
diagnostics

Review

Vascular Imaging Techniques to Diagnose and Monitor Patients
with Takayasu Arteritis: A Review of the Literature

Kazumasa Oura * , Mao Yamaguchi Oura, Ryo Itabashi and Tetsuya Maeda

����������
�������

Citation: Oura, K.; Yamaguchi Oura,

M.; Itabashi, R.; Maeda, T. Vascular

Imaging Techniques to Diagnose

and Monitor Patients with Takayasu

Arteritis: A Review of the Literature.

Diagnostics 2021, 11, 1993.

https://doi.org/10.3390/

diagnostics11111993

Academic Editor: Ernesto Di Cesare

Received: 30 September 2021

Accepted: 25 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical
University, 2-1-1 Idaidori, Yahaba-Cho, Shiwa-Gun, Morioka 028-3695, Japan; maooura@iwate-med.ac.jp (M.Y.O.);
ritabash@iwate-med.ac.jp (R.I.); maeda@iwate-med.ac.jp (T.M.)
* Correspondence: koura@iwate-med.ac.jp; Tel.: +81-19-613-7111

Abstract: Takayasu arteritis (TA) is a large vessel vasculitis that causes stenosis, occlusion, and
sometimes the aneurysm of the aorta and its major branches. TA often occurs in young women, and
because the symptoms are not obvious in the early stages of the disease, diagnosis is difficult and often
delayed. In approximately 10% to 20% of patients, TA is reportedly complicated by ischemic stroke
or transient ischemic attack. It is important to diagnose TA early and provide appropriate treatment
to prevent complications from stroke. Diagnostic imaging techniques to visualize arterial stenosis are
widely used in clinical practice. Even if no signs of cerebrovascular events are present at the time of
the most recent evaluation of patients with TA, follow-up vascular imaging is important to monitor
disease progression and changes in the cerebrovascular risk. However, the optimal imaging technique
for monitoring of TA has not been established. Therefore, the purpose of this review is to describe
newly available evidence on the usefulness of conventional imaging modalities (digital subtraction
angiography, computed tomography angiography, magnetic resonance imaging/angiography, duplex
ultrasound, and positron emission tomography) and novel imaging modalities (optical coherence
tomography, infrared thermography, contrast-enhanced ultrasonography, and superb microvascular
imaging) in the diagnosis and monitoring of TA.
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1. Introduction

Takayasu arteritis (TA) was first reported as a case of retinal vasculitis with pulseless-
ness in 1908 by Mikito Takayasu, a Japanese ophthalmologist [1]. TA is a chronic large
vessel vasculitis characterized by stenosis, occlusion, and sometimes the aneurysm of
the aorta and its main branches, especially the subclavian artery, common carotid artery
(CCA), and internal carotid artery [2]. TA often occurs in young women under the age
of 40 years [3]. Early in the course of the disease, symptoms can be nonspecific, making
diagnosis difficult and often delayed [4]. In approximately 10% to 20% of patients, TA is
reportedly complicated by ischemic stroke or transient ischemic attack (TIA) [5]. It is im-
portant to diagnose TA early and provide appropriate treatment to prevent complications
from stroke.

1.1. Pathophysiology of TA

TA is a systemic inflammatory disease that affects the aorta, its major branches, and
major arteries, including the pulmonary artery [6,7]. Inflammatory lesions in patients
with TA lead to thickening of the arterial wall and remodeling of the arterial lumen. Most
often, arterial wall thickening and stenosis/occlusion occur; however, aneurysmal dilata-
tion and arterial dissection are also possible [8–11]. TA is histologically characterized as
“pan-arteritis,” in which all layers of the arterial wall are affected. Arteritis in TA causes
neovascularization, leukocyte infiltration with arterial wall edema, degeneration of smooth
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muscle and elastic components, fibrosis, and hyperplasia of fibroblasts and myofibrob-
lasts [8]. Macroscopically, this is accompanied by wall thickening, causing arterial stenosis
or dilation, which directly affects clinical features and prognosis [8]. Specifically, TA in-
cludes the fibrous thickening of the intima and/or typical atheromatous lesions, destruction
of smooth muscle and elastic layers along with cellular infiltration and fibrosis of the media,
as well as thickening of the adventitia with cellular infiltration around vasa vasorum [12].
The rapid destruction of smooth muscle cells and elastic fibers in the media may lead to the
formation of an aneurysm and/or dissecting aneurysm [13]. Abnormalities in the carotid
artery or subclavian artery may cause cerebrovascular events such as ischemic stroke or
TIA; therefore, particular attention to these arteries is required in patients with TA [14–16].

