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a  b  s  t  r  a  c  t

The  probability  density  function  (PDF)  of  the  surface  electromyogram  (EMG)  signals  has  been  modelled
with  Gaussian  and  Laplacian  distribution  functions.  However,  a  general  consensus  upon  the  PDF  of  the
EMG  signals  is yet  to  be  reached,  because  not  only  are  there  several  biological  factors  that  can  influence
this  distribution  function,  but  also  different  analysis  techniques  can lead to  contradicting  results.  Here,
vailable online 6 October 2012

eywords:
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igher  order statistics
robability  distribution function

we  recorded  the  EMG  signal  at  different  isometric  muscle  contraction  levels  and  characterised  the  prob-
ability  distribution  of  the surface  EMG  signal  with  two  statistical  measures:  bicoherence  and  kurtosis.
Bicoherence  analysis  did  not  help  to infer  the  PDF  of measured  EMG  signals.  In contrast,  with  kurtosis
analysis  we  demonstrated  that the  EMG  PDF  at  isometric,  non-fatiguing,  low  contraction  levels  is super-
Gaussian.  Moreover,  kurtosis  analysis  showed  that as  the  contraction  force  increases  the  surface  EMG
PDF  tends  to  a Gaussian  distribution.
. Introduction

A  surface electromyogram (sEMG) signal is the electrical
anifestation of the neuromuscular activity and is recorded non-

nvasively from the surface of the skin (Hogan and Mann, 1980;
eLuca, 1979). The sEMG signal has been extensively used for esti-
ation and interpretation of the neural drive to muscles (Merletti

t al., 1999), extraction of a voluntary command signal for control
f prosthetic devices for individuals suffering from limb amputa-
ion (Hefftner and Jaros, 1988; Park and Meek, 1995; Huang et al.,
005), and in biofeedback experiments in which the subjects learn
o change patterns of voluntary muscle contraction (Ince et al.,
984; Radhakrishnan et al., 2008; Bloom et al., 2010; Nazarpour
t al., 2012).

Conventionally in the prosthetic control applications after a pre-
rocessing stage, several features are extracted from the EMGs
nd a decoder is trained to recognize different patterns of mus-

le activity. Various features in time and frequency domains have
een introduced for this purpose – for a review see Micera et al.
2010). Higher order statistics (HOS) (Mendel, 1991) of the EMGs
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have also proved effective in movement classification (Nazarpour
et al., 2005b, 2007). The merit of such HOS-based approaches lies
in their capability of capturing the skewness and pickedness (and
other higher order statistics) details of the EMG  PDF that are ignored
when the EMG  is assumed to be Gaussian process and consequently
the first- and the second-order moments and cumulants (i.e., mean,
correlation, and variance) and their spectral representations are
analysed only.

Despite  the success of HOS-based methods, there is not yet a
general consensus upon the PDF of the EMG  signals to justify the
application of these statistics. For instance in Ref. (Roesler, 1974),
it was shown that a Gaussian density function can precisely model
the EMG  PDF at various contraction strengths. Parker et al. (1977)
also showed that EMG  recorded at reasonably low contraction lev-
els can be modelled with a Gaussian process. In contrast Hunter
et al. (1987) and Bilodeau et al. (1997) used kurtosis analysis and
reported that during low intensity isometric contractions the PDF
of the sEMG signal is more peaked near zero than a Gaussian distri-
bution. They also reported that there was  tendency for the kurtosis
values to decrease with increasing contraction level implying that
the EMG  PDF becomes closer to a Gaussian distribution since the
third- and the fourth-order statistics of a pure Gaussian process are
equal to zero. Clancy and Hogan (1999) also showed that the PDF of
the EMGs recorded during constant-angle, constant-force, and non-

Open access under CC BY license.
fatiguing contractions falls between the Gaussian and the Laplacian
densities. Negentropy analysis of the EMG  signals (Nazarpour et al.,
2005a; Naik et al., 2011) showed that the non-Gaussianity level of
the EMG  signal depends on the muscular contraction level such that
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he increment in the contraction level shifts the EMG  PDFs towards
he Gaussian distribution.

Kaplanis et al. (2000) explored the EMG  PDF by investigating the
icoherence index of the EMG  measurement. However, they arrived
t the conflicting result that the EMG  signal is more non-Gaussian at
ow and high levels of force while being in its maximum Gaussianity
t the mid-level (50 %) of maximum voluntary contraction (MVC).
ecently in Hussain et al. (2009),  the bicoherence analysis was  used
o test the Gaussianity of the EMG  signals and it was shown that
he EMG becomes less Gaussian with increased walking speed force
increase in mean voluntary contraction).

