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Urolithin A targets the AKT/
WNK1 axis to induce autophagy
and exert anti-tumor effects in
cholangiocarcinoma
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Urolithin A (UA; 3,8-dihydroxybenzo[c]chromen-6-one), a metabolite generated

by intestinal bacteria during the biotransformation of ellagitannins, has gained

considerable attention in treating several cancers. Cholangiocarcinoma (CCA)

remains one of the most lethal cancers; it grows in a special environment

constantly exposed to both blood and bile. Since UA is known to undergo

enterohepatic recirculation, we hypothesized that UA might have significant

antitumor effects in CCA. Here, we investigated the therapeutic potential of UA

in CCA and aimed to elucidate its mechanisms, including autophagy. UA

treatment inhibited cell proliferation and induced G2/M phase cell cycle arrest

in CCA cells. UA also suppressed cell migration and invasion, but did not cause

apoptosis. Furthermore, Western blotting and immunocytochemistry

demonstrated increased LC3-II accumulation, while electron microscopy

demonstrated induced autophagosomes after UA treatment, suggesting that

UA upregulated autophagy in CCA cells. In xenograft mice treated with UA,

tumor growth was inhibited with increased LC3-II levels. On the other hand,

phospho-kinase array demonstrated downregulation of the AKT/WNK1 pathway.

LC3-II expression was elevated in WNK1 knocked down cells, indicating that

WNK1 is the key signal for regulating autophagy. Thus, UA exerted antitumor

effects by suppressing the AKT/WNK1 signaling pathway and inducing autophagy.

In conclusion, UA, a natural, well-tolerated compound, may be a promising

therapeutic candidate for advanced CCA.
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Introduction

Natural compounds have been extensively researched over the

past several decades for their potential in cancer prevention and

treatment (1). Ellagitannins (ETs) are naturally occurring

polyphenolic compounds with a wide range of pharmacological

effects, including antioxidant, anti-inflammatory, and antitumor

effects (2, 3). ETs are hydrolyzed in the gut to release ellagic acid

(EA), mainly present in pomegranates, strawberries, blueberries,

nuts, and dried fruits (4). However, the absorption of EA is limited

due to its hydrophobic nature (5).

Urolithins are metabolites of EA produced by the intestinal

bacteria (6). Urolithins are much better absorbed than ETs and

EA, and may provide various health benefits such as anti-obesity,

antimicrobial, anti-inflammatory, anti-tumor effects (7–9).

Various types of urolithins have been identified, including

urolithin A (UA; 3,8-dihydroxybenzo[c]chromen-6-one), B

(UB), C, and D (10, 11). Urolithins are produced in the gut

from tetrahydroxy-urolithin by removal of one of the lactone

rings of ellagic acid, and the subsequent removal of a hydroxyl

group, resulting in the formation of UA and UB (11). Of these,

UA is the major microbial metabolite observed in human, which

possess anti-inflammatory and antioxidant properties (12, 13).

UA has been found to induce mitophagy efficiently and improve

mitochondrial function in the model organism, Caenorhabditis

elegans (14). In addition, antitumor effects of UA on lung,

prostate, colon, bladder, pancreatic, and neuroblastoma

cancers have also been demonstrated (15–21). Several reports

indicate that UA induces autophagy, but not mitophagy, in vitro

and in vivo (18, 22, 23). Espı ́n et al. reported the

pharmacokinetics and tissue distribution of urolithins in

Iberian pigs, which feed on oak acorns rich in ellagitannins

(24). An analysis of urolithins in plasma, urine, bile, jejunum,

colon, and feces revealed that UA undergoes enterohepatic

recirculation and, therefore, persists in the body for long

periods (24).

Cholangiocarcinoma (CCA) is the second most common

primary hepatic malignancy, accounting for 10–20% of newly-

diagnosed liver cancers with features of biliary tract

differentiation (25, 26). Unfortunately, most CCAs are

diagnosed at an advanced stage and have to be treated with

systemic chemotherapy instead of surgery. However, effective

chemotherapy for CCA is still limited, and the development of

new therapies is required. Since CCA grows in a special

environment that is constantly exposed to both blood and

bile, we hypothesized that UA would have significant

antitumor effects in CCA because of enterohepatic

recirculation. Despite promising effects in other cancers, the

antitumor effects of UA in CCA are currently unknown. We

aimed to investigate the antitumor effects of UA in CCA and

elucidate its mechanism, including autophagy.
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Materials and methods