1.2. TA and Stroke Risk

Stroke remains the second leading cause of death and disability worldwide [17].
Patients with TA have an increased risk of stroke, and a meta-analysis of 21 studies
(n = 3269 patients) reported that the pooled prevalence rate of stroke/TIA in patients with
TA was 15.8% (95% confidence interval [CI]: 10.7–22.6%) [18]. With stroke becoming a
major burden for patients, their families, and society worldwide [17], it is important to
prevent/predict stroke in patients with TA.

1.3. Importance of Follow-Up Vascular Imaging in TA

Diagnostic imaging techniques to visualize arterial stenosis are widely used in clinical
practice. Importantly, however, most patients with TA are diagnosed in emergency set-
tings because ischemic stroke is sometimes the first clinical manifestation of TA [19–21].
Therefore, it is important to suspect TA in cases of juvenile stroke.

Even when no signs of cerebrovascular events are present at the time of the most
recent evaluation of patients with TA, follow-up vascular imaging is important to monitor
disease progression and identify changes in the risk of cerebrovascular events. A recently
published systematic literature review of 287 articles showed no evidence of the optimal
disease monitoring scheme [22]. Assessment of disease activity and damage in TA is
problematic given the chronic, indolent disease course and lack of specific laboratory, and
imaging findings [23]. Recommendations to guide monitoring and treatment of patients
with TA are mainly obtained from observational studies with low levels of evidence [22].
Therefore, higher-quality studies are needed in the future.

Nevertheless, we recently reported a case of TA in a patient who presented with a
thrombosed aneurysm of the right common carotid artery and developed cerebral infarction
after neck massage [24]. In that case, if the patient had undergone follow-up imaging
studies, the risk of embolism could have been predicted. Thus, we suggest that careful
follow-up with carotid imaging should be considered for patients with TA to ensure timely
detection of aneurysmal dilation and intra-aneurysmal thrombi of the carotid artery [24].

The purpose of this review is to describe the newly available evidence on the useful-
ness of conventional and novel imaging modalities for diagnosis and monitoring of TA.

2. Conventional Imaging Techniques for Diagnosis and Monitoring of TA
2.1. Digital Subtraction Angiography (DSA)

Conventional angiography was historically considered the best method for diagnosing
TA [25]. With the development of less invasive imaging techniques, the role of conventional
DSA is changing from a diagnostic tool to a therapeutic option with the implementation of
endovascular treatment [26].

2.2. Computed Tomography Angiography (CTA)
2.2.1. Diagnosis

Figure 1 shows a CTA image of a 66-year-old woman with TA. The image shows
occlusion of the bilateral internal carotid arteries, left CCA, and left subclavian artery. A
study comparing conventional DSA and CTA in 10 patients with TA revealed that CTA
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was more useful in identifying the extent of the lesion because it provided information
about the vessel wall [27]. In a retrospective study using CTA in 15 patients with clinically
diagnosed TA, 11 patients (73%) had major cervical vascular involvement, with the most
pronounced changes in the brachiocephalic trunk, left CCA, and left subclavian artery [28].
In a study of 25 patients with suspected TA based on clinical symptoms who underwent
CTA and conventional DSA, CTA depicted mural changes, including wall thickening,
calcification, and mural thrombi, not seen with conventional angiography. The sensitivity
and specificity of CT angiography in the diagnosis of Takayasu arteritis were 95% and
100%, respectively [29].
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Figure 1. CTA of a 66-year-old woman with TA showing occlusion of the bilateral internal carotid
arteries (white arrow), left CCA (blue arrow), and left subclavian artery (yellow arrow).

