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High-throughput quantitative genetic interaction (GI) measurements provide detailed information
regarding the structure of the underlying biological pathways by reporting on functional
dependencies between genes. However, the analytical tools for fully exploiting such information
lag behind the ability to collect these data. We present a novel Bayesian learning method that uses
quantitative phenotypes of double knockout organisms to automatically reconstruct detailed
pathway structures. We applied our method to a recent data set that measures GIs for endoplasmic
reticulum (ER) genes, using the unfolded protein response as a quantitative phenotype. The results
provided reconstructions of known functional pathways including N-linked glycosylation and
ER-associated protein degradation. It also contained novel relationships, such as the placement of
SGT2 in the tail-anchored biogenesis pathway, a finding that we experimentally validated. Our
approach should be readily applicable to the next generation of quantitative GI data sets, as assays
become available for additional phenotypes and eventually higher-level organisms.
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Introduction

Recent developments have enabled large-scale quantitative
measurement of genetic interactions (GIs) that report on the
extent to which the activity of one gene is dependent on a
second. It has long been recognized (Avery and Wasserman,
1992; Guarente, 1993; Phillips et al, 2000; Hartman et al, 2001;
Segre et al, 2004; Tong et al, 2004; Drees et al, 2005; Schuldiner
etal, 2005; Collins et al, 2007; St Onge et al, 2007; Jonikas et al,
2009; Costanzo et al, 2010) that functional dependencies
revealed by GI data can provide rich information regarding
underlying biological pathways. High-density Gl maps system-
atically evaluate such interactions among a large set of genes.
Further, the precise phenotypic measurements provided by
quantitative GI data can provide evidence for even more
detailed aspects of pathway structure, such as differentiating
between full and partial dependence between two genes
(Figure 1A) (Drees et al, 2005; Schuldiner et al, 2005; Collins
et al, 2007; St Onge et al, 2007; Jonikas et al, 2009). As GI
data sets become available for a range of quantitative
phenotypes and organisms (Breslow et al, 2008; Roguev
et al, 2008; Typas et al, 2008), such patterns will allow

© 2010 EMBO and Macmillan Publishers Limited

researchers to elucidate pathways important to a diverse set of
biological processes. Methods based on RNAi will soon allow
collection of similar data for human cell lines and other
mammalian systems (Berns et al, 2004; Moffat et al, 2006;
Firestein et al, 2008). Thus, computational methods for
analyzing GI data could have an important function in
mapping pathways involved in complex biological systems
including human cells.

However, the tools for exploiting quantitative GI data have
thus far not taken full advantage of the detailed information
present in these measurements. The most commonly used
approach is hierarchical agglomerative clustering (Tong et al,
2004; Schuldiner et al, 2005; Jonikas et al, 2009), which simply
groups together genes whose interaction profiles are similar,
and hence are likely to be involved in similar functions. More
recent methods go beyond simple grouping to highlight
aggravating or alleviating interactions between groups of
related genes (Segre et al, 2004; Kelley and Ideker, 2005;
Schuldiner et al, 2005; Qi et al, 2008). Although these forms of
analysis produce a rough partition of genes into functional
groups, they do not reveal the detailed structure of the
pathways within the clusters or all the dependencies between
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Figure 1 Overview of method. (A) Signature phenotypes for common pairwise relationships. Each pairwise relationship produces a ‘signature’ double knockout

phenotype, as compared with observed individual knockout phenotypes (shown by dotted green lines) and the implied ‘typical interaction’ phenotype (dotted red line).
(i, ii) Linear pathway configurations produce a double mutant phenotype similar to that of one of the single mutants. (iii) Independent actions result in a double knockout
close to the expected (or ‘typical interaction’) phenotype. (iv) Genes acting separately but with related functions often result in aggravating interactions. (v) If the activity of
one gene depends partially on the other (one gene also acts through a separate pathway), the double knockout is likely to be alleviating but not as fully as for a linear
pathway. (B) Scoring pairwise structures with Gl data. Using the double and single mutant measurements from a genetic interaction assay, a score is computed for each
possible local graph structure for every pair of genes. For the example genes shown, the double knockout phenotype aAbA is very similar to the single bA. Thus, the
linear pathway scores highly compared with the other possible pairwise structures. (C) Scoring complete activity pathway networks (APNs). Here, we show an APN over
nine genes. Each complete APN is consistent with a set of local pairwise structures. For example, this graph is consistent with a pairwise relationship where MNL1 is
upstream of HRD3in a linear pathway. We evaluate the score of each consistent local relationship based on the corresponding two single and the double mutant reporter
levels, and sum the local scores to compute the global score.

clusters. Other methods have used the more specific functional
dependencies implied by quantitative GI data, but treat each
pair of genes independently in inferring relationships (Drees
et al, 2005; St Onge et al, 2007), not considering the
consistency of each relationship with other data points or a

analyses have shown considerable potential, they do not scale
well, and require detailed a priori information. Another
method, GenePath (Zupan et al, 2003), produces networks
from small GI data sets, but does not automatically resolve the
many conflicts that can arise from ambiguous and noisy

global network model. Explorations of detailed multi-gene
relationships have relied on manual examination, comparing
observed GI values, or inferred pairwise relationships to a
hypothesized multi-gene pathway model (Drees et al, 2005;
St Onge et al, 2007; Jonikas et al, 2009); whereas manual
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evidence in large quantitative data sets. Thus, the above
methods are not well suited for systematic automated
reconstruction of pathways over large sets of genes. For
further description, and more specific comparisons of related
work to our method, see Discussion.
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In this paper, we present a new method that exploits the
high-quality, quantitative nature of recent GI assays (St Onge
et al, 2007; Jonikas et al, 2009; Costanzo et al, 2010) to
automatically reconstruct detailed multi-gene pathway struc-
tures, including the organization of a large set of genes into
coherent pathways, the connectivity and ordering within each
pathway, and the directionality of each relationship. We
introduce activity pathway networks (APNs), which represent
functional dependencies among a large set of genes in the form
of a network. We present an automatic method to efficiently
reconstruct APNs over large sets of genes based on quantita-
tive GI measurements. This method handles uncertainty in the
data arising from noise, missing measurements, and data
points with ambiguous interpretations, by performing global
reasoning that combines evidence from multiple data points.
In addition, because some structure choices remain uncertain
even when jointly considering all measurements, our method
maintains multiple likely networks, and allows computation of
confidence estimates over each structure choice. Thus, we can
explore a range of structures consistent with our data, and
focus on the highest confidence hypotheses for further
investigation.