Cell cultures

Human intrahepatic cholangiocarcinoma cell lines, HuCCT-1

and SSP-25, were obtained from the RIKEN cell bank. All cell lines

were cultured in RPMI-1640 medium (FUJIFILM Wako Pure

Chemical Corp., Osaka, Japan), supplemented with 10% fetal

bovine serum (FBS), in an incubator with 5% CO2 at 37°C.
Cell viability assays

Cell viability was measured using a Cell Counting Kit-8 assay

(Dojindo, Kumamoto, Japan), and evaluated by the absorption

of WST‐1. The cells were seeded at a density of 4.0 × 103 cells/

well on 96-well plates. After overnight incubation, the cells were

treated with or without different concentrations of UA (Cayman

Chemical Co., Ann Arbor, MI, USA) for 48 h.
Wound-healing assay (scratch assay)

The cells were grown to confluence in 12-well plates, and

then a straight wound was made using a sterile 200-mL pipette

tip. UA (10 or 40 mmol/L) was then added to the cells. The

straight wound was photographed and measured under a

microscope at 0 and 12 h. These investigations were

independently performed three times.
Transwell invasion assay

Transwell assay was performed using Corning®Matrigel™

Invasion Chamber with 8.0-mm pore membranes (top chamber)

for the 24-well culture plate (Corning, NY, USA). The cells were

seeded at a density of 2 × 105 (HuCCT-1) cells or 1 × 105 (SSP-25)

cells with serum-free FBS in the top chamber of the 24-well plate,

and treated with or without UA (10 or 40 mmol/L). Complete

mediumwas added to the lower chamber. After incubation for 24 h,

the invading cells were fixed with 10% formalin, stained with crystal

violet, and microscopically counted.
Western blot analysis

The cells were lysed in lysis buffer, and 20 µL of protein

lysate sample was fractionated on polyacrylamide gels (TGX™

FastCast™ Acrylamide Kit; Bio-Rad Laboratories, Hercules, CA,

USA) and then electroblotted to nitrocellulose membranes. The

membranes were blocked with 5% skim milk in phosphate
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buffered saline-Tween 20 (PBS-T). The membranes were

incubated with primary and then secondary antibodies. They

were then treated with enhanced chemiluminescence detection

reagents (Amersham™; Cytiva, Marlborough, MA, USA), and

chemiluminescent signals were visualized as bands using a LAS

4000 mini analyzer (Cytiva).

Antibodies against phospho-cdc2 (Try15), cyclin D1, cyclin

B1, cleaved caspase-3, caspase-3, phospho-AKT (Ser473), AKT,

phospho-WNK1 (Thr60), WNK1, phospho-GSK-3b (Ser9),

GSK-3b, phospho-mTOR (Ser2448), and mTOR were

purchased from Cell Signaling Technology (Beverly, MA,

USA). Monoclonal beta-actin antibody (FUJIFILM Wako Pure

Chemical Corp.) was used to probe an internal control.
Flow cytometry analysis

The cells were seeded in 60-mm dishes and cultured

overnight, and then treated with or without UA (40 mmol/L)

for 24, 48 and 72 h. After treatment, floating and attached cells

were collected and stained, and flow cytometric analysis was

performed using a flow cytometer (FACSCanto II, BD

Biosciences; San Jose, CA, USA). Cell cycles were evaluated by

PI staining (PI solution, Dojindo) and apoptosis was detected

using the Annexin V Cell Apoptosis Detection Kit 1 (BD

Biosciences) according to the manufacturer’s instructions.

Camptothecin (Merck, Darmstadt, Germany) was used as a

positive control for the apoptosis assay.
Detection of autophagy

Autophagic cells were detected with LC3 using autophagy

watch (Medical & Biological Laboratories, Aichi, Japan),

according to the manufacturer’s instructions. For Western

blot analysis, HuCCT-1 and SSP-25 cells were treated with

UA (40 mmol/L) and/or Chloroquine (CQ; 20 mmol/L) for 24 h,

and the analysis was performed with 20 µL of protein lysate

sample using anti-LC3 monoclonal antibody-HRP-DirecT

(Autophagy watch). For immunocytochemistry, the cells

were evaluated using anti-LC3 monoclonal antibody

(Autophagy watch), with Alexa Fluor 488-conjugated goat

anti-rabbit IgG (H + L; Thermo Fisher Scientific, Waltham,

MA, USA) as the secondary antibody. All sections were

counterstained using 4′,6-diamidino-2-phenylindole (DAPI;

Fluoromount-G; Southern Biotech, Birmingham, AL, USA).