2.2.2. Monitoring

The wall thickening of the aorta and the relative post-contrast enhancement ratio of
the vessel wall are reportedly useful in assessing the activity of TA [30]. In the venous
phase, a double ring enhancement pattern is present with clear enhancement of the outer
ring and less enhancement of the inner ring [31]. The double ring enhancement pattern is
strongly suggestive of TA. The obvious enhancement of the outer ring represents active
inflammation of the media and adventitia, and the lesser enhancement of the inner ring
represents swelling of the intima [31]. The low attenuation ring represents low attenuation
of the intima between the outer wall of the augmented vessel and the opaque blood inside
the vessel. The specificity of using this sign to assess disease activity is 100%, and the
sensitivity is 34% to 57% [32].

2.3. Magnetic Resonance Imaging (MRI)/Magnetic Resonance Angiography (MRA)
2.3.1. Diagnosis

MRA is widely used to detect carotid artery stenosis and reportedly has a higher
detection rate than DSA, especially for mild stenosis [33]. The European League Against
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Rheumatism recommends MRI as the first imaging test for patients with suspected TA
because it can evaluate both inflammation of the vessel wall and changes in the vessel
lumen. Additionally, because TA is more common in younger patients, tests with less
radiation exposure are preferred [34]. MRI of patients with TA shows concentric thickening
of the wall, wall mural contrast enhancement on T1-weighted images, and edema on
T2-weighted images (Figure 2a,b) [35]. MRA can also evaluate arterial lumen narrowing,
occlusion, and aneurysm formation [35,36]. In a study on the diagnostic accuracy of
contrast-enhanced three-dimensional MRA for TA when conventional DSA was used as
the reference, the sensitivity and specificity of contrast-enhanced three-dimensional MRA
were 100% [37].
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Figure 2. MRI of an 18-year-old female patient with TA. (a) The T2-weighted image shows a
ring-shaped high signal along the intima in the aortic wall (arrow), and (b) the contrast-enhanced
T1-weighted image shows a contrast effect in the aortic wall (arrow).

2.3.2. Monitoring

Choe et al. [38] reported that the disease activity determined using contrast-enhanced
MRI was concordant with the clinical findings in 88.5% of patients, with the erythrocyte
sedimentation rate in 92.3% of patients, and with the C-reactive protein concentration in
84.6% of patients. An MRI study using gadofosveset trisodium as an intravascular contrast
agent showed high sensitivity (100%) and specificity (89%) in differentiating active and
inactive TA [39]. Assessment of TA activity by MRI should be done carefully because
false-positive results are often seen [40]. The usefulness of edema-enhanced MRI as the
sole guide to disease activity and treatment of TA is unclear because of the inconsistencies
in the presence or absence of vessel edema and subsequent anatomical changes [41].

2.4. Duplex Ultrasonography (DUS)
2.4.1. Diagnosis

DUS is a reliable tool for characterizing inflammation in the vessel wall and for
monitoring hemodynamic changes in response to treatment in patients with TA [42].
Maeda et al. [43] reported that in patients with active TA, B-mode ultrasonography reveals
a long segment with homogeneous, mid-echogenic circumferential arterial wall thickening,
termed the “macaroni sign” (Figure 3a,b). In one meta-analysis, the pooled sensitivity of
ultrasonography for TA was 81%, and the pooled specificity was 100% compared with
clinical criteria [32]. In addition, as stated by the authors, this extremely high specificity can
be explained by the fact that the studies included in the meta-analysis were case-control
designs, comparing patients with longstanding TA versus healthy controls or patients
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with systemic lupus erythematosus [32]. Therefore, the specificity of DUS for TA is likely
overestimated [32].
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female patient with TA showing the “macaroni sign”: circumferential wall thickening of the CCA.

