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Integrins are a family ofmembrane-spanning proteins that are important receptors for cell adhesion to extracellularmatrix proteins.
They also provide connections between the extracellular environment and intracellular cytoskeletons and are responsible for
activation of many intracellular signaling pathways. In vitro and in vivo data strongly indicate that integrin-mediated signaling
events canmodulate the organization of the actin cytoskeleton in trabecular meshwork (TM) cells and are associated with astrocyte
migration andmicroglia activation of the optic nerve head in patients with primary open angle glaucoma. Consequently, increase in
resistance in the TM outflow pathways and remodeling of the optic nerve head occur, which in turn increases intraocular pressure
(IOP), adds additional mechanical stress and strain to optic nerve axons, and accelerates damage of axons initially caused by optic
nerve head remodeling. Integrins appear to be ideal candidates for translating physical stress and strain into cellular responses
known to occur in glaucomatous optic neuropathy.

1. Introduction

Glaucoma is the second leading cause of blindness world-
wide. It is estimated that there are 60.5 million people with
glaucoma worldwide in 2010 and will increase to 79.6 million
by 2020 [1]. Glaucoma is commonly defined as an optic
neuropathy that is associated with characteristic structural
damage to the optic nerve and associatedwith visual dysfunc-
tion that might be caused by various pathological processes
[2–4]. Risk factors related to glaucoma include intraocular
pressure (IOP), age, family history, clinical appearance of the
optic nerve, race, and potential vascular disease [5–8]. IOP
remains the most prominent risk factor of all, and lowering
IOP is the mainstay of nearly all contemporary glaucoma
therapies.

Several prospective randomized multicenter studies have
identified that IOP reduction with either medication or
surgery can lower the incidence of the disease and slow down
progression of vision loss in glaucoma patients [9–15]. If
IOP is beyond the tolerable range of the optic nerve, retinal

ganglion cells (RGCs) axons degenerate at the optic nerve
head in the region of the lamina cribrosa, a process that
occurs in parallel to the apoptotic death of retinal ganglion
cells (RGCs). The exact mechanisms that lead to the death of
RGCs in glaucoma have not been fully identified but might
include blockade of both anterograde and retrograde axonal
transport which lead to deprivation of neurotrophic signals
[4]. Glaucomatous neuropathy might occur in parallel to
extracellular matrix (ECM) remodeling of the optic nerve
head [4, 16, 17].

IOP is generated in the anterior eye via the aqueous
humor circulation system. The trabecular meshwork (TM)
outflow pathway offers a certain resistance to aqueous humor
outflow, and, in response to the resistance, IOP is generated
[18, 19]. In addition, there is an alternative uveoscleral
pathway along the interstitial spaces of the ciliary muscle
and the supraciliary space, of which physiological role is not
fully understood [20]. Much evidence indicates that normal
aqueous humor outflow resistancemainly resides in the inner
wall region of the TMoutflow pathways [18, 21]. However, the
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exact structure and molecular nature of trabecular outflow
resistance in the inner wall region are not clear. Two hypothe-
ses have been proposed for the trabecular outflow resistance
[22]. One hypothesis is based on the observation that banded
fibrillar ECM in the juxtacanalicular region of the TM in
glaucomatous eyes is significantly thicker than that seen in
normal eyes [23, 24], which leads to the assumption that
the elevation of outflow resistance is attributable to changes
in the quantity and property of the ECM in this region
[25, 26].The ECMhypothesis is supported by the observation
that perfusion of anterior eye segments in organ cultures
with metalloproteinases that digest ECM components leads
to a reversible increase in outflow facility [27]. Another
hypothesis is based on the discovery that the cells of TM have
contractile properties [28] and that an increase in TM tone
increases outflow resistance [29]. Thereby, an increase in the
contraction state of TMcells in glaucomamight lead to higher
rigidity of the TM and to an increased outflow resistance.
The contractility hypothesis is supported by the observation
that experimental disruption of the actin cytoskeleton of
the TM decreases outflow resistance [30, 31] and by recent
findings which provide evidence that the TM of patients with
primary open angle glaucoma (POAG) is stiffer than that
of age-matched controls [32]. The two hypotheses are not
mutually exclusive, as it is possible that TM cells that increase
their contractile capabilities simultaneously synthesize more
fibrillar matrix to transmit more force.

Research efforts have been put in the last decade to
elucidate cells response and ECM remodeling process in the
TM and the optic nerve head in glaucoma, and integrins
have been identified as very important participants in this
process. The purpose of this paper is to summarize findings
on integrins in pathogenesis of glaucoma.