HuCCT-1 cells were seeded in 4-well glass slides (Lab-Tek®

Chamber Slide™ system; Thermo Fisher Scientific) and

incubated for 24 h, and then treated under the respective

conditions for 24 h. Images were obtained using a confocal

laser scanning fluorescence microscope (FV3000; Olympus,

Tokyo, Japan).
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Transmission electron microscopy

HuCCT-1 cells were seeded at a density of 1.5 × 105 cells/

well on 6-well plates. After overnight incubation, the cells were

treated with UA (40 mmol/L) and/or CQ (20 mmol/L) for 24 h,

and the samples were pre-fixed with 2% glutaraldehyde in 0.1 M

phosphate buffer (pH 7.4) at 4°C. After fixation, the specimens

were post-fixed with 2% osmium tetroxide in 0.1 M phosphate

buffer (pH 7.4) for 45 min. They were subsequently dehydrated

in a graded series of ethanol and embedded in epoxy resin. Ultra-

thin sections were cut using an Ultracut-UCT (LEICA, Wetzlar,

Germany) with a diamond knife, and stained with 2% uranyl

acetate in distilled water for 15 min followed by a lead staining

solution for 5 min. Sections were examined with a JEM-1400

plus (JEOL, Tokyo, Japan) electron microscope.
Human Phospho-kinase array

Phosphorylated proteins were analyzed using the Human

Phospho-Kinase Array Kit (ARY003C; R&D Systems,

Minneapolis, MN, USA). HuCCT-1 and SSP-25 cells were

treated with or without UA (40 mmol/L) for 3 h and according

to the manufacturer’s instructions. Signals were detected using

chemiluminescence detection reagents (Amersham™, Cytiva),

and array images were analyzed using the ImageJ software.
Transfection

Small interfering RNA (siRNA) transfection was performed

using Lipofectamine RNAi-MAX (Thermo Fisher Scientific)

according to the manufacturer’s instructions. HuCCT-1 cells

were transfected with the desired siRNA using siGENOME non-

targeting siRNA (siNT) control pool and siGENOME human

WNK1 siRNA SMART pool (Dharmacon, Lafayette, CO, USA).

Two days after transfection, the cells were treated with each

condition for 3 or 24 h.
In vivo experiments

The protocols for all animal studies were approved by

Nagoya City University Center for Experimental Animal

Science, and the mice were housed according to the guidelines

of Nagoya City University for Animal Experiments. Female nude

mice (BALB/c Slc-nu/nu), aged 7 weeks, were obtained from

Japan SLC Inc. The mice were acclimatized for 2 weeks before

the experiments, and were kept in individual cages with

unrestricted access to food and water. All mice were

maintained under specific pathogen-free conditions with a 12-

h light/dark cycle. To prepare the xenograft models, HuCCT-1
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cells were injected into the mouse flanks with 5 × 106 cells in 100

mL of media. One day after implantation, the mice were

randomly allocated into two groups. Two weeks after

subcutaneous tumor transplantation, UA (20 mg/kg, 3 times a

week) or dimethyl sulfoxide (DMSO; control) was administered

by oral gavage, as in a previous study (20). The maximum tumor

diameter (L) and the diameter at right angles to that axis (W)

were measured using calipers twice a week, and the tumor

volume was calculated according to the formula: (L×W2)/2.

The weights of the mice were also recorded twice a week. The

mice were sacrificed 35 days after the start of medication, and the

transplanted tumors were excised and fixed in formalin or frozen

in liquid nitrogen for protein lysate.
In vivo immunohistochemistry

The tumors were excised, and immediately fixed in formalin

and embedded in paraffin blocks. Then, the block specimens

were sectioned (4 µm) and stained using Ki-67 antibodies (Cell

Signaling Technology). High spot areas were captured under a

microscope, and the positive areas were counted visually. Data

were expressed as means ± SD (Standard Deviation) of five

independent experiments.
Statistical analysis

The data were analyzed using Student’s t test and Mann-

Whitney U test. Differences were considered statistically

significant at P <.05. Data were expressed as means ± SD.
Results

UA treatment inhibited cell proliferation
and induced G2/M phase cell cycle arrest
in cholangiocarcinoma cell lines

The chemical structure of UA is shown in Figure 1A. To

assess sensitivity for UA, a cell viability assay was performed

with HuCCT-1 and SSP-25 cells. We found that the viabilities of

the two cell lines treated with UA for 48 h were reduced in a

dose-dependent manner (Figure 1B). We further explored the

effect of UA on the cell cycle using flow cytometry (FACS).