Results

The inputs to our method are the quantitative phenotype
measurements over a set of single and double knockout
organisms, as provided by a GI map. As described above, the
APNs reconstructed by our method represent the functional
dependencies among large sets of genes, and their combined
effects on a downstream phenotype. We define an APN as a
graph, with the activity of each gene corresponding to a node
in the graph, and a special node representing the quantitative
phenotype or Reporter. In an APN, a directed path between
node A and node B represents a dependence of gene A’s
activity on gene B’s activity, and if every path flowing from A to
the Reporter passes through B, then gene A’s activity is fully
dependent on B.

We now provide a basic outline of the APN reconstruction
procedure (see Materials and methods for details). Overall, the
method consists of first interpreting the GI data to derive a set
of scores that represent preferences over the relationship
between each pair of genes, and second searching for complete
APNs that best satisfy these pairwise preferences. In the first
phase, for every pair of genes we consider all possible pairwise
network relationships (such as B follows A in a linear
pathway), and compute a score statistically quantifying the
extent to which their GI measurements support that relation-
ship (Figure 1A and B). These statistical tests are based on the
deviation of the observed double knockout phenotype from
the outcome that would be expected for each network
relationship (Figure 1A), according to the following assump-
tions. When two genes act in independent pathways, the
effects of each mutation on the phenotype are compounded
independently, frequently leading to a quantitative phenotype
that is near a ‘typical’ level determined as a function of the
phenotypes of the two individual mutants (Phillips et al, 2000;
Collins et al, 2007; Jonikas et al, 2009) (Figure 1Aiii). Gene
pairs that act separately but have related functions deviate
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substantially from such typical interactions, leading to so-
called synthetic interactions, where the double mutant
exhibits a more severe phenotype than expected (Guarente,
1993; Hartman et al, 2001; Tong et al, 2004) (Figure 1Aiv).
Conversely, if the genes act in a single linear pathway, the
effect of one gene is often mediated by the other gene, leading
to an alleviating interaction where the double mutant displays
aless dramatic phenotype than expected (Figure 1Ai, ii, v).Ina
subset of alleviating interactions, the double mutant has the
same phenotype as one of the single mutants, indicating
complete functional dependence (Avery and Wasserman,
1992; Segre et al, 2004; St Onge et al, 2007) (Figure 1Ai, ii).
We note that if alternative interpretations of GI measurements
were desired, our statistical tests could be adapted to
accommodate them. Using similar tests, our method could
also take advantage of measurements from more complex
mutants, such as triple or quadruple knockouts, if they were
available.

Given this initial computation of pairwise scores, we can
now define a global score for full multi-gene APNs, and
describe the procedure for finding high-scoring networks.
We score a candidate APN N over the full set of genes by
enumerating all pairwise network relationships that are
consistent with N, and aggregating the corresponding pairwise
scores into a global score (see Materials and methods,
Figure 1C). Thus, the score of a network that encodes a
certain relationship between two genes A and B will rely not
only on the GI measurement for that pair, but on the
constraints that relationship puts on all other relationships,
and the corresponding GI measurements for those pairs. These
other data points may strengthen support for weak or missing
evidence from (A, B). For example, if a gene C strongly
depends on both A and B, it could strengthen weak evidence
for placing A in a linear chain with B. Conversely, if C depends
strongly on A, but not on B, the combined evidence may
reduce the support for placing A with B. In addition, as genes
that are adjacent in the network interact in similar ways with
other genes, we include a term that encourages genes with
highly correlated GI profiles to be placed adjacent to each other
in N. This term can also help compensate for missing or
ambiguous pairwise scores. Despite the joint consideration of
all evidence, in some instances, the global score may not
provide conclusive support for a given structure, and in
general there may be several APNs that are reasonably
consistent with the data. Rather than select the single highest
scoring APN, we sample the space of APNs using a Markov
chain Monte Carlo (MCMC) method (Neal, 1998) (see
Materials and methods), producing an ensemble of like-
lihood-weighted APNs from which we can infer confidence in
any attribute, such as the presence of a particular linear
pathway (Figure 2).

We applied our APN reconstruction method to the recent
high-quality GI data set of Jonikas et al (2009), which
examined the functional interaction between genes that
contribute to protein folding in the endoplasmic reticulum
(ER). Specifically, Jonikas et al used the cell’s endogenous
sensor (the unfolded protein response), to first identify several
hundred yeast genes with functions in ER folding and then
systematically characterized their functional interdependen-
cies by measuring unfolded protein response levels in double
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Figure 2  Activity pathway network ensemble for ER data. Applied to the data set of Jonikas et al (2009), our method produced an ensemble of 500 sampled APNs,
each over 178 genes. Our method samples many full APNs from our probabilistic model, allowing us to estimate confidence over substructures. Using this likelihood-
weighted ensemble, we produce confidence estimates for several graph substructures. For visualization, we produce an aggregated network, which highlights high-
confidence pathways (see Materials and methods). Four interesting components of the high-confidence aggregated network have been highlighted, corresponding to
pathways shown Figure 3—the blue box corresponds to Figure 3A, green to Figure 3B, orange to Figure 3C, and red to Figure 3D.

mutants (see Materials and methods). This analysis produced
an ensemble of 500 likelihood-weighted APNs over 178 genes
(Figure 2).

