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Abstract: Chronobiological aspects controlled by CLOCK genes may influence obesity incidence.
Although there are studies that show an association between the expression of these genes and energy
intake, waist circumference or abdominal obesity phenotypes, interactions with appetite have been
insufficiently investigated in relation to chrononutrition. The objective was to identify interactions
between CLOCK genetic variants involved in appetite status. A total of 442 subjects (329 women,
113 men; aged 18 to 65 years) were recruited. Anthropometric, dietary and lifestyle data were collected
by trained nutritionists. Participants were classified according to their appetite feelings with a Likert
scale. Multiple linear regression models were used to examine associations of the type genotype x
appetite status on adiposity-related variables. p values were corrected by the Bonferroni method.
A significant influence was found concerning the effects of appetite on waist circumference with
respect to rs3749474 CLOCK polymorphism (p < 0.001). An additive model analysis (adjusted by age,
gender, exercise and energy intake) showed that risk allele carriers, increased the waist circumference
around 14 cm (β = 14.1, CI = 6.3–22.0) by each increment in the level of appetite. The effects of appetite
on waist circumference may be partly modulated by the rs3749474 CLOCK polymorphism.

Keywords: chronobiology; biorhythm genes; obesity; metabolic syndrome; polymorphism; interaction

1. Introduction

CLOCK genes exert an influence on weight regulation mediated by brain areas, that are likely to
be involved in the control of relevant endocrine functions through anorexic and orexigenic hormones
and neurotransmitters [1]. This complex controlling system depends on the regulation of CLOCK
genes by transcriptional mechanisms [2].

Current available findings have proven an active circadian clock located in adipocytes, where genes
expressed in the adipose tissue are under the influence of cyclic systems [3,4]. Investigations in recent
years have shown that the CLOCK gene (Circadian Locomotor Output Cycles Kaput) is implicated in
metabolic dysfunctions. However, more research about the biological rhythms control is needed [5].
Several studies suggest adipocyte differentiation and proliferation as well as endocrine factors
synthesis in the adipose tissue, are regulated by circadian rhythms, implicating hormonal and neuronal
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signals [6]. Thus, altered functions of the CLOCK gene could have negative effects on fat accumulation
or mobilization in adipocytes as well as on healthy eating behaviors [7].

Body fat location in humans is considered as important as the total fat mass content concerning
metabolic complications [8]. Thus, it has been widely demonstrated that visceral adipose tissue is a
relevant predictor of adverse metabolic events, whereas subcutaneous adipose tissue appears not to
be so harmful on health status [9]. In fact, the increased intra-abdominal fat depot is recognized as a
risk factor for a dysfunctional state in insulin-sensitive tissues leading to the risk of later developing
type 2 diabetes, cardiovascular disease and metabolic syndrome [9]. Previous studies have reported
associations of CLOCK genetic variants (rs4864548, rs3736544, rs1801260 or rs3749474, rs4580704,
rs1801260 haplotypes) with waist circumference [10,11]. More specifically, it was found that minor allele
T carriers of rs3749474 CLOCK had significantly higher waist circumference, weight and BMI (Body
Mass Index) than CC subjects [5]. The allele and genotype frequencies of the reference polymorphism
(rs3749474) are C: 66%, T: 34% and C/C: 43% C/T: 45% T/T: 12% in the European population (Ensembl
GRCh38). In turn, polymorphisms located within the 3′–UTR of the mRNA, can affect the functionality
of the mRNA, as seen in the case of rs3749474 and rs1801260 [5,12,13].

On the other hand, some obesity treatment approaches are being focused on the regulation
of appetite and energy consumption [14]. From a physiological point of view, one of the main
signals of appetite is the timing of food intake during the day [1,4,15]. To date, the research has
evidenced an association concerning minor allele carriers of rs3749474 CLOCK and energy intake [12].
However, there are not appropriate studies that report direct associations between appetite and
CLOCK polymorphisms.

Analyzing the effects of CLOCK variants on adiposity markers can contribute to increasing
the knowledge about the regulatory mechanisms that depend on biorhythm regulatory genes [7].
Therefore, the aim of this study was to identify novel interactions between CLOCK genes involved in
the development of obesity and associated comorbidities, according to appetite degree, since although
there are studies that show an association between these processes, the scientific evidence about the
interactions between both factors is scarce.