HuCCT-1 and SSP-25 cells treated with 40 mmol/L UA for 48 h

showed accumulation of cells in the G2/M phase compared to

the controls (control vs. 40 mmol/L UA in HuCCT-1 cells: 21.3±

1.9% vs. 31.5 ± 3.7%; and in SSP-25 cells: 40.9 ± 3.9% vs. 48.5 ±

1.3%, respectively, P < 0.05) (Figure 1C). As shown in

Supplementary Figure 1, the G2/M phase cell accumulation

was also observed under the conditions treated with UA for 24
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or 72 h. Then, to confirm major cell cycle regulators of the G2/M

phase, we examined the changes in phospho-cdc2 (Try15),

cyclin B1, and cyclin D1 using Western blot analysis.

HuCCT-1 cells treated with UA for 48 h upregulated the

expression of phospho-CDC2 (Tyr15) and cyclin B1 without

influencing cyclin D1 levels, consistent with the observed G2/M

cell cycle arrest (Figure 1D).
Effects of UA on cell migration,
invasion, and apoptosis progression
in cholangiocarcinoma cell lines

To evaluate the effects of UA on cell migration, we conducted a

wound-healing assay. UA treatment (40 mmol/L) significantly

suppressed cell migration in both HuCCT-1 (0, 10, and 40 mmol/

L UA: 81.2 ± 9.0%, 74.6 ± 15.5%, and 38.1 ± 9.3%, respectively, P <

0.01) and SSP-25 (0, 10, and 40 mmol/L UA: 74.1 ± 7.1%, 64.8 ±

1.9%, and 36.6 ± 3.0%, respectively, P < 0.01) cells (Figure 2A). We

also performed the transwell assay to evaluate the effects of UA on

cell invasion. UA significantly inhibited cell invasion at 40 mmol/L

in both HuCCT-1 (0, 10 and 40 mmol/L UA: 1.0 ± 0.097, 0.91 ±

0.094, and 0.43 ± 0.106, respectively, P < 0.01) and SSP-25 (0, 10,

and 40 mmol/L UA: 1.0 ± 0.119, 0.90 ± 0.091, and 0.63 ± 0.143,

respectively, P < 0.01) cells (Figure 2B).

To investigate the effects of UA on apoptosis, we used the

AnnexinV-FITC/PI staining method with flow cytometry. As

shown in Supplementary Figure 2, 30 mmol/L Camptothecin for

24 h was used as a positive control for the apoptosis assay.

Interestingly, there was no difference between control and UA

treatment in the percentage of apoptotic cells in HuCCT-1 cells,

treated with or without UA for 24h (0, 10, and 40 mmol/L UA:

10.6%, 10.3% and 8.4%) (Figure 2C). And, as shown in

Supplementary Figure 3, there was also no difference between

them under the conditions treated with UA for 48 or 72 h. We

also examined the effects of UA on apoptosis-related factors,

total and cleaved caspase-3, using Western blot analysis. There

were no apparent changes in the total and cleaved caspase-3 in

HuCCT-1 cells treated with 40 mmol/L UA for 0, 1, 3, 6, or

24 h (Figure 2D).
UA-mediated upregulation of autophagy
in cholangiocarcinoma cells

Increased LC3-II levels and the formation of LC3 puncta

were used to determine whether UA treatment induced

autophagy in cholangiocarcinoma cells. To confirm the

contribution of UA treatment to autophagy, we performed

autophagy flux assay with CQ, which blocks the fusion of

autophagosomes with lysosomes and inhibits late-stage
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autophagy. We first examined the effects of UA on autophagy

using Western blot analysis. It was found that UA treatment for

24 h caused an increase in LC3-II levels in HuCCT-1 and SSP-25

cells. CQ induced LC3-II expression, and addition of UA led to

further accumulation of LC3-II in HuCCT-1 cells (Figure 3A). In

addition, immunofluorescent staining revealed that UA, CQ,

and their combination significantly increased LC3 puncta

accumulation in the cytoplasm of cells compared to control

(Figure 3B). Furthermore, transmission electron microscopy

(TEM) demonstrated that there were more autophagosomes

and autolysosomes in HuCCT-1 cells treated with UA for 24

h. After combined treatment with UA and CQ, autophagosomes

that had stopped prematurely were clearly observed in the

cytoplasm (Figure 3C).
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UA inhibited xenograft tumor
growth in vivo