2.4.2. Monitoring

Svensson et al. [42] reported that patients with clinically active TA had a markedly
increased intima-media thickness, increased vessel diameter, intramural arteries, and
hypo-echogenic areas interpreted as edema of the vessel wall. They proposed that the
Takayasu ultrasound index (which is a summary of the maximum intima-media thickness
measurements of the left and right CCAs, brachiocephalic trunk, and aortic arch divided by
the number of vessels with reliable intima-media thickness measurements) may be useful
for detecting the activity of TA [42].

2.5. Positron Emission Tomography (PET)
2.5.1. Diagnosis

18F-Fluorodeoxyglucose (FDG)-PET has been used for the diagnosis and assessment
of TA (Figure 4a,b) [44]. FDG-PET is often used in conjunction with CT. The transport of
FDG in capillaries correlates with glucose uptake. Because activated white blood cells have
increased glucose metabolism, FDG-PET is frequently used in infectious and noninfectious
inflammatory diseases [44]. It provides functional information on the metabolic activity of
organs and tissues. Therefore, FDG-PET can be used before morphological abnormalities
and inflammatory edema develop, contributing to early diagnosis [45]. FDG-PET is also
reportedly useful for diagnosis and evaluation of disease activity in patients who have TA
with atypical clinical manifestations [46]. Several cases of TA diagnosed by FDG-PET in
patients with fever of unknown origin have been reported [47,48].

2.5.2. Monitoring

FDG-PET is very useful for early diagnosis and evaluation of disease activity in pa-
tients with TA [32]. In one meta-analysis, the pooled sensitivity and specificity of FDG-PET
for disease activity compared with clinical assessment were 81% (95% CI: 69–89%) and 74%
(95% CI: 55–86%), respectively [32]. In two studies, follow-up FDG-PET data showed an
improvement in FDG-PET abnormalities after treatment, and the improvement in FDG-PET
findings was consistent with clinical activity [49,50]. Tezuka et al. [51] defined the maxi-
mum standardized uptake value (SUVmax) as the maximum uptake value in the manually
drawn volume in the vascular uptake region and reported that SUVmax was significantly
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higher in patients with active TA than inactive TA and without vasculitis, with a sensitivity
of 92.6% and specificity of 91.7% for evaluating active TA. In a study of FDG-PET in patients
scheduled for carotid endarterectomy (CEA), FDG uptake in carotid plaques was measured
as the ratio of the plaque to blood concentration (target/background ratio) [52]. A strong
correlation was found between the mean FDG uptake (mean target/background ratio)
and the mean degree of inflammation (mean CD68 staining rate) in carotid pathology
specimens [52]. The European Association of Nuclear Medicine recommends use of the
target/background ratio instead of the SUV for quantification of FDG uptake in atheroscle-
rotic plaques [53]. This is because use of the ratio of the two measurements reduces the
effect of patient weight, radioactive dose, and acquisition time errors on quantification of
the signal [53]. The PET vascular activity score is a new PET-based parameter created by
integrating visual scores of nine susceptible major arteries and can quantitatively reflect
the global inflammatory burden [54]. This score is reportedly superior to the SUVmax in
qualitative and quantitative assessment of TA activity [55].
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3. Comparative Analysis of Available Imaging Techniques

The main advantages and disadvantages of conventional imaging techniques are
summarized in Table 1. Because DSA is highly invasive, it is being used less frequently
for diagnosis [26]. Although CTA is useful for diagnosis [27–29], it uses radiation and is
therefore not optimal for regular monitoring. MRA is considered useful as the first test
for diagnosis because it is noninvasive and does not involve exposure to radiation [34];
however, its usefulness for monitoring has not yet been established [40,41]. DUS can clearly
show the CCA, vertebral and subclavian arteries, brachiocephalic trunk, renal arteries,
and other frequently involved vessels. However, the descending thoracic aorta can only
be depicted by transesophageal ultrasonography [56]. DUS is considered useful for both
diagnosis and monitoring because it is highly accessible, inexpensive, noninvasive, and
radiation-free; notably, however, it is more subjective than other tests [42]. FDG-PET may
be particularly useful as a monitoring method [32,44], but it has low accessibility and
involves radiation exposure.
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Table 1. Comparative analysis of conventional imaging techniques in diagnosis and monitoring of TA.