2. Materials and Methods

2.1. Subjects and Study Protocol

Subjects recruitment for this observational study was achieved through the Platform for Clinical
Trials in Nutrition and Health (GENYAL), belonging to IMDEA Food Institute (Madrid, Spain).
Inclusion criteria for recruitment were: free-living adults aged 18 to 70 years that had to give a
written informed consent to be contacted to perform clinical trials and nutritional intervention studies.
Exclusion criteria were: to suffer from any serious illness (kidney or liver diseases, or other condition
that affects lifestyle or diet), to present dementia or impaired cognitive function, and to be pregnant
or breastfeeding. A total of 1249 subjects were contacted, 954 of whom were recruited. Of these,
a total of 557 participants were finally selected. Due to uncompleted questionnaires, 487 samples
were left for analysis. The sample size of the variables ranges from 437 to 487 due to some missing
data. No imputation was performed. The sample size was shown considering all subjects with age,
sex and genotyping data for at least some one of the three polymorphisms (n = 442). CONSORT flow
diagram is shown as Figure S1. The study was conducted according to the guidelines laid down in the
Declaration of Helsinki and all procedures involving human subjects were approved by the Research
Ethic Committee of Autonomous University of Madrid (CEI 27–666). Written informed consent was
obtained from all subjects before starting the intervention.

2.2. Nutritional Assessments

Anthropometric and body composition variables were evaluated by standard validated
techniques [16,17]. Height was measured using a Leicester stadiometer (Biological Medical Technology
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SL, Barcelona, Spain). Body weight, body mass index (BMI), fat mass, lean mass, visceral fat
classification and basal metabolism were assessed using the body composition monitor BF511 (Omron
Healthcare UK, LT, Kyoto, Japan). Waist and hip circumferences were determined using a Seca 201
non-elastic tape (Quirumed, Valencia, Spain). All anthropometric parameters were measured by trained
nutritionists on an empty bladder with a minimum of two hours fasting, as described elsewhere [18].

To measure appetite degree, a Likert scale with 5 points was used (where 1–2 means a low rate
of appetite, 3 an intermediate level and 4–5 a lot of appetite). This question was asked by trained
nutritionist always at the research center and when the subjects had been fasting for at least two hours
following published protocol [19,20]. The participants responded according to their habitual appetite
status with a commonly used question by Spanish population to refer to how you feel about your eating
and feeding. Then, since it is a semi-quantitative method, the data were merged in 3 categories in order
to optimize the statistical analysis. This scale was categorized in low appetite, medium appetite and
high appetite with 1–2, 3, and 4–5 responses, respectively. In order to evaluate exercise levels, it was
assessed the frequency of exercise considering it as an increase in body mobility being a planned and
repetitive activity [21]. The Minnesota Leisure Time Physical Activity Questionnaire has been applied
to assess the amount of physical activity in (kcal/day), considering physical activity as any voluntary
movement produced by the muscles and resulting in the expenditure of energy [21].

A 72–h food record validated for the Spanish population [22], was collected from all participants.
Participants received training to record the questionnaire. The DIAL (2.16 version, Alce Ingeniería)
Software [23] was used to analyze the energy, macro and micronutrients intake from the dietary
records [24,25].

In order to evaluate physical activity levels, participants had to indicate how many days per
week they did physical activity as described previously [26]. Those subjects that reported at least
1 day/week of physical activity were considered active, while the remaining were considered sedentary.
Moreover, the Minnesota Leisure Time Physical Activity Questionnaire (MLTPAQ) was administered
to quantitatively measure the average physical activity practice (kcal/week) by the subjects according to
published criteria [27,28]. Thereafter, using a Compendium of physical activities [29] and the American
Heart Association Guidelines [30], volunteers were also classified into sedentary and physically active
groups. Energy Expenditure in Physical Activity was estimated as follows: I × N × T; where “I”
represents the level of intensity for each physical activity in kilocalories/min; “N”, the number of times
that physical activity was reported; and “T”, the time in minutes spent in each session as described
elsewhere [26].