We evaluated the detailed structural predictions from our
sampled APNs. The highest confidence structures (see
Materials and methods) are visible in the aggregate network
of Figure 2, and online (http://ai.stanford.edu/~ajbattle/
APNgene_viz.html). Each of the relationships shown in
Figure 3 (and discussed below) was automatically detected
among the most likely subnetworks. By combining multiple
weak, missing, or even contradictory measurements, our
method does provide a global model that is much more robust
than the individual measurements. For example, we predict
full epistasis among several genes known to work together in
the SWR complex, despite missing many of the relevant GI
measurements (Figure 3A). Our APNs also identify a number
of relationships that are not apparent from standard methods.
As one example, our method places an edge between
NEM1 and DGK1 with probability 0.61. Dgk1p phosphorylates
diacylglycerol, an effect counteracted by the phosphatase
Pahlp (Han et al, 2006), which is activated by Nem1p. Thus,
in the absence of DGKI, NEMI1 has no function (reflected
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by their GI measurement). However, the GI profiles of DGK1
and NEM1 are only weakly correlated (0.05), so they are placed
far apart in the clustering analysis of Jonikas et al (2009). In
contrast, our algorithm highlights that DGKI fully masks
NEM]I. Such examples show the advantage of performing
global reasoning, simultaneously considering evidence from
all available measurements. Some relationships are evident
from individual GI measurements, whereas others are
supported by evidence from multiple data points or from
correlation of GI profiles, and thus our method for reconstruct-
ing a global APN benefits from consideration of all evidence
jointly.

We also performed an aggregate evaluation of our results
by comparing to known biological relationships between
gene pairs, including participation in pathways according to
the Kyoto Encyclopedia of Genes and Genomes (KEGG),
correlation of chemical genomic profiles in a recent high-
throughput assay (Hillenmeyer et al, 2008), and similarity of
Gene Ontology (GO) (Ashburner et al, 2000) annotations.
Unfortunately, existing protein-protein interaction (PPI) data
sets’ (Gavin et al, 2006; Krogan et al, 2006) coverage of
interactions among ER proteins is sparse and unreliable

© 2010 EMBO and Macmillan Publishers Limited
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Figure 3 Reconstructed pathways for ER data. Visualization of reconstructed pathways. In each panel, we display the most likely network configurations for the
relevant set of genes, according to our sampled APNs. A ‘collapsed node’ containing multiple gene names indicates a high-confidence linear pathway among the
contained genes, but with the specific ordering varying among our samples. (A) SWR complex. APNs integrate data across multiple pairs of genes to discover
relationships even if some data points are missing, statistically weak, or contradictory. Despite the unobserved combinations of ARP6, SWC3, and HTZ1, our method
uses all available data, including the correlation scores and the observed alleviating interactions with SWC5, and places all four genes together in a linear chain, reflecting
the known relationship among the SWR complex (which includes SWC3, SWC5, and ARP6) and the histone variant H2AZ (HTZ1). (B) ERAD pathway. Our
reconstructed APNs placed several ERAD genes in common pathways with high confidence; we show the two most likely configurations of these pathways. Eight of
these genes (MNL1, YOS9, DER1, USA1, HRD1, HRD3, CUE1, and UBC?) are known to be involved in ERAD function, and their respective placements in the graph are
remarkably consistent with known interdependencies. The final gene, YLR104W, has also been suggested to participate in ERAD (Jonikas et al, 2009). (C) N-linked
glycosylation pathway. Genes involved in N-linked glycosylation were automatically placed together in a single linear pathway with very high confidence, as shown in the
aggregated view (left). The two highest probability detailed pathways (two middle networks) reflect many correct placements. The glucosyltransferase DIEZ is robustly
placed such that it is dependent on the other genes. ALG9 and ALG12 are correctly placed earlier, and ALG3 is correctly placed at the start of this pathway with high
confidence. OST3 s correctly placed downstream, but OST5 is incorrectly placed, likely because double mutant data with the other ALG genes was not available. For
reference, the true ordering of this pathway (Helenius and Aebi, 2004) is shown as inset to the far right. (D) Tail-anchored protein insertion pathway. We show the three
most likely configurations of the set. Very high confidence is assigned to the placement (and relative ordering) of MDY2, YOR164c, and SGT2 upstream of GET1, GET2,
and GET3. The relative ordering of GET1, GET2, and GET3is less certain, but they all occur in this linear pathway with probability 0.98 (leftmost network). SGT2is a
poorly characterized gene not previously associated with tail-anchored protein insertion.

due to difficulty in isolation of membrane proteins, so we do
not include an analysis of protein-protein interaction (PPI)
data here. In each evaluation performed (Figure 4A-D), our
reconstructed APNs were significantly more consistent
with the known relationships than either the raw GI values
or the Pearson correlation between profiles of GI values
(commonly used in clustering analysis; Tong et al, 2004;
Schuldiner et al, 2005; Jonikas et al, 2009). We also evaluated

© 2010 EMBO and Macmillan Publishers Limited

the COP score of Collins (Collins et al, 2007), but it gave
nearly identical results to correlation (results not shown).
To disambiguate the importance of the various components of
our network score, we also compare our full method to a
simplified version of our method excluding any correlation-
based scoring. This does impact performance, but even the
simplified version outperforms raw GI values on both data
sets, and outperforms Pearson correlation on the GO and