2. The Integrins and Their Ligands

Integrins exist as heterodimers with 𝛼 and 𝛽 subunits that
interact noncovalently. At present, eighteen 𝛼- and eight 𝛽-
subunits have been identified and known to form 24 different
heterodimers (Table 1), and an addition of six 𝛼-subunits and
one 𝛽-subunit is now speculated, based upon analysis of the
human genome [33–35]. Integrins are a family of membrane-
spanning proteins that are important receptors for cell adhe-
sion to ECMproteins.They also provide connections between
the extracellular environment and intracellular cytoskeletons.
In addition to their roles with ECM, they are now known to
be responsible for activation of many intracellular signaling
pathways to mediate many cell-cell interactions including
those involved in inflammation, hemostasis, and cancer
metastasis and to serve as cell receptors for viruses and
bacteria [34].

Each integrin subunit appears to have one or more ligand
to which it can bind. Specificity of ligand recognition for
a heterodimer is influenced by the specific combination of
subunits and relative affinity and availability of the ligands
[36]. In general, integrin ligands can be classified into four
categories: ECM, soluble molecules, cell-cell, and pathogens
and toxins [33]. Ligands of integrins are listed in Table 1

Table 1: Human integrin subunits and their ligands.

Integrin Ligand Type of
receptors

𝛼5𝛽1 Fibronectin

RGD
receptors

𝛼8𝛽1 Fibronectin/vitronectin/nephronectin
𝛼v𝛽1 Fibronectin/vitronectin
𝛼v𝛽3 Vitronectin/fibronectin/fibrinogen
𝛼v𝛽5 Vitronectin
𝛼v𝛽6 Fibronectin
𝛼v𝛽8 Vitronectin
𝛼IIb𝛽3 Fibrinogen/fibronectin
𝛼1𝛽1 Collagen I/collagen IV/collagen IX

Collagen
receptor

𝛼2𝛽1 Collagen I/collagen IV/collagen IX

𝛼10𝛽1 Collagen II/collagen IV/collagen
VI/collagen IX

𝛼11𝛽1 Collagen I/collagen IV/collagen IX
𝛼3𝛽1 Laminin-511/laminin-332/laminin-211

Laminin
receptor𝛼6𝛽1 Laminin-511/laminin-332/laminin-

111/laminin-411
𝛼6𝛽4 Laminin-511/laminin-332

𝛼7𝛽1 Laminin-511/laminin-211/laminin-
111/laminin-411

𝛼4𝛽1 Fibronectin/VCAM-1

Leukocyte-
specific
receptors

𝛼4𝛽7
𝛼9𝛽1

MadCAM-1/fibronectin/VCAM-1
tenascin-C/VEGF-C/VEGF-D

𝛼D𝛽2 ICAM-3/VCAM-1
𝛼L𝛽2 ICAM-1/ICAM-2/ICAM-3/ICAM-5
𝛼M𝛽2 iC3b/fibronectin + more
𝛼X𝛽2 iC3b/fibronectin + more
𝛼E𝛽7 E-cadherin
RGD: arginine-glycine-aspartate, MadCAM: mucosal addressin cell adhe-
sion molecule, ICAM: intercellular adhesion molecule, VCAM: vascular
celladhesion molecule, and VEGF: vascular endothelial growth factor.

[36, 37]. Integrins can be divided into four major types
based on ligand sequences that they recognize, which are
arginine-glycine-aspartate (RGD) receptors, collagen recep-
tor, laminin receptor and leukocyte-specific receptors [37]
(Table 1).

3. Integrins in TM

TM cell-matrix adhesion is crucial for themaintenance of the
aqueous humor outflow resistance. ECM components in TM
include fibronectin, laminin, vitronectin, types I, III, IV, V,
and VI collagen, fibrillin-1, decorin, and others (Table 2) [38–
49]. Fibronectin, vitronectin, and collagen types I and IV are
the major extracellular matrix proteins in human TM [50]
and are ligands of integrins as well. Many biological activities
of ECM in TM are mediated via integrin-ECM interactions
[51]. It has been identified that steroid significantly increases
fibronectin expression in TM cells [52, 53]. Tissue/organ
culture experiments suggest that overexpression of ECM
components (laminin and collagen type IV, etc.) by TM cells
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Table 2: The extracellular matrix and integrins in trabecular mesh-
work and optic nerve head.

Extracellular matrix Integrin subunits
Trabecular meshwork

Fibronectin 𝛼 l
Laminin 𝛼2
Vitronectin 𝛼3
Collagen type I 𝛼4
Collagen type III 𝛼5
Collagen type IV 𝛼6
Collagen type V 𝛼v
Collagen type VI 𝛽1
Collagen type XII 𝛽3
Fibrillin-1 𝛽4
Decorin 𝛽5
Elastin 𝛽6
Cochlin 𝛽7
Thrombospondin-1
VCAM-1
Myocilin
Neuropilin-1
Cadherin
𝛽-catenin
Sphingosine 1
Chondroitin sulfate
Heparan sulfate
Tenascin

Optic nerve head
Collagen type I 𝛼l (little expression)
Collagen type III 𝛼2
Collagen type IV 𝛼3
Collagen type V 𝛼4
Collagen type VI 𝛼5
Collagens type VIII 𝛼6
Collagens type IX 𝛼v
Collagen type XVIII 𝛽1
Laminin 𝛽2 (little expression)
Fibronectin 𝛽3 (little expression)
Tenascin 𝛽4
Vitronectin
Elastin
Chondroitin sulfate
Dermatan sulfate
Aggrecan
Entactin/nidogen
Thrombospondin
Thrombomodulin
Endostatin
Cadherin
Periostin
Cartilage linking protein-1

Table 2: Continued.