2.3. DNA Extraction and Genotyping

CLOCK rs3749474, rs1801260 and rs4580704 genetic variants were screened following previously
published procedures [5,31]. Blood samples were taken and kept at −80 ◦C until ADN extraction.
Genomic DNA from each participant was isolated from 300 µL of total blood using the QIAamp DNA
Blood Mini Kit (Qiagen Sciences, Inc, Germantown, MD, USA) and recovered in 100 mL of nuclease-free
water. Its concentration and quality were then measured in a nanodrop ND-2000 spectrophotometer
(ThermoScientific, Waltham, MA, USA). The mean concentration of the samples was 80 to 90 ng/mL.
Genotyping was performed using the QuantStudio_ 12 K Flex Real-Time PCR System (Life Technologies
Inc., Carlsbad, CA, USA) with a TaqMan OpenArray plates following manufacturer’s instructions
(Real-Time PCR Handbook and education center of Applied Biosystem) [32]. The results were analyzed
using TaqMan Genotyper software [33]. The proportion of genotypes not passing the quality threshold
was < 5%. The samples were made in duplicate, resulting more 99% of the genotyping results were
technically valid.

2.4. Statistical Analyses

Statistical analyses were performed with R software, version 3.4.1 (R Foundation for Statistical
Computing, Vienna, Austria) [34]. Deviations from Hardy-Weinberg equilibrium of genotype
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frequencies at individual loci were assessed using standard χ2 tests. Descriptive analyses were
implemented for different continuous and categorical variables by sex. The p-values were obtained
using Student’s t-test for continuous variables, and Fisher exact test for categorical variables.
In turn, associations between 3 CLOCK (rs3749474, rs1801260 and rs4580704) polymorphism and
studied variables, were modeled through linear models. Interaction models of the type CLOCK
polymorphism*appetite grade in the prediction of obesity variables were created by using linear
models. Three genetic models were considered, namely: additive, dominant and codominant,
and 3 CLOCK polymorphisms related to biorhythms were analyzed: rs3749474, rs1801260 and
rs4580704. Different adjustment variables were considered. The p values were corrected for multiple
comparisons (Bonferroni) in all the cases following stepwise criteria. Significance level was set to
α = 0.05, and bilateral tests were considered.

3. Results

A total of 442 subjects (329 women and 113 men, with mean and ± SD age of 37.63 ± 12.38 years)
were analyzed, considering the sample size, which included all subjects with age, sex and genotyping
data for at least one of the three polymorphisms. Anthropometric measures, dietary intake, dietary
habits, physical activity characteristics and frequency of studied genotypes, according to sex were
completed (Table 1). Statistically significant differences concerning sex for dietary intake and appetite
degree and physical activity were found (Table 1). Genotype distribution for CLOCK rs3749474,
rs1801260 and rs4580704 was in accordance with the Hardy–Weinberg equilibrium (p = 0.483; p = 0.455
and p = 0.404, respectively).

Table 1. General characteristics of the studied sample (X ± SD; %).

Variables Total (n = 442) Female (n = 329) Male (n = 113) p

Body weight (kg) 72.1 (±15.6) 67.7 (±13.5) 84.3 (±14.7) <0.001
Height (cm) 166 (±9) 162 (±6) 176 (±6) <0.001
BMI (kg/m2) 26.1 (±4.9) 25.7 (±4.8) 27.2 (±4.8) 0.002
Fat mass (%) 33.8 (±10.0) 37.2 (±8.4) 24.5 (±8.0) <0.001

Lean mass (%) 28.9 (±5.8) 26.5 (±3.5) 36.0 (±5.0) <0.001
Visceral fat category Normal 79 88 54

<0.001High 14 10 25
Very High 7 2 21

Waist circumference (cm) 87.0 (±14.5) 84.4 (±13.7) 94.4 (±4.1) <0.001
Waist category (%) No risk 50 50 52

0.679Risk 50 50 48
Waist-Hip ratio 0.8 (±0.1) 0.8(±0.1) 0.89 (±0.1) <0.001

Estimated basal metabolism
(Kcal/day) 1485 (±244) 1384 (±152) 1804 (±203) <0.001

Energy (TCV: kcal/day) 2115 (±712) 2037 (±719) 2325 (±650) <0.001
CHO (TCV %) 38.3 (±6.5) 38.5 (±6.3) 37.8 (±7.0) 0.249

Simple sugars (VTC %) 17.6 (±5.2) 17.9 (±5.2) 16.5 (±5.1) 0.004
Proteins (TCV %) 17.3 (±3.4) 17.3 (±3.5) 17.2 (±3.3) 0.999

Fats (TCV %) 40.0 (±6.4) 40.0 (±6.4) 40.0 (±6.4) 0.922
Appetite category (%) Low 6 7 2

0.006Medium 42 45 35
High 52 48 63

Meals/day frequency category
(%)
≥4

64 67 54
0.008

<4 36 33 46
Exercise (%) Inactive 31 33 24

0.075Active 69 67 76
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Table 1. Cont.

