSage was used to describe activities of ligand
induced signaling pathways and TFs using gene-sets defined
in MSigDB [21]. 81 signaling pathways and 9 TFs were
significantly induced upon IV infections (Figure 1). Activity
profiles of signaling pathways were clustered into two groups.
The first group of pathways such as IL6, CCR5, PDGF, and
EGF showed peak in their activity between 2 and 4 hours after
infection. Activation of PDGF pathway leads to induction
of several signal transduction pathways through the PI3K
pathway or through reactive oxygen species-mediated acti-
vation of the STAT3 pathway [31]. Downstream effects of this
include regulation of the cell cycle and cell migration [32]

which are critical in generating adaptive immune response
initiated by DCs. Similar to PDGF, the EGF pathway leads
to cell proliferation, differentiation, and survival [33]. IL6
and CCR5 play a role in the inflammatory response to
infection and have been associated with clinical outcomes
during IV infection [34, 35]. Further, CCR5 plays a key
role in CD8+ T cell responses [36]. The second group of
pathways showed different activation profiles and included
the majority of signaling pathways involved in the activation
and differentiation of DCs, including NF𝜅B and p38MAPK
[37, 38]. Additionally cytokine signaling pathways regulated
by IL7 and IL1 were part of the second group [1, 9]. Relatively
fewer TFs were detected. Specifically, NF𝜅B, cREL, IRF9,
and IRF1 were increased over time of the infection, showing
an increase in the activity similar to the second group of
pathways. These TFs are involved in antiviral responses [38,
39]. NFAT and FREAC3 activity profiles were similar to the
first group of pathways, showing a decline in activity at later
time points.

3.2. Interaction Network of Cellular and Molecular Signaling.
To assemble the network of interactions between ligand
induced signaling pathways and TF interactions we used
MSigDB. Note that only ligand induced pathways were
considered. For example, if NF𝜅B is in a gene-set for IL1
pathways, a directed edge was added from IL1 to NF𝜅B. Since
ligand induced signaling pathways cannot induce another
ligand induced signaling pathway without activation of a
ligand any direct interaction between two ligand induced
signaling pathways was not included. Several TFs and path-
ways were not included in the network due to absence of the
source/upstream nodes. The resulting network consisted of
13 nodes; specifically five TFs regulated 8 signaling pathways
(Figure 2) and 42 edges. It is likely that the nodes without
known source nodes are directly induced by IV, which was
considered while constructing the dynamic model (refer to
next section). The graph in Figure 2 is represented using
radial layout in which central position of NF𝜅B indicates
that it has most interconnected paths in the network. The
resulting network had 3 self-loops. IRF1 had highest indegree
and outdegree indicating its critical role in the quick transfer
of the signal upon viral infection. CREL had highest between-
ness centrality implicating its role in connecting different
signals. Moreover, CREL, NF𝜅B, and IRF1 had highest (>0.9)
closeness centrality indicating cross talk between these TFs.
In conclusion, the cellular and molecular network induced
upon IV infection is a densely connected network, which
has also been observed in other studies [5]. Perturbations
of such densely connected networks could be ineffective
due to a strong possibility of existence of alternative paths.
This has been observed during the activation of antiviral
responses, which constitutes induction of genes by NF𝜅B or
IRF9 mediated pathways [5].

3.3. Boolean Dynamic Model Reveals Tight Regulation of
IL2 by NFAT. The discrete dynamic Boolean model was
developed to integrate temporal patterns (Figure 3 dashed
lines) of the pathway and TF activities with the static interac-
tion networks (Figure 2) assembled in the previous section.
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Figure 1: Signaling pathways’ and transcription factors’ (TFs) activities in response to IV infections: activities estimated by QuSAGE
[20] using genome-wide expression profiles measured upon infections of DCs with NC virus, in comparison with mock-infected DCs.
Activities are of (a) ligand induced signaling pathways from BIOCARTA database and (b) TFs using binding sites available in MSigDB
[21] (rows), across time (𝑥-axis). Coloring represents downregulated (yellow) to upregulated (blue) activity relative to the preinfection time
point.
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Figure 2:The network of interactions between TFs and ligand induced signaling pathways: rectangles represent network nodes and indicate
the node name in an abbreviated manner. Terminating black arrows on an edge indicate causality but the sign of the effects (activation or
inhibition) is unknown. Grey nodes represent signaling pathways and white nodes represent TFs.