Molecular Systems Biology 2010 5
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KEGG analyses. Performance fell more drastically on the
chemical profile analysis, perhaps unsurprisingly, as correla-
tion of chemical profiles is strongly related to the similarity
of genes’ interactions. Next, we tested the ability of our
procedure to predict unseen GIs. We constructed an ensemble

of APNs using an initial

set of GI data including 16952

measurements, and used our APNs to predict the outcome
of unseen GI measurements (see Materials and methods).
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Importantly, our approach provides not only an improved
means for defining pairs or groups of related genes, but also
enables the identification of detailed multi-gene network
structures. In many cases, our method successfully recon-
structs details of known cellular pathways, ranking them
among the highest confidence structures (Figures 2 and 3).
For example, it precisely reconstructs the known functional
dependencies among components of the ER-associated
degradation (ERAD) pathway (Nakatsukasa et al, 2008)
(Figure 3B). MNLI is placed upstream of YOS9, consistent
with existing data showing that MNLI generates the sugar
species recognized by YOS9 (Quan et al, 2008; Clerc et al,
2009). YOS9, MNL1, DER1, and USAI are placed upstream of
HRD3 and HRD1, consistent with data showing that degrada-
tion of certain substrates like CPY* requires all six components
(Kim et al, 2005; Carvalho et al, 2006), whereas some
substrates like Sec61-2 require only HRDI and HRD3 but not
DERI, USA1 (Carvalho et al, 2006), or YOS9 (Szathmary et al,
2005). The E2 Ubiquitin-conjugating enzyme UBC7 and its
membrane anchor CUE] are frequently placed downstream of
the E3 Ubiquitin ligase HRD1 and its regulatory partner HRD3
in the learned APNs, consistent with the known function of
Ubc7p and Cuelp in ubiquitination of Hrdlp substrates
(Nakatsukasa et al, 2008). Finally, our algorithm recognizes
that HRD1 acts also through a distinct pathway not involving
UBC7 and CUEI, consistent with the ability of another E2
enzyme, Ubclp, to partially substitute for UBC7 and CUEI in
their absence (Friedlander et al, 2000).

The pathway of biosynthesis of N-linked glycans (ALG)
(Helenius and Aebi, 2004) presents a particular challenge for a
pathway reconstruction algorithm. Although the different
enzymes may act sequentially to assemble a glycan in the
wild-type cell, the raw data of double mutant reporter levels
suggests that some of the enzymes have residual activity in
the absence of enzymes that act before them. Notably, the
glucosyltransferases ALG6, ALGS, and DIE2 appear to have
some function in the alg3A, alg9A, and algl2A, possibly
because of the branched nature of the high-mannose sugar that
they generate. For example, the A branch remains intact in the
alg3A, alg9A, and alg12A mutants (Burda and Aebi, 1999) and
may still be partially glucosylated by Die2p in these strains,
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which could explain incomplete masking of Adie2 by these
mutations. Nevertheless, our algorithm orders the ALG path-
way remarkably accurately (Figure 3C), attesting to the
robustness of our approach. We note that our algorithm also
correctly detects a functional dependence of the CWH4I
Glucosidase I on all genes in the ALG pathway, despite the
moderate correlation of CWH41 with the ALG genes, which
prevented it from being clustered with them (Jonikas et al,
2009). The relatively large number of genes involved in this
pathway and the fact that it is well studied make this example
amenable to quantitative analysis. We evaluated the ability of
our method to predict each edge in the network (see Materials
and methods) implied by the known ordering of this pathway
(Helenius and Aebi, 2004), using direct links in the known
pathway as positive edges, and treating all other possible links
as negative edges. We compared predictions from our method
with edges predicted from Pearson correlation alone and
pairwise GI scores alone. We also applied GenePath (Zupan
etal, 2003), using the subset of the data over the ALG genes, as
the GenePath tool did not scale to our full data set. We
computed ROC curves for each method (Figure 4E) and
calculated the area under each curve (AUC), obtaining 0.7314
for our method, compared with 0.6399 for correlation, 0.5603
for GI scores and 0.5919 for GenePath, demonstrating that our
method more accurately predicts the ordering and exact edges
among the genes in this pathway.

More broadly, we analyzed the ability of our networks to
predict details of known pathways, beyond the small well-
studied glycosylation network discussed above. A more in-
depth analysis of KEGG pathways indicates that our learned
APNs are indicative of ordering in biological pathways. We
compared all gene pairs (A, B), where A is found upstream of B
in some KEGG pathway (the ‘positive set’), to all gene pairs
that are found together in some KEGG pathway, but where A is
not upstream of B (the ‘negative set’). Our learned APNs are
much more likely to place A upstream of B for gene pairs in the
positive set than pairs in the negative set (P-value 0.0218)
(Figure 4F; Materials and methods).