Variables Total (n = 442) Female (n = 329) Male (n = 113) p

Energy expenditure physical
activity/week (kcal/week) 2207 (±1917) 2038 (±1676) 2701 (±2434) 0.015

rs3749474 (%) C/C 47 44 52
0.299C/T 42 44 40

T/T 11 12 8
rs1801260 (%) A/A 54 55 52

0.764A/G 40 39 41
G/G 6 6 7

rs4580704 (%) C/C 38 38 36
0.743C/G 46 46 46

G/G 16 16 18

Continuous variables, X ± SD; categorical variables, %. The sample size of the variables ranges from 437 to 487 due
to some missing data. No imputation was performed. The sample size was shown considering all subjects with age,
sex and genotyping data for at least one of the three polymorphisms. BMI, Body mass index; CHO, carbohydrates;
TCV, total caloric value. Inactive, 0 times of physical activity performance per week. Active, one or more times of
physical activity performance per week. Significance level p ≤ 0.05.

Genotype association analyses were performed for CLOCK rs3749474, rs1801260 and rs4580704
considering anthropometric, dietary intake, dietary habits and physical activity characteristics, where no
significant differences were found for either genotype adjusted by the Bonferroni method (Table 2).

CLOCKs interactions with appetite grade in the prediction of selected variables (BMI, fat mass,
visceral fat and waist circumference) were subsequently analyzed. Among the three genetic models
evaluated (additive, dominant and codominant), the best fit was obtained with the additive model
(in which each copy of T modifies the risk by an additive amount and therefore T/T homozygotes have
twice the risk of C/T heterozygotes). Of all the studied variables, statistically significant interactions
were found for CLOCK rs3749474 risk allele in the prediction of waist circumference. The effect of the
appetite level (low < medium < high) on the waist circumference diameter was studied according to
the genotypes using marginal models. In addition, the analysis was performed with three different
adjustments: age and gender (model 1), energy intake, age and gender (model 2), and exercise, energy
intake, age and gender (model 3) as reporting in Table 3.

Statistically significant differences of waist circumference according to CLOCK rs3749474 and
appetite classification were found for the three models (p ≤ 0.001) adjusted by age and gender (model 1),
energy intake, age and gender (model 2) and exercise, energy intake, age and gender (model 3). In the
model 1 (Table 3), in minor genotype carriers (T/T), the waist circumference increased by around 16 cm
(β = 15.7, CI = 7.9–23.5) with each unit of increment in the degree of appetite (low < medium < high).
However, in the common genotype carriers (C/C) the waist circumference only increased by around
3 cm (β = 3.1, CI = 0.3–5.8). In the model 2 and 3, similar results were obtained, since in T/T carriers, the
waist circumference increased by about 14 cm (model 2: β = 14.0, CI = 6.0–22.0; and model 3: β = 14.1,
CI = 6.3–22.0), in comparison with C/C carriers, who had an increase in waist circumference of only
around 3 cm.
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Table 2. Association of CLOCK SNPs with studied variables (X ± SD; %).

Variables

rs3749474 rs1801260 rs4580704

C/C C/T T/T p A/A A/G G/G p C/C C/T T/T p

n = 203 n = 185 n = 49 n = 243 n = 178 n = 27 n = 173 n = 210 n = 75

Body weight (kg) 71.8 (±15.0) 72.5 (±15.3) 74.6 (±18.5) 0.099 72.4 (±15.4) 72.3(±15.6) 70.6 (±16.9) 1 72.4 (±16.8) 72.0 (±15.5) 71.3(±12.4) 0.866
Height (cm) 166 (±9) 167 (±9) 166 (±10) 0.032 166.3 (±8.9) 165.6 (±8.9) 165.8 (±9.8) 0.392 166.0 (±9.3) 165.9 (±8.9) 165.6 (±8.0) 1
BMI (kg/m2) 26.2 (±4.9) 26.1 (±4.7) 26.98 (±5.8) 0.834 26.2 (±5.0) 26.3 (±4.8) 25.5 (±4.5) 1 26.1 (±4.9) 26.1 (±5.1) 26.1 (±4.4) 1
Fat mass (%) 33.2 (±9.8) 34.3 (±9.7) 35.8 (±11.5) 1 33.7 (±10.6) 34.3 (±9.3) 32.5 (±7.8) 1 34.5 (±9.5) 33.5 (±10.1) 33.2 (±10.7) 1