The Boolean models are parameter-free dynamic models
which allow analysis of the sequence of events emerging
into systems-level properties [17]. Development of dynamic
model was facilitated by quantification of ligand induced
signaling pathways and TF activities [20].The Booleanmodel
was developed using initial condition obtained from the
experimentally observed initial state and regulators obtained
from MSigDB. Specifically, PDGF, EGF, and IL2 signaling
pathways and NFAT TF were set as ON in the initial state,
which takes into account direct activation of molecular and
cellular events induced by IV infection. Moreover, IRF1,
IRF9, NF𝜅B, IL2, NFAT, and CREL were found to be

the regulators of IL2 (Figure 4). The dynamic Boolean model
was optimized by randomly sampling Boolean rules (see
Section 2.2). The optimized model was simplified to find
sparsest Boolean model that can describe the observed
dynamics of ligand induced signaling pathways and TFs
(Figure 4). Upon simplification, synergistic regulation was
predicted between upstream regulators, for the nodes with
asymptotic behavior such as CREL and IRF9. Interestingly,
the Booleanmodel provided novel insight into the regulation
of NFAT, IL2, PDGF, and EGF pathways that had complex
temporal patterns. IL2 and NFAT are critical components
of the adaptive immune response and are required for
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Figure 3: Results of the simulations of IV infection time course: activity profiles (𝑦-axis) simulated (the probability of the node being in an
ON state at a given time-step) by asynchronous model (solid lines and filled points) and estimated by QuSage using experimentally observed
expression profiles (dashed lines and empty circles). Normalized expression profiles (𝑦-axis) are normalized (0 to 1) and are plotted across
hours after infection.
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the activation, differentiation, and proliferation of T cells.
The Boolean model revealed that IRF9 negatively regulated
NFAT in the presence of IL2. Moreover, CREL and NFAT are
required for the activation of IL2 when either one of NF𝜅B,
IRF9, or IRF1 is present (Figure 5). Specifically, the IL2 rule
was 𝐼𝐿2∗ = (IRF1 OR IRF9 OR NF𝜅B OR IL2) AND NFAT
AND CREL (Figure 5(b)). Timely activation of IL2 by DCs
must be critical for the activation and differentiation of T cells
[40]. Novel insights were also provided in the regulation of
PDGF and EGF signaling pathways, which were predicted to
be inhibited by IRF1, and induced by NFAT. Note that the
regulators are obtained from the literature [21]. Accordingly,

promoter analysis involved the presence of NFAT-binding
sites in EGF-mediated pathways [41]. The PDGF and EGF
signaling pathways regulated the same set of TFs which in
part is also explained by their shared functionalities during
pathophysiological tissue remodeling and oncogenesis [42].
In conclusion, the Boolean model revealed logic controls
underlying interaction network of cellular and molecular
signaling involved in IV infection of DCs (Figure 4).

3.4. Validation of AND Logic in the Regulation of IL2 by
NFAT. The Boolean model suggested that NFAT is required
for the induction of IL2 during IV infection. To directly
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Figure 5: Regulation of IL2 by NFAT inferred by dynamic Boolean model: (a) network of interactions between IL2 and the TFs regulating
its expression assembled from literature, (b) enhanced regulatory network inferred using dynamic Boolean model, and (c) the expression
of IL2 mRNA evaluated by RT-PCR in DCs treated for one hour with medium containing the NFAT inhibitors CsA (CsA), VIVIT peptide
(VIVIT), or vehicle (−), and then left mock-infected (mock) or infected with IV during 2 hours. The expression levels of IL2 in infected cells
were normalized to the levels of nontreated, mock-infected cells.

address the role of NFAT in IL2 signaling pathway, we
treated IV-infected DCs that were treated with the two
NFAT inhibitors, CsA, and the VIVIT peptide, which inhibit
the phosphatase calcineurin, blocking NFAT activation [27,
28]. Two different inhibitors were used to minimize the
likelihood of off-target effects. The levels of IL2 mRNA were
measured.The IL2 mRNA increased at 2 hpi, in infected cells
compared to mock-infected cells (Figure 5(c)), indicating
that IV infection induces the expression of IL2 in DCs.
Compared to nontreated cells, the levels of IL2 mRNA in
CsA and VIVIT-treated cells were decreased by 171- and 4-
fold, respectively (Figure 5(c)). As control, the expression of
an NFAT-unresponsive gene (GAPDH) was not affected by
the different treatments (data not shown). In addition, the
treatment with the NFAT inhibitors did not affect the levels
of IV replication, as the levels of viral gene MmRNA did not
change significantly in nontreated and treated cells (Supple-
mentary Figure 1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2016/7686081).These results indi-
cate that the reduction in IL2mRNA levels inNFAT inhibitor-
treated cells is specific and is not simply due to a decreased
IV replication. In conclusion, the experimental observations

confirm the prediction of Booleanmodel, showing thatNFAT
is required for activation of IL2 pathway upon IV infection.