Our results also suggest several novel relationships, includ-
ing placement of uncharacterized genes into pathways, and
novel relationships between characterized genes. These

Figure 4 Quantitative evaluation of learned APNs. For each ROC curve shown, the graph is annotated with the computed area under the curve (AUC). (A) Prediction
of GO co-function. We evaluated the prediction of gene pairs, which share GO functional annotation. We compared prediction based on (1) the probability of placement of
each gene pair in a shared pathway in the learned APNSs, (2) Pearson correlation of Gl profiles, (3) raw Gl scores, and (4) placement in APNs learned without utilization of
correlation scores. We restricted AUC computations to the false-positive range shown, obtaining normalized areas 0.202, 0.173, 0.117, and 0.182, respectively.
(B) Prediction of KEGG pathway membership. We evaluated the prediction of gene pairs, which participate together in some KEGG canonical pathway. We compared
prediction based on (1) the probability of placement of each gene pair in a shared pathway in the learned APNSs, (2) Pearson correlation of Gl profiles, (3) raw Gl scores,
and (4) placement in APNs learned without utilization of correlation scores. We restricted area under the curve (AUC) computations to the false-positive range shown,
obtaining 0.572, 0.494, 0.292, and 0.529, respectively. (C) Prediction of similar chemical sensitivity phenotypes. On the basis of the data set of Hillenmeyer et al (2008,
we selected pairs of genes with highly similar chemical phenotypes. We compared the ability of four methods to predict membership in this test set—probability of
placement in a shared pathway in the learned APNs, Pearson correlation from Gl profiles, raw Gl scores, and placement in APNs learned without correlation scoring. The
normalized AUCs for the displayed range were 0.792 (APN), 0.725 (correlation), 0.118 (Gl), and 0.371 (APN without correlation). (D) Prediction of unknown genetic
interactions. For a set of measurements unavailable at the time of APN learning, we compared methods for predicting unseen alleviating interactions. We compare ROC
curves for predictions made from (1) learned APNs, where we score each pair of nodes according to the probability of placement in a shared pathway according to the
APNSs; (2) predicted Gl values from Gaussian Process regression (Williams and Rasmussen, 1996), a baseline method that uses the correlation of observed Gl profiles;
and (3) predicted interactions based on the diffusion kernel method (Qi et al, 2008). The resulting AUCs were 0.77,0.67, and 0.71, respectively. (E) Prediction of N-linked
glycosylation pathway edges. We evaluated the prediction of edges in the N-linked glycosylation pathway (Helenius and Aebi, 2004). We compared prediction based on
(1) the probability of an edge between each gene pair in the learned APNs, (2) Pearson correlation of Gl profiles, (3) raw Gl scores, and (4) GenePath predictions (Zupan
et al, 2003). We obtained AUCs of 0.7314, 0.6399, 0.5603, and 0.5919, respectively. (F) Prediction of KEGG pathway ordering. We evaluated the ability of our networks
to predict ordering within KEGG pathways, and obtained an AUC of 0.6480. Our results are significant with P=0.0218.
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Figure 5 GFP-Sed5p localization defect in sgt2A. (A) Microscopy. GFP-Sed5p localization in WT, sgt2A, mdy2A, and get3A strains demonstrating a defect in GFP-
Sed5p localization in sgt2A. These results support the placement of SGT2in the tail-anchored protein biogenesis pathway shown in Figure 3D. (B) Quantitative analysis.
The images of at least 30 cells per strain with similar average fluorescence were quantified to determine the distribution of each strain’s total fluorescence across pixels of
different intensities. The distribution of fluorescence in the sgt2A strain differs from that of the wild-type strain with P<1e—13, and is similar to the distribution for the

knockout strains of other genes known to be involved in this pathway.

include the dependence of the J domain chaperone JEMI on
the PDI homolog MPD1, dependence of the Ubiquitin-recycling
enzyme DOA4 on N-linked glycosylation, and the dependence
of the E3 Ubiquitin ligase DOAIO on the signal peptidase
complex subunit SPC2. Our APNs also place the poorly
characterized TPR-containing protein SGT2 upstream of the
tail-anchored protein biogenesis machinery components
GET3, GET4, and MDY2 (also known as GETS) (Stefanovic
and Hegde, 2007; Schuldiner et al, 2008; Jonikas et al, 2009)
(Figure 3D), suggesting that SGT2 has a function in the
insertion of tail-anchored proteins into membranes. Consistent
with this prediction, our experimental analysis shows that
sgt2A cells show a defect in the localization of the tail-
anchored protein GFP-Sed5 from punctuate Golgi structures to
a more diffuse pattern, as seen in other genes involved in this
pathway (Figure 5; Supplementary Figure 1). Although this
manuscript was under review, Costanzo et al (2010) have
independently suggested participation of SGT2 in this path-
way. Their results also show a direct physical interaction
between SGT2 and MDY2, further supporting the precise
placement of SGT2 in our networks.

Discussion

Our results show that multi-gene, detailed pathway networks
can be reconstructed from quantitative GI data, providing a
concrete computational manifestation to intuitions that have
traditionally accompanied the manual interpretation of such
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data. In particular, our automatically reconstructed APNs
for the ER recapitulate the details of several important ER
pathways and show the ability of our analysis to produce
testable biological hypotheses. Our reconstructed networks
are available for visualization and analysis online (http://
ai.stanford.edu/~ ajbattle/APNgene_viz.html).

Our APN method builds on results from several important
pieces of work (Avery and Wasserman, 1992; Guarente, 1993;
Phillips et al, 2000; Hartman et al, 2001; Zupan et al, 2003;
Segre et al, 2004; Tong et al, 2004; Drees et al, 2005; Schuldiner
et al, 2005; Collins et al, 2007; St Onge et al, 2007; Jonikas et al,
2009), some of which are particularly relevant to our method.
For example, Drees et al (2005) and St Onge et al (2007)
provide frameworks that, similar to the first stage of our
method, examine individual GI measurements to identify
likely functional relationships for each pair of genes, including
some subtypes of alleviating interactions. In a separate
computation, Drees et al (2005) also quantify the similarity
between pairs of GI profiles. Collins et al (2007) explore the use
of both correlation and individual GI measurements in
identifying pairs of co-functional genes. Each of these studies
was able to identify biologically relevant patterns, often highly
predictive of gene function. The GenePath work (Zupan et al,
2003) also showed that network structures can be derived from
GI measurements, though on a small scale (fewer than 20
genes). All of the above results provided evidence that the
individual GI measurements and the similarity between GI
profiles can both provide detailed information regarding
underlying relationships between genes. However, these
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methods do not automatically consider all evidence jointly,
disambiguating borderline cases and constructing a global
model of the effects of all genes on the measured phenotype.
Our method, on the other hand, does perform such global
reasoning in a statistically robust framework, and thus our
APNs reveal details not expressed by the other models, such as
ordering within a multi-gene linear pathway.