Extracellular matrix Integrin subunits
Fibulin 1
Decorin
Perlecan
Biglycan
Versican
Fibromodulin

may play a role in the development of outflow resistance and
contribute to the development of steroid-induced glaucoma
and POAG [24, 54, 55].

Integrins play a critical role in TM cell-matrix adhesion.
In TMcell culture, attachment of cells to ECMproteins can be
blocked by specific integrin antibodies, and cell adhesion to
fibronectin and vitronectin can also be inhibited by peptides
containing Arg-Gly-Asp (RGD) sequences [38]. Up to date,
there are thirteen integrin subunits known to be expressed
by TM cells (Table 2) [38, 39, 43], and it is possible that
more subunits might be found in the future. These integrins
are distributed throughout the TM with the peak expression
observed along cells on the beams, and the expression does
not appear to vary with donor age [39]. In cultured human
TM cell lines, expressions of 𝛼2, 𝛼5, and 𝛼v integrin subunits
changed consistently when dexamethasone is used, and there
was no difference in expression patterns of any of these
integrin subunits between cell lines obtained from normal
and glaucomatous eyes [56]. In addition, connective tissue
growth factor can also mediate upregulation of integrin
subunits 𝛼v and 𝛽1 expressions in TM cells [57].

Integrins form important physical links between extra-
cellular environment and intracellular actin cytoskeleton and
may provide a mechanism to detect changes in external
forces in the microenvironment of the TM [58]. Cross-linked
actin networks (CLANs) are originally observed in spreading
cells and are described as actin geodesic domes. CLANs are
composed of interconnected arrays of three-to-five actin fila-
ments extending outward from a central vertex. They may be
precursors to actin stress fibers that regulate contractility in
cells. Studies in cultured anterior segments and cultured TM
cells treated with dexamethasone have suggested that steroid
can lead to rearrangement of actin cytoskeleton into CLANs
that resemble geodesic domes or polygonal actin networks
[59–64]. CLANshave also been observed in culturedTMcells
and in TM cells in isolated meshworks from glaucomatous
donor eyes in the absence of any dexamethasone treatment
[65, 66]. CLANs have also been found in normal TM cells
in isolated meshworks, albeit at a lower frequency than in
glaucomatous TM [66, 67]. Recently, it has been suggested
that CLANs formation in TM cells may reduce contractility
of the tissue by increasing the rigidity of the cells and thus
rendering them unable to change shape and “relax” under
pressure. Alternatively, CLANs formation could impact other
actin-mediated biological processes of the TM that are
required for normal outflow facility such as attachment to
the ECM, phagocytosis, and gene expression [68–70], which
suggests that these actin structures could possibly be involved



4 BioMed Research International

in pathogenesis of steroid-induced glaucoma and other forms
of POAG [62, 63, 68, 70]. CLANs formation can be regulated
by 𝛽1 and 𝛼v𝛽3 integrin signaling pathways. Distinct 𝛽1
and 𝛼v𝛽3 integrin signaling pathways converge to enhance
CLANs formation [42]. 𝛽1-mediated CLAN formation is PI-
3 K dependent, whereas 𝛽3-mediated CLAN formation is
CD47 and Rac1/Trio-dependent and might be regulated by
thrombospondin-1. Both integrin pathways are Src depen-
dent [58, 71]. Therefore, integrin-mediated signaling events
can modulate the organization of the actin cytoskeleton
in TM cells and consequently participate in regulation of
cytoskeletal events previously demonstrated to be involved in
regulation of outflow facility [42, 51].