In this paper, we revisited this problem and investigated the
uitability of the bicoherence of the sEMG signal for characteriza-
ion of the non-Gaussianity level of the sEMG signals for different
evels of muscular activity.

. Method

.1. Participants

Four right-handed subjects (two female; mean age: 26 ± 5 years) participated
n  the study. They were free of any history of neurological or motor disorders and
ave informed consent. The study was approved by the local ethics committee at
he Institute of Neuroscience, Newcastle University.

.2. Experimental setup

Subjects controlled a myoelectric cursor (Radhakrishnan et al., 2008; Nazarpour
t  al., 2012) by making isometric contractions of a single right upper-limb muscle.
e  recorded surface EMG  signals (Bio-logic disposable snap electrodes, Natus Med-

cal Inc.) from Abductor Pollicis Brevis (APB: abducts the thumb) and Flexor Carpi
adialis (FCR: flexes the wrist) muscles. Subjects completed two independent runs
f the experiment (6 blocks), one for each muscle as the controlling effector. The
kin was cleansed with alcohol beforehand and the electrode locations were cho-
en  to maximize the quality of recording. EMG  measurements were amplified (gain
–10  K) and high-pass filtered at 30 Hz (Neurolog NL824, Digitimer) before sampling
t  10 kHz (PCI-6071E, National Instruments). The hand was restrained in an open,
ronated posture inside a glove fixed to a horizontal board and the forearm was
trapped to the arm-rest of the chair. At the start of the experiment, subjects were
nformed of the general structure of the experiment.

In the first (of six) block we  asked the subjects to produce five contractions
ith their maximum voluntary contraction level (MVC) for a period of two  seconds

100% MVC). In the second block, we instructed the subjects to contract the muscle
t a slightly lower level than in the first block. As will be mentioned later in the
esults section, subjects on average produced an activity of only about 50% MVC.
hey  repeated the same procedure in the fifth and the sixth blocks. In these four
locks no visual feedback was provided.

At  the start of the third block, subjects were instructed to produce comfortable
evels of contraction of each muscle which they would be able to repeat many times

ithout fatigue. This corresponded to approximately 5–10% of their maximum vol-
ntary contraction level of that muscle. The true contraction levels were verified
ffline. In the third and fourth blocks (each of 100 trials), the subjects controlled the
osition of a myoelectric cursor along a 1D vertical task space. The control signal
as  computed every 13ms by smoothing (with a rectangular window) the preceding

00  ms  of rectified EMG. Subjects initiated a trial by relaxing the controlling muscle
o bring the cursor to a starting zone and remaining there for 250 ms  after which

 target appeared. The remainder of the trial was  divided into two  fixed periods of
 and 3 s, designated movement and hold periods. Auditory tones cued the start of
he movement and hold periods. At the end of each trial, subjects received a score
eflecting the proportion of the hold period that the cursor was inside the target and
ere instructed to maximize this score. In each trial, a target was  presented in one

f  five possible positions along the vertical axis; the order of the targets was pseudo-
andom. Targets one to five could be reached by producing an activity (with thumb
bduction or wrist flexion whichever instructed) as large as one to five times com-
ortable contraction level, respectively. In approximately 2% of trials, subject could
ot hold the cursor inside the target area. We  excluded these trials from analysis.
isual feedback was  available throughout blocks 3 and 4.

.3. Offline verification of contraction levels

In  contrast to earlier studies in which the EMG  signals were recorded at fixed

ontraction level e.g. 25%, 50% MVC, we allowed the subjects to determine their com-
ortable contraction level required to hold the cursor in target 1. These comfortable
ontraction levels were different across subjects and muscles. We  determined the
ctual contraction percentage by calculating the average mean absolute value (MAV)
f  EMG during the hold period for each target (20 presentations). After adjusting for
ch Bulletin 90 (2013) 88– 91 89

the amplifier gain, we  normalized these MAVs to the MVC  activity (averaged over
the  5 trials) (in each subject and for each muscle) with

%  of MVC =
1

20

∑20

i=1
MAVi

1
5

∑5

j=1
MVAj of 100% MVC

(1)

2.4. Bicoherence analysis

A  frequency-domain measure of the third-order cumulant Cx
3 (m, n) is the bis-

pectrum (Hinich, 1982) and is calculated by taking a two-dimensional discrete-time
Fourier transform from Cx