One limitation of our analysis is that the relationships
represented by the edges in the APNs may sometimes be
difficult to interpret, as they may not correspond directly to
specific physical relationships. This limitation reflects the fact
that GIs themselves can arise from a broad range of functional
relationships, including sequential interaction with a common
substrate (as in N-linked glycosylation), direct PPI (as in the
SWR complex), or indirect dependencies (as in the NEMI,
DGKI example). In addition, because the ordering of genes in
an APN corresponds to dependency, a pathway in an APN
may sometimes reverse the ordering relative to the order of
action in the underlying biological process, depending on
the mechanisms involved (Avery and Wasserman, 1992).
Although networks representing specific physical relation-
ships have been reconstructed from other types of data (Beyer
et al, 2006), GI measurements provide a more direct indication
of the functional dependencies between genes. Other work
(Kelley and Ideker, 2005) has successfully combined GI
measurements with PPI information. Similarly incorporating
PPI and other data into our method could likewise provide
more specific interpretations for some of the relationships
encoded in our detailed APNs, and is a direction for further
investigation.

Ongoing technological developments in both genetics and
imaging are enabling the measurement of GI data at a genome-
wide scale, using high-accuracy quantitative phenotypes that
relate to particular biological functions. These methods can
help elucidate a broad range of pathways by using different
molecular phenotypes as reporters. Using new methods such
as RNAi-based approaches, such assays will soon be available
for higher-level organisms, including human cells (Berns et al,
2004; Moffat et al, 2006; Firestein et al, 2008). A method that
provides a high-quality de novo reconstruction of functional
gene networks can thus provide an important tool in under-
standing human pathways.

Materials and methods

Data set

The data set of Jonikas et al (2009) contains 444 genes that were
observed to significantly change the UPR phenotype. For these genes,
the phenotypes of 86 396 double mutants were measured. Jonikas et al
also compute, for each double mutant aAbA the typical GI value
e(aAbA). This typical value represents the case where the two genes do
not interact genetically. Roughly, the function is computed using a
standard multiplicative model of the reporter levels for the two
individual mutants, modified by incorporating a Hill function to model
the saturation of the reporter signal. We use the same function and
parameters fit to the overall GI data set by Jonikas et al (2009). The
majority of pairs lie close to the typical interaction level, leaving only a
small set of pairs that deviate significantly, thus being plausible
candidates for GIs. Of the 444 genes in the data set, we selected those
that induced UPR beyond wild-type levels, displayed an alleviating
interactions with HACI or IREI (indicating dependence on the
transcriptional regulators of the reporter), were measured against at

© 2010 EMBO and Macmillan Publishers Limited

Automated identification of pathways from quantitative Gl data
A Battle et a/

least 40 other genes, and whose data fell close to their typical
interaction curves. In addition, we threw out all data for gene pairs
where the cell count was low (fewer than 350 per well) in over 60% of
the attempted measurements. The resulting data set comprised 178
genes and 20778 GI measurements.

Activity pathway network

We represent an APN as a Bayesian network (BN) (Pearl, 1988). For
each gene in our data set, a random variable capturing the activity of its
gene product is represented by a node in the network. In addition, we
include one node (Reporter) representing the measured quantitative
phenotype (in our case the UPR reporter). Because of the sparsity of the
measurements—each experiment provides activity levels only for the
reporter and the two deleted genes—we do not attempt to reconstruct
the parameters quantifying the interactions between the variables of
the network. Standard BN learning methods that handle incomplete
data (Friedman, 1998) are unsuitable when most of the values are
unobserved, and, indeed, performed very poorly when applied to
our GI data (results not shown). Rather, we use the conditional
independence assumptions encoding the structure of the BN (Pearl,
1988; Sprites et al, 1993), seeking to find a network that encodes
independence assumptions that are well supported by the GI
measurements. For instance, if gene A appears fully epistatic to gene
B in the data, the network should indicate that the reporter level is
independent of the activity level of B given the activity level of A, an
independence property that is encoded by a linear pathway structure.
The ‘Reporter’ node is always a descendant of all other nodes in our
network, as GI measurements reflect only downstream effects of other
genes on the reporter.

Scoring of pairwise network structures

The score of each candidate APN N is derived from local scores over
pairwise relationships in the network structure, based on data for each
corresponding pair of genes. For a given pair of genes A and B, we
consider all possible relationships r (listed in Table I below), which
may characterize their relationship in network N. For each such
pairwise relationship, we defined a quantitative reporter value
n-(aAbA) that we expect for a gene pair A, B with this relationship.
The expected values are defined in terms of the reporter values of the
two individual mutants, denoted R(aA) and R(bA), and the typical
interaction value e(aAbA), which is computed as in Jonikas et al
(2009). In detail, p,(aAbA) is defined according to Table I.

Note that these expected values p, are in agreement with the
conditional independencies encoded by the BN structure. For example,
if A and B are in a linear pathway with A downstream, the conditional
independencies encoded by the BN imply that the reporter is
independent of B given A. This implies that in the context of knocking
out gene A (which fixes its activity to zero), altering the activity of gene
B has no further affect on the reporter, and thus p.(aAbA)=R(aA).

In each case, the score given to relationship r for pair (A, B) is based
on a Gaussian distribution, where we evaluate the probability of
observing the actual measured reporter value R(aAbA) given the
signature outcome p,(aAbA). Specifically, we evaluate

1
202

score(r) = (R(AaAb) — i, (AaAb))*+log(p(r)).