It has been found that the active site in the heparin II
(HepII) domain of fibronectin could regulate outflow facility
in cultured anterior segment and disrupt actin cytoskeleton
in transformed human TM (TM-1) cells, and the active
site in the HepII domain is the syndecan/integrin binding
sequence, PPRARI [72]. The PPRARI sequence in the HepII
domain has been shown to serve as a physiological 𝛼4𝛽1
ligand [73], and soluble anti-𝛼4 integrin antibodies could
inhibit Hep II domain-mediated cell spreading and soluble
vascular cell adhesion molecule-1- (𝛼4𝛽1-ligand) induced
cell spreading, which suggests the Hep II domain mediates
cell spreading and stress fiber formation through 𝛼4𝛽1
integrin, a potentially key regulator of tissue contractility
[74]. Recently, it has been reported that 𝛽1 integrin function-
blocking antibody inhibits adhesion and spread of TM cells
on Galectin-8- (Gal8-) coated wells. Phosphorylated myosin
light chain 2 (MLC2) accumulates in cells adhered to Gal8
and is associated with stress fiber formation that can be
abolished by Rho inhibitor, C3 transferase, or Rho-kinase
(ROCK) inhibitor Y27632. These findings suggest that 𝛽1
integrins and the Rho/ROCK/MLC2 signaling pathway may
be involved in Gal8-promoted cytoskeletal rearrangement in
TM cells [75].

4. Integrins in Schlemm’s Canal

It has been found that collagen I, IV, and laminin-511 are
the prominent structural proteins in Schlemm’s canal (SC)
basement membrane [76], and SC cells express 𝛼2, 𝛼3, 𝛼6,
𝛽1, and 𝛽4 integrin subunits, and 𝛼6 is uniquely expressed
by SC cells in situ in the conventional outflow tract and in
vitro by cultured SC cells [76, 77]. The integrin-mediated SC
cell-matrix adhesion may have a critical role in maintaining
a continuous barrier to fluid flow.

5. Integrins in the Optic Nerve Head

Known components of the ECM in the optic nerve head
are listed in Table 2 [78–97]. It is possible that more new
components of ECM in optic nerve head might be found
in the future. The major ECM proteins of optic nerve head
consist of collagen types I, III, V, and VI, along with elastin
in the peripapillary sclera, cores of laminar beams, and
retrobulbar optic nerve septae. The basement membrane
components laminin and collagen type IV are identified

along the margins of the laminar beams in association
with astrocytes and within the beams in association with
capillary vascular endothelium [82, 83]. In addition to this,
chondroitin sulfate- and dermatan sulfate-containing proteo-
glycans have also been identified in the primate optic nerve
head [84]. Chondroitin and dermatan sulfate are localized
to the lamina cribrosa and peripapillary sclera tissues that
are load-bearing structures of the optic nerve head and more
likely to be exposed to IOP [86].

Multiple integrin subunits have been found in the normal
optic nerve head (Table 2). In normal eyes, 𝛼2, 𝛼3, 𝛼6, 𝛽1,
and 𝛽4 integrin subunits are localized in astrocytes along
the margins of laminar beams and within glial columns
[16, 86], which suggests that integrins 𝛼2𝛽1, 𝛼3𝛽1, 𝛼6𝛽1,
and 𝛼6𝛽4 may participate in attachment of astrocytes to
basement membranes via laminin and sense changes in
stress and strain within and anterior to the lamina cribrosa.
𝛼3, 𝛼5, 𝛼6, 𝛼v, 𝛽1, and 𝛽4 integrin subunits are localized
in vascular endothelial cells [86, 98], which suggests that
vascular endothelial cell response to stress may be mediated
by integrins 𝛼3𝛽1, 𝛼6𝛽1, and 𝛼6𝛽4, alongwith 𝛼5𝛽1 and 𝛼v𝛽1.
𝛼1, 𝛽2, and 𝛽3 integrin subunits are rarely expressed in any
of the structures of the optic nerve head with a possible
exception of 𝛽3 in larger blood vessel walls [86]. In glauco-
matous optic nerve head, cells anterior to the compressed
lamina cribrosa show persistent expression for 𝛼2, 𝛼3, 𝛽1,
and 𝛽4 integrin subunits, whereas the expression for 𝛼4
subunit increases and the expression for 𝛼6 subunit decreases
[86]. In eyes with advanced glaucoma damage, reduced 𝛼6
expression and variable expression for 𝛽4 anterior to the
lamina cribrosa suggest astrocyte migration, and increased
𝛼4 subunit expression suggests microglia activation [86].The
heavy expression of integrins in association with astrocytes
migration and microglia activation of the optic nerve head
clearly suggests that these integrins can play an important role
in glaucomatous neuropathy.

6. Concluding Remarks

In vitro and in vivo data strongly indicate that integrin-
mediated signaling events can modulate the organization
of actin cytoskeleton in TM cells and are associated with
astrocytes migration and microglia activation in the optic
nerve head of glaucoma patients. As a result, increase in
resistance in the TM outflow pathways and ECM remodeling
of the optic nerve head occur. While increase in outflow
resistance causes an increase in IOP, and the remodeling
of the optic nerve head accompanies the optic nerve axons
damage. Increase in IOP further adds mechanical stress and
strain to optic nerve axons and accelerates axon damages.
Integrins appear to be ideal candidates for translating physical
stress and strain into cellular responses known to occur in
glaucomatous optic neuropathy.
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