3 (m, n) with

Bx(w1, w2) =
+∞∑

m,n=−∞

Cx
3 (m, n)e−j(w1m,w2n). (2)

The normalized bispectrum is called bicoherence and is computed with

Bicx(w1, w2) = Bx(w1, w2)
Px(w1)Px(w2)Px(w1 + w2)

(3)

where Px(w) denotes the power spectrum of x at frequency w. Bicoherence can be
used to measure the skewness of a random process (Mendel, 1991). For that purpose,
a  test of Gaussianity was defined in (Hinich, 1982) by the mean bicoherence power

Sx =
∑

w1,w2

|Bicx(w1, w2)|2 (4)

and  is compared with a central chi-squared distribution; in essence if Bicx(w1, w2)
is  zero then the Sx statistic is a central chi-squared distributed random variable with
two  degrees of freedom – see (Hinich, 1982) for mathematical proof.

2.5. Kurtosis analysis

The kurtosis of a random variable is computed by dividing its fourth cumulant by
the  square of its second cumulant. Sample kurtosis for a univariate random process
“x”  can be estimated with

kurtx = E{x4}
E{x2}2

− 3 (5)

where E{ . } denotes the statistical expectation operator. Kurtosis measures the
peakedness of a PDF.

A MATLAB R14-based graphical user interface linked to Cogent (2000) was
developed to control this experiment. All data analysis was carried out in MATLAB.

3. Results

Fig. 1A shows a representative set of raw EMG  recorded from
APB in one subject for different contraction levels. Fig. 1B depicts
the probability distribution functions that are estimated using the
kernel smoothing method (Parzen, 1994) with Gaussian kernels.
For comparison purposes, the PDF of a random variable of the same
length drawn from a normal distribution is also depicted. Note that
in Fig. 1, only for clarity of presentation, all signals are standardized
to zero mean and unit variance. This operation has no effect on the
higher order statistics of these signals but renders the vertical axes
in Fig. 1A and B arbitrary.

Fig. 2A and B displays the computed mean of kurtosis values
of the APB and FCR muscle activity relative to the percentage of
the MVC  activity for individual subjects. Importantly, the mean
of kurtosis reduced for all subjects and in both muscles when the
contraction level increased reflecting a shift from a non-Gaussian
distribution to a more Gaussian-like distribution. A two-way (mus-
cle and contraction level) ANOVA test confirmed the main effect of
contraction level (repeated measures, F6,18 = 87.37, p < 0.001, n = 4).
The main effect of muscle was not significant (F1,3 = 0.927, p = 0.40,
n = 4). Fig. 2C and D shows the mean bicoherence indices computed

for APB and FCR muscles for different force levels. In contrast to
(Kaplanis et al., 2000; Hussain et al., 2009), we did not observe any
consistent trend in mean bicoherence index relative to contraction
level (F6,18 = 2.51, p > 0.05, n = 4) in either muscle.
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ig. 1. (A) Representative example of raw EMG  data recorded from APB muscle a
aussian distributed variable of the same length is depicted by a dashed curve. At 

lear  presentation we standardized the EMG recordings and hence the absolute sca

. Concluding remarks

By analysis of the kurtosis of the EMG  signals we showed that at
ow contraction levels, EMG  PDFs are more peaked at zero. When
he force level increases, the EMG  PDF tends to a more bell-shaped
aussian distribution. Related physiological work have shown that

ncreasing the force level will not only increase the rate of the
lready firing motor units (temporal recruitment), but also recruits
ore motor units of same or other types (Fuglevand et al., 1993).

he central limit theorem (CLT) predicts if sufficiently large num-

er of (independent) motor units fire, the signal recorded from the
urface of the skin will be approximately normally distributed. Our
esults are consistent with the predictions of the CLT.

ig. 2. (A, B) present the averaged estimated kurtosis of the EMG  signals in a range of con
n  increase in the contraction level the kurtosis values decreases. (C, D) depict the averag
he  same muscles. No clear trend for modulation of mean bicoherence index with the con
erent percentages of MVC and the corresponding PDFs in (B) where the PDF  of a
 contraction levels the PDF of the EMG  signal is more peaked at zero. Note that for
he vertical axes in (A) and (B) is arbitrary.