The variance o2 used was the empirical variance of repeated reporter
level measurements, and logp(r) represents the prior probability of
any given relationship. The distribution p(r) was estimated directly
from frequencies obtained from the data by classifying each data point
according to the relationship whose mean fell closest to the observed
GI measurement. In the case of missing pairwise GI measurements, the
corresponding score will simply be logp(r).

Global APN score

We constructed a distribution over complete APNs N based on the local
scores described above. More precisely, for candidate APN N, we find
all consistent pairwise network structures—that is, for each pair of
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Table I Expected reporter levels

Relationship r Network structure w-(@aAbA)
A and B in a linear pathway, A downstream O R(aA)

A and B in a linear pathway, B downstream R(bA)

A and B affect the reporter separately ‘ e(aAbA)

A and B are partially interdependent, but each also has
a path to the reporter not dependent on the other

| %

0.5 x (e(aAbA) + max(R(aA), R(bA)))

For each possible relationship r between a pair of genes, we show the corresponding network structure visually, and specify the expected reporter level p,(aAbA). For a
candidate APN, these values are used to compute local scores for the pairwise relationships implied by the APN, and the local scores are then combined to compute the

global APN score.

genes, we determine which pairwise relationship r holds in N (linear
pathway, independent, or partial dependence), and compute the
pairwise score, score(r). Note that to determine which relationship
holds between genes A and B in N, we must consider all paths from
A to ‘Reporter’ node and from B to ‘Reporter; which may run through
several other nodes, as shown in Figure 1C. In addition to score(r), we
compute an additional score for every possible edge e in N, based on
the observation that if two nodes are directly linked in N, their
structural relationships to other nodes in the network will be similar,
and thus on expectation their GI measurements will also be similar.
To explain this intuition at a high level, if N includes an edge from A to
B, then the set of nodes that depend on A and the set that depend on B
will overlap significantly. For instance, every ancestor of A must be an
ancestor of B, and every descendant of B must be a descendant of A.
This implies that we expect gene A and gene B to have significant GIs
with similar sets of genes, and thus that their GI profiles are likely to be
similar. To encode a structural preference for placing an edge between
nodes with similar GI profiles, for each edge e in N, we compute
score(e) based on the Pearson correlation between the GI profiles of the
two genes connected by e. We also penalize score(e) by a constant
(C=2.8) to penalize overly complex or dense networks.
The final distribution is defined as

>

T consistent with N'

1
=— exp

PN) =

score(r) +

Z score(e)

ec edges(N)

The use of this correlation-based score(e) in addition to score(r) helps
handle missing data and borderline measurements (where multiple
relationships r are similarly plausible). One could imagine adjusting
the balance between the strength of score(e) and score(r) in our
method, but due to a lack of supervised data, we simply left them
equally weighted to avoid excessive manual tuning.

Sampling

Given the distribution P(N) defined above, we apply annealed
importance sampling (AIS) (Neal, 1998) to collect fully specified
APN structures, which induces an exponentially large state space. In
addition, P(N) defined above is likely to have many modes; thus, AIS
is particularly appropriate for our K APNs sampled randomly
from P(N). AIS is an MCMC method designed to produce independent
samples even when applied to complex multi-modal distributions. By
using multiple independent annealing runs, AIS helps address the slow
mixing time often encountered in using MCMC for such distributions.

To sample from a desired distribution such as P(N), AIS uses a
sequence of helper distributions g;(N) ... g,(N), and Markov chain
transition probabilities T; for which the corresponding g; is invariant.
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To generate a single importance weighted sample, the AIS procedure
specifies that we sample an initial network n, directly from g,, and
then sequentially apply transitions according to T,_,...T,. We
compute an importance weight w as we go, and take the network n;
resulting from the final transition from T; as our sample. Although in
principle we can use arbitrary g;, the procedure provides good
estimates if g are increasingly good estimates of P(N). Thus, we used

the distributions g,=uniform, goocP(N), and g; = qg’ qll,fﬁ’ for a
sequence 1=By>p;>...>P,=0. We used settings p=1000, and p;
falling off exponentially according to exp(—j/200).

We now describe the construction of T; for our domain. At each step
j<p, Tj is specified using a standard Metropolis-Hastings construc-
tion. We propose a modification n’ to the existing structure n,
according to a distribution S(n, n'). The modification is accepted, and
n;_; is set to n’, with probability

4;(n-1)S(nj-1, 1)
q(1)S(ny, 1)
Otherwise, the move is rejected and n;_,= n;.

Our proposal distribution S(n, n’) remains fixed for all steps j.
Inspired by the particular form of our structure score, we included
some non-standard structure search operators to generate a candidate
n’ from n. We considered the following operators: inserting a node into
alinear pathway, popping a node out of a linear pathway, swapping the
order of two nodes in a linear pathway, detaching an entire linear
pathway and reattaching it elsewhere in the network, and adding or
deleting an edge. At each step in the sampling procedure then, our
proposal distribution S is the uniform distribution over legal networks
that can be constructed by applying any single structure search
operator to n;.

At the end of the annealing schedule of each independent run k, we
sample a single APN N,=n,;, and save the final importance weight
as wy. The confidence in any given substructure g is then computed as

B K| wy - 5[Ni consistent with g]
= K
D ket Wk
where § is the indicator function. In many cases, including evaluations
described in this paper, we are interested in the probability that a set

of genes G occur together in a single linear pathway (in any order).
We will denote this P(G), which we find by computing

P(substructure g)

_ S"k_, W - 8[G occur in single linear chain in Ny]
it Wi ‘
For the ER data set, we sampled K=500 APNs. Computational analysis

shows that our AIS sampler produces highly repeatable estimates
of the probabilities of different structural features (Supplementary

PL(G)
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Figure 2), indicating that our runs are sampling from the specified
posterior distribution.