Modality Accessibility Ease of Use Purpose/Use Radiation Principal Limitations

DSA Low Low Diagnosis/Treatment Yes Invasive; lack of information on
the vessel wall

CTA High High Diagnosis/Monitoring Yes
Cannot be used in patients with

renal failure or allergies to
contrast media

MRI/MRA Low High Diagnosis No

Cannot be performed when some
types of metals are present in the

body or in patients with
claustrophobia

DUS High High Diagnosis/Monitoring No
Examiners’ technical proficiency

strongly affects the result;
subjective; acoustic shadow

PET Low High Diagnosis/Monitoring Yes
Lack of criteria for positivity

(FDG uptake); low resolution for
small vessels

4. Novel Imaging Techniques for TA
4.1. Optical Coherence Tomography (OCT)

OCT is used to obtain tomographic images based on the coherence of light. It uses
infrared light, which confers good resolution but has less-than-optimal tissue penetra-
tion [57,58]. OCT can be used to clarify ambiguous ultra-sonographic and angiographic
images; by providing detailed microstructural information on plaques, OCT can identify
the features of vulnerable carotid plaques and possible defects after stent implantation.
It can also be used to assist carotid artery stenting [59–61]. In one study, OCT detected
97% of lesions in patients with intracranial atherosclerotic stenosis [62], indicating high
sensitivity. OCT can assess the severity of stenosis and guide treatment, has good spatial
resolution, and can determine vessel size and plaque morphology [63]. Several case reports
have documented the usefulness of OCT for coronary artery evaluation in patients with
TA [64,65]. The limitations of OCT are its invasive nature and use as an intravascular
imaging method because it only penetrates to a depth of about 2 to 3 mm.

4.2. Infrared Thermography

Because of a local acute inflammatory response, atherosclerotic plaques cause a local-
ized temperature increase [66]. A histological study of 48 patients who underwent CEA
showed an inverse correlation between the thickness of the fibrous cap of the plaque and
the surface temperature of the plaque [66]. If the carotid artery is partially or completely
occluded, effective blood perfusion to the skin tissues of the face and forehead will be
adversely affected in contrast to normal carotid artery blood flow, and the skin temperature
in the area will also be affected. In a study using infrared thermography, 57% of 30 patients
with angio-graphically proven stenosis showed unilateral forehead cooling of ≥0.7 ◦C [67].
Two provocative tests, the facial cooling and head clamp tests, increased the sensitivity to
83% [67]. In another study, ocular temperature was negatively correlated with the degree
of carotid stenosis in 24 patients (r = −0.67, p < 0.001) [68].

One case report described a 39-year-old patient with TA who showed no abnormalities
on contrast-enhanced CT and carotid DUS but exhibited increased thermal retention in the
left carotid artery and aortic arch on infrared thermography [69]. The symptoms improved
after treatment with steroids, and the abnormalities disappeared on repeat infrared ther-
mography performed 6 months after the treatment [69]. Thus, infrared thermography may
also be useful for monitoring TA. Limitations of thermal imaging cameras include the fact
that thermal imaging cameras with high spatial resolution are expensive, interpretation
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requires extensive training, and the working environment (e.g., temperature, humidity,
and airflow) can significantly affect the results.