3.5. Functional Overlap between NF𝜅B and IRF Signaling.
The inferred network can be simplified to find the par-
simonious network structure. The parsimonious network
structure depicts minimal functional network required to
explain observed behavior. Such networks are often robust
and optimize the costs and benefits of complexity. To find the
minimum functional network induced inDCs uponNCvirus
infections, the network was simplified by selecting one of the
upstream regulators based on their outdegree when theywere
connected byOR logic.The outdegree was used as a surrogate
for measuring importance of the node in the network. The
hypothesis was that highly critical nodes will translate theOR
logic into a canalizing function.This simplification led to the
selection of PDGF signaling pathway when both PDGF and
EGF were upstream regulators connected by OR logic. Inter-
estingly, several IV induced signaling events were regulated
byNF𝜅Bor IRF9.However,NF𝜅B regulated a large number of
pathways leading to selection of NF𝜅B instead of IRF9 in the
simplified network.Thus, the simplified network consisted of
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the states of the nodes in the following order: c-REL, NF𝜅B, and PDGF pathways and IL1 pathway.

CREL, NF𝜅B, IL1, and PDGF. The state-transitions of these
four nodes were analyzed to find attractors (steady states)
attained by different initial conditions (Figure 6). Attractors
of the Boolean networks typically describe the different states
of the system following infections with IV. Two attractors of
the system were found. The first attractor was defined by an
OFF state for all four nodes, and the second attractor was
defined by having NF𝜅B in an OFF state and all other nodes
in an ON state. In conclusion, the attractor analysis suggests
tight regulation of NF𝜅B.

4. Conclusions

Our results reveal the induction of a densely connected net-
work of cellular and molecular signaling upon IV infection
of DCs. This was accomplished by integrating known infor-
mation on the interactions between pathways to reduce the
dimension of genome-wide transcriptional profiles. To our
knowledge this is a first study integrating gene-set enrich-
ment methods with dynamic modeling. Development of

a dynamic Boolean model reveals an operational network
with underlying logic rules, and we experimentally validated
the logic rule governing regulation of IL2 by NFAT. The
model also reveals a critical role for NF𝜅B in delivering the
antiviral response.

Abbreviations

NC: Influenza A/NC/20/1999
IV: Influenza virus
TFs: Transcription factors.

Conflict of Interests

The authors declare that they have no competing interests.

Authors’ Contribution

Juilee Thakar conceived the study, interpreted all the results,
designed experiments, and wrote the paper. Christopher S.



10 Computational and Mathematical Methods in Medicine

Anderson developed the dynamic model, performed the
simulation, and interpreted the results of the simulations.
Marta L. DeDiego performed and interpreted experimental
results. David J. Topham supervised the development of
experiments and interpreted experimental results.

Acknowledgment

This work is supported by PhRMA informatics research
starter award to Juilee Thakar, and Christopher S. Anderson
and David J. Topham are supported by NIAID Centers of
Excellence in Influenza Research and Surveillance Contract
HHSN272201400005C.

References

[1] G. L. Law,M. J. Korth, A. G. Benecke, andM.G. Katze, “Systems
virology: host-directed approaches to viral pathogenesis and
drug targeting,” Nature Reviews Microbiology, vol. 11, no. 7, pp.
455–466, 2013.

[2] S. Fukuyama and Y. Kawaoka, “The pathogenesis of influenza
virus infections: the contributions of virus and host factors,”
CurrentOpinion in Immunology, vol. 23, no. 4, pp. 481–486, 2011.

[3] B. M. Hartmann, J. Thakar, R. A. Albrecht et al., “Human den-
dritic cell response signatures distinguish 1918, pandemic, and
seasonalH1N1 influenza viruses,” Journal of Virology, vol. 89, no.
20, pp. 10190–10205, 2015.

[4] E. Zaslavsky, U. Hershberg, J. Seto et al., “Antiviral response dic-
tated by choreographed cascade of transcription factors,” Jour-
nal of Immunology, vol. 184, no. 6, pp. 2908–2917, 2010.