Pseudocode for APN reconstruction

Pre-compute score(r) for every pair of genes, and each possible
relationship r

Pre-compute score(e) for every pair of genes
AIS procedure:
P(N) defined by pre-computed score(r), score(e)
Specify distributions g,,_;.. ¢; to approach P(N)

For k=1 ... K:
p:=1000
Sample initial network n, from distribution g,=uniform
For j=p—1 ... 1:

Propose network N; according to uniform distribution over
legal structure moves from Nj_,
Accept N; according to Metropolis-Hastings equation for g;
Update importance weight w
Save sample Ny= n; and wy
Return samples networks N;... Nx and importance weights

Computation of likely pathways and confidence estimates

See Supplementary information for MATLAB implementation.

Missing Gl value prediction

Using an initially available set of GI measurements (a subset of the data
for our full experiments), with 16952 measurements observed, we
applied our method to generate an ensemble of 500 APNs. We then
evaluated, for each pair of genes (A, B), the probability P, ({A, B}) that
they are in a linear pathway. For comparison, we implemented
Gaussian process (Williams and Rasmussen, 1996) regression using a
kernel constructed from the Pearson correlation of GI profiles, and
used this to predict unseen GI values. We then performed the
additional GI assays, and constructed a test set of 78 measurements.
We selected the test gene pairs A, B such that the original data set
contained several measurements for both genes—that is for many
genes C, we observed R(aAcA) and for many D we observed R(bAdA).
We required that the geometric mean of the number of these training
measurements for A and the number of training measurements for B by
at least 180. Within this set, we identified a positive set of gene pairs
with significant alleviating GIs, defining an interaction to be alleviating
if the observed GI interaction score was negative with a magnitude
greater than |R(AaAb)—max(R(Aa), R(Ab))|. We then attempted to
predict whether a test interaction was alleviating using the probability
P.({A,B}) derived from our APNs, and produced an ROC curve. We
compare these results with those obtained using Gaussian processes
(Williams and Rasmussen, 1996) as described above, and with results
from the diffusion kernel GI prediction method of (Qi et al, 2008).

GO co-functionality evaluation

Using GO biological process annotations (Ashburner et al, 2000), we
identified all gene pairs that occur in some GO functional group of 20
genes or less, using these pairs as positive examples and all other pairs
as negative. From our learned networks, we computed P ({A, B}) for
every pair of genes, and evaluated this score as a predictor of GO co-
functionality, generating an ROC curve. As shown in Figure 3A, we also
evaluated the raw GI score of each pair and the correlation of GI
profiles. Finally, we evaluated networks learned without the use of the
correlation component P(N), score(e).

KEGG pathway analysis

We used canonical pathways from the KEGG (Kanehisa and Goto,
2000) to validate our learned networks. First, we identified all gene
pairs that occur together in some KEGG pathway, and used these pairs
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as positive examples and all others as negative. We then computed
ROC curves (Figure 3B) as in the GO analysis. In addition, we
evaluated the ability of our networks to predict ordering within
pathways (Figure 3F). KEGG provided 21 gene pairs (A, B) that occur in
a pathway together and where gene A is known to be upstream of gene
B, and 147 gene pairs that occur in a pathway together but gene A is not
known to be upstream of gene B (see Supplementary information). We
compared the distribution of P (A upstream of B), according to the
sampled networks, for these two sets. We found that the median value
for the positive set was 0.35, and for the negative set was 0.004, and the
two distributions were found to be different according to the Whitney-
Mann test with P=0.0218.

Chemical phenotype evaluation

Using the data set of Hillenmeyer et al (2008), we identified all gene
pairs whose chemical phenotype correlation was reported as >0.7,
using these pairs as positive examples and all others as negative. ROC
curves were computed as for GO co-functionality prediction.

Post-processing and visualization

For confidence estimates presented in this manuscript, we identified
interesting substructures and compute P(substructure g) as described
above. To visualize our results (Figure 2; http://ai.stanford.
edu/~ajbattle/APNgene_viz.html), we also clustered APNs using
hierarchical agglomerative clustering, with features of each sampled
APN composed of the list of edges and the list of separating
relationships present in the APN. Edges and paths shown all occur
with P>0.5 according to the aggregated samples. For display, we
also collapse sets of nodes G where both P,(G)>0.6, indicating
that the genes in G are likely to form a linear pathway, and
P1(G)>1.8xP(specificordering of G), indicating that no particular
ordering within that pathway is dominant. These two thresholds were
chosen by hand, simply to provide empirically clean visualizations,
and do not affect any other estimates reported.

To find structures of interest (Figure 3), we extracted the linear
chains and edges found with highest confidence P(substructure)
among the sampled networks. In general, although it is useful to
visually examine high-scoring networks, we note that for any specific
network relationship of interest, it is essential to use the entire
ensemble of APNs to estimate P(substructure) as a measure of
confidence. Unless this estimate is high, the presence of that
relationship in a single high-scoring APN may be a fluke, and may
not even contribute to the high score of that APN.

Experimental procedures

SGT2, MDY2, and GET3 were deleted in strain BY4741 (WT)
(Brachmann et al, 1998) using the nourseothricin marker using
standard methods (Goldstein and McCusker, 1999). Plasmid pMS113,
containing HA-GFP-Sed5 on a pRS315 backbone, was transformed into
these strains. Strains were grown in SD-LEU. Imaging and quantifica-
tion were performed as described earlier (Jonikas et al, 2009).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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