Lean mass (%) 29.2 (±5.9) 28.6 (±5.6) 28.8 (±6.3) 1 29.2 (±6.1) 28.5 (±5.5) 29.1 (±4.9) 0.759 29 (±5.5) 29.0 (±5.9) 29.6 (±6.4) 0.908
VFC Normal 75 83 81

1
81 76 82

1
82 78 78

1High 15 14 15 14 16 11 14 14 15
Very High 10 3 4 5 8 7 4 8 7
WC (cm) 87.2 (±14.0) 86.8 (±13.9) 88.9 (±17.7) 0.53 86.7 (±14.4) 87.7 (±14.3) 86.0 (±14.0) 1 87.1 (±14.9) 87.0 (±14.6) 86.2 (±12.3) 1

Waist class No risk 49 51 50
1

53 48 54
1

51 50 51
1Risk 51 49 50 47 52 46 49 50 49

Waist-Hip ratio 0.83 (±0.1) 0.82 (±0.1) 0.83(±0.1) 1 0.82 (±0.1) 0.83 (±0.1) 0.82 (±0.1) 1 0.82 (±0.1) 0.83 (±0.1) 0.82 (±0.1) 1
EBM (Kcal/day) 1492 (±244) 1487 (±241) 1501 (±250) 0.183 1489 (±239) 1488 (±244) 1492 (±290) 1 1485 (±254) 1487 (±241) 1479 (±217) 0.945

Energy (TCV: kcal/day) 2049 (±548) 2214 (±909) 2113 (±592) 0.342 2069 (±566) 2226 (±956) 2128 (±521) 0.433 2271 (±974) 2037 (±502) 2079 (±639) 0.049
CHO (TCV %) 37.6 (±6.4) 38.5 (±6.3) 38.8 (±6.7) 0.622 38.1 (±6.2) 38.4 (±6.8) 39.9 (±7.1) 0.913 39.1 (±6.9) 38.1 (±6.0) 37.0 (±6.2) 0.145

Simple sugars (VTC %) 16.9 (±4.5) 17.9 (±5.6) 18.2 (±5.2) 0.211 17.5 (±5.0) 17.6 (±5.4) 18.3 (±5.1) 1 18.2 (±5.8) 17.4 (±4.7) 16.7 (±4.9) 0.134
Proteins (TCV %) 17.3 (±3.3) 17.2 (±3.5) 16.8 (±2.8) 1 17.1 (±2.9) 17.6 (±3.7) 16.6 (±4.0) 1 17.0 (±3.6) 17.4 (±3.2) 17.2 (±2.9) 1

Fats (TCV %) 40.7 (±6.3) 39.8 (±6.0) 40.0 (±5.6) 0.888 40.3 (±5.7) 39.9 (±6.6) 38.5 (±7.4) 0.778 39.4 (±6.5) 39.9 (±5.9) 41.8 (±5.7) 0.096
Appetite class Low 6 8 4

0.803
6 7 4

0.534
7 5 9

1Medium 45 37 38 38 44 54 43 41 41
High 49 55 58 56 49 42 50 54 50

Meals frequency class (Meals/day)
≥4 61 64 69 1 64 62 65

1
66. 62 65

1
<4 39 36 31 36 38 35 34 38 35

Exercise Inactive 29 28 31 1 30 30 19
1

28 30 29
1Active 71 72 69 70 70 81 72 70 71

EEPA/week (kcal/week) 2286 (±1922) 2112 (±1954) 2026 (±1614) 1 2048 (±1724) 2327 (±2112) 2357 (±1762) 0.448 2128 (±1886) 2263 (±1971) 2058 (±1665) 1

Continuous variables, X ± SD; categorical variables, %. BMI, Body mass index; CHO, carbohydrates; EBM, Estimated basal metabolism; PA, EEPA Energy expenditure in physical activity
per week; SD, standard deviation; TCV, total caloric value; VFC visceral fat category; WC, waist circumference. Inactive, 0 times of physical activity performance per week. Active, one or
more times of physical activity performance per week. p-values were obtained from one-way ANOVA for continuous variables, and Fisher exact test for categorical variables. p-values
were adjusted by Bonferroni method (3 tests). Significance level p ≤ 0.05.
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Table 3. Associations between appetite level and waist circumference (cm), by CLOCK
rs3749474 genotype.