4.3. Contrast-Enhanced Ultrasonography (CEUS)

Intraplaque hemorrhage has been reported to be associated with histologically dis-
rupted plaque surfaces [70]. Histological neovascularization predicts vulnerability of
carotid plaques [71–73], and because neo-vessels are immature and fragile, local inflam-
matory injury or shear stress from the arterial lumen causes them to collapse, leading to
intraplaque hemorrhage [72,74]. CEUS provides real-time images of microbubbles, which
serve as intravascular tracers that enter the plaque from the lumen and adventitia through
neo-vessels (Figure 5) [75–77]. Recent studies have shown that visual or quantitative evalu-
ation of contrast effects using CEUS can be used to assess the histopathology of carotid
plaque neovascularization, suggesting that high contrast effects in plaque may reliably
predict the presence of abundant neovascularization, plaque rupture, and intraplaque
hemorrhage [72,74,75,78,79]. We reported that preoperative CEUS predicted micro-embolic
signals on transcranial Doppler during carotid artery exposure in 70 patients who were
candidates for CEA with a sensitivity of 90% and specificity of 76% [80]. We also reported
that the signal intensity of plaques on MRI was associated with the contrast effect on CEUS
in patients with severe carotid artery stenosis (≥70%) [81]. In a retrospective study of 71 pa-
tients with TA undergoing carotid CEUS, a significant correlation was found between the
CEUS results and clinical disease activity [82]. In addition, in 22 patients who underwent
both CEUS and FDG-PET, the CEUS results were correlated with vascular FDG uptake [82].
When vascular inflammation was defined as FDG uptake of visual grade ≥ 2, carotid CEUS
showed 100% sensitivity and 80% specificity [82]. According to the receiver operating char-
acteristic analysis, the combination of CEUS parameters and the erythrocyte sedimentation
rate was able to distinguish between active and inactive TA with a sensitivity of 81.1% and
specificity of 81.5% [83]. Limitations of CEUS include loss of the advantages of ultrasound
(such as noninvasiveness and ease of use) because of the use of an ultrasound contrast
agent as well as the need for training to perform the test and interpret the results [84].
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4.4. Superb Microvascular Imaging (SMI)

SMI is a novel vascular imaging mode that allows for visualization of low-velocity
microvascular flow [85]. The SMI technique for motion artifact-specific characteristic
analysis enables filtering that eliminates only the motion artifact and facilitates visualization
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of low velocity blood flow [84]. One study showed that moderate to severe intraplaque
neovascularization detected by SMI was more prevalent in subjects with a history of stroke
or TIA or with thicker plaques [86]. SMI is a promising noninvasive alternative to CEUS
for the assessment of carotid plaque stability [87] and may help prevent ischemic stroke
(Figure 6a,b) [88]. We reported that preoperative SMI for cervical carotid artery stenosis
predicts the development of micro-embolic signals on transcranial Doppler during exposure
of the carotid arteries in CEA [89]. SMI is a simple, safe, and noninvasive technology that
has excellent agreement with CEUS [90] but does not require a contrast agent [84]. In
two recent case reports of, SMI facilitated detection of neovascularization of the arterial
wall without contrast agent in patients with TA [91,92]. Carotid artery neovascularization
detected by SMI may be a marker of disease activity in patients with TA [93]. Limitations
of SMI are the current lack of clinical standards and the need for training to perform the
test and interpret the results [94].
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5. Conclusions and Perspectives

Early detection and monitoring of TA with appropriate imaging techniques are very
important to prevent complications such as stroke and to improve the prognosis. Although
conventional imaging techniques are reportedly useful in diagnosis and/or monitoring,
all of them have specific advantages and disadvantages; therefore, the technique should
be chosen based on the purpose of the test (diagnosis or monitoring), availability, and the
patient’s characteristics. MRA and DUS are useful to avoid radiation exposure, especially in
younger patients. However, although MRA is recommended for diagnosis, its usefulness as
the sole guide for disease activity and treatment of TA is unclear because of inconsistencies
in the presence of angioedema and subsequent anatomical changes. Conversely, DUS is
highly dependent on the examiner’s skill level, is more subjective than other tests, cannot
depict vessels with calcification, and cannot be used to observe vessels throughout the
body. Novel imaging techniques such as OCT, infrared thermography, CEUS, and SMI
may be useful to improve the accuracy of diagnosis and/or monitoring of TA. Although
the available data are promising, only small studies have been performed to date, and
future studies involving larger patient series or cohorts are needed. Moreover, other
novel imaging techniques, such as photoacoustic tomography, should be tested in the
diagnosis or monitoring of TA [95]. Other approaches, such as nuclear magnetic resonance
spectroscopy-based serum metabolomics study, may also find a place in monitoring of
disease activity in the future, but the evidence is limited at present [96].
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