Several earlier studies show that the sEMG signal irrespective of
the contraction force level exhibits a symmetric distribution func-
tion that leads to small skewness Cx

3(m, n) values (see (Nazarpour
et al., 2007) and reference therein). Authors of (Kaplanis et al.,
2000) and (Hussain et al., 2009) overlooked the fact that the so-
called bispectrum index-based Gaussianity test (Hinich, 1982) only
quantifies the skewness of a probability. Therefore, the Gaussian-
ity test in Hinich (1982) may  only be used to reject the Gaussianity
null hypothesis. If the bispectrum index is zero, the Gaussianity
of the process may  not be inferred since fourth and higher-order

cumulants and polyspectra would not necessarily be zero (Mendel,
1991). For instance, if a signal has a Laplacian distribution, the bis-
pectrum and all the odd-ordered polyspectra are zero, however,

traction level from four subjects; bars show the standard deviations. Clearly, with
ed values of the estimated mean bicoherence indices for the measured EMG from
traction.



Resear

t
t

N
a
d
l
b

t
s
a
a
c
E
n
a
n
d
d
t
c
e

l
c
c
t
s
r
b
s
i
a
f
i
c
t

R

B

B

C

C

controlled interface task. Journal of Neurophysiology 100, 2397–2408.
K. Nazarpour et al. / Brain 

he even-ordered statistics (e.g. kurtosis) or polyspectra (e.g. the
rispectrum) will not identically be equal to zero.

In contrast to (Bilodeau et al., 1997; Clancy and Hogan, 1999;
azarpour et al., 2007) in which the EMG  signals were recorded
t fixed percentages of the maximum contraction level (MVC), we
eliberately recorded the EMGs in a more flexible range of the force

evels so that we can quantify the PDF of the sEMG signals in a
roader range of force levels.

We  characterized the PDF of the EMG  signals at different con-
raction levels in two muscles. However, the choice of the muscle
hould not influence our main results significantly. Sanger (2007)
nd also we in Nazarpour et al. (2007) examined the PDF of Biceps
nd Triceps muscles at difference contraction levels and arrived at a
omparable result that a Laplacian distribution is more suitable for
MG  PDF modelling measured at low contraction levels. However,
ot only other biomechanical factors, such as contraction speed
nd isometricity of contraction, but also several anatomical, e.g.,
umber of active motor units, size of the motor units, the spatial
istribution of motor units and physiological factors (neural disor-
er and fatigue) can influence the shape of the EMG  PDF. In addition,
he measurement noise (e.g. crosstalk and electronic interferences)
an change the PDF of the recorded signals. These factors might
xplain the lack of consensus upon the EMG  PDF in literature.

The demonstration that the PDF of the sEMG signal recorded at
ow forces is closer to a Laplacian distribution may  have signifi-
ance for prosthesis control or biofeedback experiments since this
ould form a flexible substrate for developing novel mathematical
ools tailored for super-Gaussian processes such as higher order
tatistics. For instance, Sanger (2007) developed a Bayesian algo-
ithm to predict the envelope of the EMG  signals and showed that
y assuming an exponential density (half-Laplacian) for the sEMG
ignal the output of a Bayesian filter follows the rapid changes
n the EMG  amplitude much faster than the conventional linear
pproaches. Nevertheless, successful use the HOS of surface EMG
or prosthesis for control and biofeedback depends on the reliabil-
ty of the algorithms that estimate these statistics accurately. Our
urrent work includes developing robust and efficient algorithms
o estimate recursively the sample kurtosis value in real-time.

eferences

ilodeau, M.,  Cincera, M.,  Arsenault, A., Gravel, D., 1997. Normality and station-
arity of emg  signals of elbow flexor muscles during ramp and step isometric
contractions. Journal of Electromyography and Kinesiology 7, 87–96.

loom, R., Przekop, A., Sanger, T., 2010. Prolonged electromyogram biofeedback
improves upper extremity function in children with cerebral palsy. Journal of
Child Neurology, doi:10.1177/0883073810369704.
lancy, E., Hogan, N., 1999. Probability density of the surface electromyogram and
its  relation to amplitude detectors. IEEE Transactions on Biomedical Engineering
46,  730–739.

ogent 2000. Functional Imaging Laboratory, Wellcome Department of Imaging
Neuroscience, UCL, London.
ch Bulletin 90 (2013) 88– 91 91

deLuca, C., 1979. Physiology and mathematics of myoelectric signal. IEEE Transac-
tions on Biomedical Engineering 26, 313–325.

Fuglevand, A., Winter, D., Patla, A., 1993. Models of recruitment and rate coding
organization in motor-unit pools. Journal of Neurophysiology 70, 2470–2488.