Genotype Model 1 Model 2 Model 3

n β (95 % CI) p p* β (95 % CI) p p* β (95 % CI) p p*

C/C 203 3.1 0.3–5.8 0.087
0.001

3.0 0.1–5.8 0.120
<0.001

2.8 0.0–5.6 0.150
<0.001C/T 185 7.1 4.3–9.8 <0.001 7.2 4.6–10.2 <0.001 7.3 4.6–10.1 <0.001

T/T 49 15.7 7.9–23.5 <0.001 14.0 6.0–22.0 0.003 14.1 6.3–22.0 0.002

The dependent variable was waist circumference (cm). Additive model. p values adjusted by model. p*, interaction.
p and p* values were adjusted by Bonferroni correction (3 test).

Mean measures of waist circumference according to CLOCK rs3749474 genotype and appetite
degree adjusted by exercise, energy intake, age and gender (model 3) are shown in Figure 1.
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in additive model adjusted by exercise, energy intake, age and gender (Model 3).

Subsequently, the data were reanalyzed in another study with a greater number of polymorphisms
to screen other possible interactions. The results again were statistically significant (Model 1:
p interaction = 0.029; Model 2: p interaction = 0.016; Model 3: p interaction = 0.008). In this
case, Bonferroni correction criteria were used given the number of polymorphisms and dietary
variables studied (adjusted p values were based on 81 tests involving the nine studied polymorphisms
and nine dietary variables).

4. Discussion

The present study was designed to identify interactions between CLOCK genetic variants with
appetite status. With regards to anthropometric measurements, a relevant finding that emerged from
this study was a directly proportional association between the minor T allele of the CLOCK rs3749474
variant and the waist circumference, for each increase in the grade of appetite (additive model). In this
respect, homozygous variant (T/T) carriers showed the greatest increase in waist diameter (about
14 cm) by each increment in the level of appetite (low < medium < high).

Although evidence of associations between the CLOCK genes and waist circumference have been
demonstrated earlier, no interactions with the grade of appetite have been reported before. On this
basis, the present study may constitute an advance to understand the influence of the CLOCK genes
on weight control. In this sense, this study suggests that the genetic component could determine the
effect that the level of appetite has on cardiometabolic markers such as waist circumference. The fact of
finding differences between the genotypes has the potential to help to focus nutrition strategies on
target population with certain genetic predisposition in the future. However, more research on this
topic needs to be undertaken before the interaction between appetites, CLOCK polymorphism and
waist circumference is more clearly understood. At the same time, our study used the waist diameter
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as an indicator of visceral fat. Although waist circumference cannot discriminate between visceral
and subcutaneous fat tissue, visceral fat tends to be directly proportional to waist diameter [35,36].
However, future studies could be developed using more direct techniques to measure visceral fat
(e.g., by Dual-energy X-ray Absorptiometry). One additional limitation of this study may be the
measurement of appetite level. Measuring appetite level is a rather subjective parameter. Therefore,
more studies are required to confirm the results obtained in this study.

Other researchers have also found associations, based on visual analogue scales, with respect
to other polymorphisms (such as rs9939609 FTO and rs12970134 near MC4R) and the level of
appetite [31,37,38]. In the case of rs9939609 FTO they evaluated the influence of this single-nucleotide
polymorphism on appetite, ghrelin, leptin, interleukin 6 (IL6), tumor necrosis factor α (TNFα) levels
and food intake [37]. For rs12970134 near MC4R they associated the influence of this polymorphism
on appetite and beverage intake [31]. Therefore, future studies with CLOCK polymorphisms could
also include the analysis of interactions with genes that encode neurotransmitters, cytokines, palatable
food, or hedonic eating parameters. The current analyses could be complemented by including
appetite-related hormones such as ghrelin or leptin measurements would render this research much
valuable, however, this could not be carried out due to insufficient blood sample.

From the descriptive analysis, a significant difference between men and women in the appetite
rate was appreciated. Simple sugars were included in the total carbohydrates. However, we considered
separating out simple sugars since they may show a different outcome than overall carbohydrates given
their role on sweetness and satisfaction as well as potentially on appetite [39]. This is comparable with
earlier observations, which showed that appetite ratings differed according to age, gender, and physical
activity [40,41]. However, the interaction analysis in our study was adjusted for age, sex and energy
intake, so these variables did not apparently influence the results.