[5] E. Zaslavsky, G. Nudelman, S. Marquez et al., “Reconstruction
of regulatory networks through temporal enrichment profiling
and its application to H1N1 influenza viral infection,” BMC
Bioinformatics, vol. 14, supplement 6, article S1, 2013.

[6] G. K. Geiss, M. Salvatore, T. M. Tumpey et al., “Cellular tran-
scriptional profiling in influenzaAvirus-infected lung epithelial
cells: the role of the nonstructural NS1 protein in the evasion
of the host innate defense and its potential contribution to
pandemic influenza,” Proceedings of the National Academy of
Sciences of theUnited States of America, vol. 99, no. 16, pp. 10736–
10741, 2002.

[7] J. T. Go, S. E. Belisle, N. Tchitchek et al., “2009 Pandemic H1N1
influenza virus elicits similar clinical course but differential
host transcriptional response in mouse, macaque, and swine
infectionmodels,”BMCGenomics, vol. 13, no. 1, article 627, 2012.

[8] Y. Huang, A. K. Zaas, A. Rao et al., “Temporal dynamics of
hostmolecular responses differentiate symptomatic and asymp-
tomatic influenza a infection,”PLoSGenetics, vol. 7, no. 8,Article
ID e1002234, 2011.

[9] M. J. Korth, N. Tchitchek, A. G. Benecke, and M. G. Katze,
“Systems approaches to influenza-virus host interactions and
the pathogenesis of highly virulent and pandemic viruses,”
Seminars in Immunology, vol. 25, no. 3, pp. 228–239, 2013.

[10] J. Thakar, B. M. Hartmann, N. Marjanovic, S. C. Sealfon, and
S. H. Kleinstein, “Comparative analysis of anti-viral transcrip-
tomics reveals novel effects of influenza immune antagonism,”
BMC Immunology, vol. 16, no. 1, article 46, 2015.

[11] J. Thakar and R. Albert, “Boolean models of within-host
immune interactions,” Current Opinion in Microbiology, vol. 13,
no. 3, pp. 377–381, 2010.

[12] C. Christensen, J.Thakar, and R. Albert, “Systems-level insights
into cellular regulation: inferring, analysing, and modelling
intracellular networks,” IET Systems Biology, vol. 1, no. 2, pp. 61–
77, 2007.

[13] S. Kauffman, C. Peterson, B. Samuelssont, and C. Troein, “Ran-
dom Boolean network models and the yeast transcriptional
network,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 100, no. 25, pp. 14796–14799,
2003.

[14] R. Franke, M. Müller, N. Wundrack et al., “Host-pathogen
systems biology: logical modelling of hepatocyte growth factor
and Helicobacter pylori induced c-Met signal transduction,”
BMC Systems Biology, vol. 2, article 4, 2008.

[15] J. Thakar, A. K. Pathak, L. Murphy, R. Albert, and I. M. Catta-
dori, “Network model of immune responses reveals key effec-
tors to single and co-infection dynamics by a respiratory bac-
terium and a gastrointestinal helminth,” PLoS Computational
Biology, vol. 8, no. 1, Article ID e1002345, 2012.

[16] J. Thakar, M. Pilione, G. Kirimanjeswara, E. T. Harvill, and R.
Albert, “Modeling systems-level regulation of host immune
responses,” PLoS Computational Biology, vol. 3, no. 6, p. e109,
2007.

[17] J. Thakar, M. Poss, R. Albert, G. H. Long, and R. Zhang,
“Dynamic models of immune responses: what is the ideal level
of detail?”Theoretical Biology & Medical Modelling, vol. 7, no. 1,
article 35, 2010.

[18] J. Thakar, A. Saadatpour-Moghaddam, E. T. Harvill, and R.
Albert, “Constraint-based networkmodel of pathogen-immune
system interactions,” Journal of the Royal Society Interface, vol.
6, no. 36, pp. 599–612, 2009.

[19] R. Albert and J. Thakar, “Boolean modeling: a logic-based
dynamic approach for understanding signaling and regulatory
networks and for making useful predictions,” Wiley Interdisci-
plinary Reviews: Systems Biology and Medicine, vol. 6, no. 5, pp.
353–369, 2014.

[20] G. Yaari, C. R. Bolen, J.Thakar, and S. H. Kleinstein, “Quantita-
tive set analysis for gene expression: a method to quantify gene
set differential expression including gene-gene correlations,”
Nucleic Acids Research, vol. 41, no. 18, article e170, 2013.

[21] A. Liberzon,A. Subramanian, R. Pinchback,H.Thorvaldsdóttir,
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