Hefftner, G., Jaros, G., 1988. The electromyogram EMG  as a control signal for func-
tional neuromuscular stimulation-part II: practical demonstration of the EMG
signature discrimination system. IEEE Transactions on Biomedical Engineering
35, 238–242.

Hinich, M.,  1982. Testing of gaussinity and linearity of a stationary time series.
Journal of Time Series Analysis 3, 169–176.

Hogan, N., Mann, R., 1980. Myoelectric signal processing: optimal estimation applied
to  electromyography-part I: derivation of the optimal myoprocessor. IEEE Trans-
actions on Biomedical Engineering 27, 382–395.

Huang, Y., Englehart, K., Hudgins, B., Chan, A., 2005. A gaussian mixture model based
classification scheme for myoelectric control of powered upper limb prostheses.
IEEE  Transactions on Biomedical Engineering 52, 1801–1811.

Hunter, I., Kearney, R., Jones, L., 1987. Estimation of the conduction velocity of mus-
cle  action potentials using phase and impulse response function techniques.
Medical and Biological Engineering and Computing 25, 121–126.

Hussain, M.S., Reaz, M.,  Yasin, F., Ibrahimy, M.,  2009. Electromyography signal anal-
ysis  using wavelet transform and higher order statistics to determine muscle
contraction. Expert Systems 26, 35–48.

Ince, L., Leon, M., Christidis, D., 1984. Experimental foundations of emg biofeed-
back with the upper extremity: a review of the literature. Biofeedback and Self
Regulation 9, 371–383.

Kaplanis, P., Pattichis, C., Hadjileontiadis, L., Panas, S., 2000. Bispectral analy-
sis of surface emg. In: Proceedings of the 10th MELCON, Cyprus, pp. 770–
773.

Mendel, J., 1991. Tutorial on higher-order statistics (spectra) in signal processing
and  system theory: Theoretical results and some applications. Proceedings of
the  IEEE 49, 279–305.

Merletti, R., Roy, S., Kupa, E., Roatta, S., Granata, A., 1999. Modeling of surface myo-
electric signals-part II: model-based signal interpretation. IEEE Transactions on
Biomedical Engineering 46, 821–829.

Micera, S., Carpaneto, J., Raspopovic, S., 2010. Control of hand prostheses using
peripheral information. IEEE Reviews on Biomedical Engineering 3, 48–68.

Naik, G., Kumar, D., Arjunan, S., 2011. Kurtosis and negentropy investigation of
myoelectric signals during different MVCs. In: Proceedings of the BRC, Vitoria,
Brazil.

Nazarpour, K., Barnard, A., Jackson, A., 2012. Flexible cortical control of task-specific
muscle synergies. Journal of Neuroscience 32, 12349–12360.

Nazarpour, K., Sharafat, A., Firoozabadi, S., 2005a. Negentropy analysis of surface
electromyogram signal. In: Proceedings of the IEEE Statistical Signal Processing
Workshop, Bordeaux, France, pp. 974–977.

Nazarpour, K., Sharafat, A., Firoozabadi, S., 2005b. Surface EMG  signal classification
using a selective mix of higher order statistics. In: Proceedings of the IEEE EMBC
05,  Shanghai, China.

Nazarpour, K., Sharafat, A., Firoozabadi, S., 2007. Application of higher order statistics
to surface electromyogram signal classification. IEEE Transactions on Biomedical
Engineering 54, 1762–1769.

Park, E., Meek, S., 1995. Adaptive filtering of the electromyographic signal for pros-
thetic control and force estimation. IEEE Transactions on Biomedical Engineering
42,  1048–1052.

Parker, P., Stuller, J., Scott, R., 1977. Signal processing for the multistate myoelectric
channel. Proceedings of the IEEE 65, 662–674.

Parzen, E., 1994. On estimation of a probability density function and mode. The
Annals of Mathematical Statistics 33, 2795–2810.

Radhakrishnan, S., Baker, S., Jackson, A., 2008. Learning a novel myoelectric-
Roesler, H., 1974. The Control of Upper-Extremity Prostheses and Orthoses. Thomas,
Springfield, IL, pp. 44–53.

Sanger, T., 2007. Bayesian filtering of myoelectric signals. Journal of Neurophysiology
97, 1839–1845.


	A note on the probability distribution function of the surface electromyogram signal
	1 Introduction
	2 Method
	2.1 Participants
	2.2 Experimental setup
	2.3 Offline verification of contraction levels
	2.4 Bicoherence analysis
	2.5 Kurtosis analysis

	3 Results
	4 Concluding remarks
	References