In turn, the expression of these genes may influence the regulation of lipid and carbohydrate
homeostasis as well as the adipose tissue and abdominal fat content [42]. On this basis, the CLOCK
genes have been shown to influence the regulation of the expression of adipocytokines such as
adiponectin, resistin and leptin, the synthesis of which daily vary throughout the 24–h cycle [43].

Thus, these genes have been associated with diseases such as obesity and metabolic syndrome.
Specifically, it has been reported that the rs3749474 CLOCK variant generates a change in the structure
of the messenger RNA in such a way that the level of expression is reduced [12,44]. This shift has been
associated with a higher total energy intake as well as a higher fat intake, resulting in and increased
abdominal obesity in subjects carrying the variant [12,44]. In particular, the existing literature reveals
that carriers of the T allele present a greater risk of weight gain [12,44].

When analyzing the results of this interaction in more detail, it can be noted that the T/T
carriers + low appetite degree had a lower average waist diameter than the other genotypes carriers
(T/T: 69.00 ± 0.00 cm; C/T: 75.33 ± 12.64 cm; C/C: 85.86 ± 15.77 cm). Conversely, subjects with a high
appetite degree + T/T carriers showed much higher levels of appetite compared to carriers of the other
genotypes (T/T: 95.35 ± 18.27 cm; C/T: 91.06 ± 14.49 cm; C/C: 89.42 ±13.45 cm). These results suggest
that it may be especially interesting to investigate how to reduce the degree of appetite in T/T carriers,
as the impact may be particularly beneficial for a population with such genotype.

Interestingly, our results also found an interaction concerning to waist circumference: carriers of
the T/T genotype increased by about 14 cm for each increase in the appetite rate (C/T: 7 cm and C/C:
3 cm). In addition to weight gain, previous studies have reported the association of the biorhythm
genes with abdominal fat content [43,45]. Therefore, alterations in the CLOCK gene could be linked
with a greater accumulation of visceral fat. Abdominal fat generates a multitude of adverse metabolic
processes associated with inflammation and chronic disease [35,36]. This outcome explains under an
additive model that subjects with T/T genotype may be at increased risk for the etiopathogenesis of
diseases related to metabolic syndrome and abdominal obesity (and this risk seems to grow with each
increase in the level of appetite according to the results found). In turn, scientific literature has shown
that in the analysis by haplotypes rs3749474, rs45807041 and rs1801260, carriers of the haplotype CGA
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had a lower BMI, weight, waist circumference than did noncarriers [11]. This evidence corroborates our
results and in turn indicates the possibility that the other polymorphisms (rs45807041 and rs1801260)
affect body weight and waist diameter together.

The adjustment for multiple comparisons took into account 3 SNPs * 1 Appetite interaction test.
The unadjusted p values were: p = 0.00036 (Model 1), p = 0.00019 (Model 2) and p = 0.000095 (Model 3).
In case of making the correction taking into account the rest of the dependent variables, p adjusted
interaction values continued to be equally significant (Model 1: p = 0.004; Model 2: p = 0.002 Model 3:
p = 0.001). Although we had a greater number of adjustments in the confirmatory analysis (81 tests),
in this case the dependent variables were not taken into account since we considered not necessary
to perform further correction analyses involving multiple comparisons. Failure to address multiple
comparisons appropriately can introduce excess false positive results and make subsequent studies
following up those results inefficient [46].

In addition to an increased energy intake, associations to CLOCK genes variants have shown
preferences for eating less healthy, higher in calories and higher in glycemic index foods [47]. Thus,
sleep-deprived subjects showed a greater stimulation response to intake, when they were exposed
to unhealthy foods [47]. By contrast, an increase in abdominal fat and metabolic alterations were
not evident in rs3749474 variant carriers who had a healthier diet (higher than average olive oil
consumption) [42]. On this basis, it can be assumed that hormonal changes caused by CLOCK gene
influence eating behavior, energy metabolism and fat tissue. Therefore, eating satiating foods could
be a good strategy to control the degree of appetite and prevent the accumulation of visceral fat in
this case.

5. Conclusions

The impact of appetite on waist circumference is partially modulated by the variability in the
rs3749474 CLOCK polymorphism. Appetite control strategies in T/T carriers of this variant could
be specifically useful to prevent metabolic alterations characteristic of the increase in abdominal fat.
Such approach could include adding healthier foods to the diet. Further studies on the interaction
between CLOCK genes and appetite levels would be interesting to confirm this novel association for
personalized precision nutrition implementation.
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