The above-mentioned results demonstrated the efficacy of

UA in cholangiocarcinoma cells. To verify these effects in vivo,

we subcutaneously injected HuCCT-1 cells into the flank of nude

mice as xenograft models. UA (20 mg/kg, 3 times a week) or

DMSO (control) was administered by oral gavage for 35 days

(Figure 4A). There was no body weight loss in the treatment

group compared to the control group during the treatment (data

not shown), which suggested that the volume of UA used was

not harmful to the mice. Tumor volume and weight significantly

reduced in the UA-treated mice compared to controls

(Figures 4B, C). The proliferative potential of mice tumor
A B

DC

FIGURE 1

UA treatment inhibits cell proliferation and induces G2/M phase cell cycle arrest in cholangiocarcinoma cell lines. (A) Chemical structures of
UA. (B) HuCCT-1 and SSP-25 cells were treated with UA at 0–80 mmol/L for 48 h Cell viability was measured using the Cell Counting Kit-8
assay. Data represent the means of three independent experiments. Bars, standard deviation; **P < 0.01. (C) HuCCT-1 and SSP-25 cells were
treated with 0 or 40 mmol/L UA for 48 h Cell cycles were determined using flow cytometry. Data represent the means of three independent
experiments. Bars, standard deviation; *P < 0.05; **P < 0.01. (D) HuCCT-1 were treated with 0, 10, or 40 mmol/L UA for 48 h Expression of
cell cycle regulators was analyzed by Western blotting for phospho (p)-cdc2 (Try15), cyclin B1, and Cyclin D1. b-actin was used as internal
loading control.
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samples were analyzed by Ki-67 immunostaining. The number

of Ki-67 positive cells in the high spot area was significantly

suppressed in the UA treatment group compared to the control

group (Figure 4D). Western blot analysis revealed that the UA

treatment group had significantly higher LC3-II levels than the

control group (Figure 4E). These results suggested that UA could

suppress tumor growth and might induce autophagy

in cholangiocarcinoma.
UA treatment downregulated AKT and
WNK1 pathways, and induced autophagy
in cholangiocarcinoma cells

To clarify the key regulatory pathways of UA treatment, we

utilized the human Phospho-kinase array. UA treatment
Frontiers in Oncology 06
downregulated the expressions of phospho-WNK1, phospho-

AKT, and phospho-GSK-3b in HuCCT-1 and SSP-25 cells

(Figure 5A). The significant changes of phosphorylation for

WNK1 and AKT were also confirmed in the two cell lines

using Western blot analysis, but were not seen in GSK-3b
(Figure 5B). Therefore, we hypothesized that UA treatment

might induce autophagy via the AKT/WNK1 pathway. To

verify our hypothesis, we analyzed LC3-II expression in

WNK1 knocked down HuCCT-1 cells. Western blot analysis

for LC3-II revealed that the targeted knockdown of WNK1

elevated LC3-II protein without UA treatment, suggesting the

importance of WNK1 in the activation of autophagy.

Furthermore, UA treatment indicated similar up-regulation of

LC3-II, regardless of the knockdown of WNK1. These results

suggested that UA induced autophagy mainly via the AKT/

WNK1 pathway (Figure 5C). In addition, Western blotting with
A B

DC

FIGURE 2

Effects of UA on cell migration, invasion, and apoptosis progression in cholangiocarcinoma cell lines. (A) Representative images obtained at 12 h
after a scratch wound was made in confluent monolayers of HuCCT-1 and SSP-25 cells. After the scratch, 0, 10, or 40 mmol/L of UA were
added. The migration rates were quantified by measuring the area of the injured region. Data represent the means of three independent
experiments. Bars, standard deviation; **P < 0.01. (B) Representative transwell-membrane images stained with crystal violet show invasion cells
after 12 h of treatment with 0, 10, or 40 mmol/L UA in HuCCT-1 and SSP-25 cells. Quantitative analysis of the invasion cells was expressed as
fold change relative to untreated controls. Data represent the means of three independent experiments. Bars, standard deviation; **P < 0.01.
(C) HuCCT-1 cells were treated with 0, 10, or 40 mmol/L UA for 24 h, and then stained with annexin-V FITC and PI. Apoptosis cells were
evaluated using flow cytometry. (D) HuCCT-1 cells were treated with 40 mmol/L UA for 0, 1, 3, 6, or 24 h Expression of apoptosis-related factors
was analyzed by Western blotting for cleaved caspase-3 and caspase-3. b-actin was used as an internal loading control.
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IGF-1, known as the AKT-WNK1 signal activator, demonstrated

that UA downregulated phospho-WNK1 levels even in

HuCCT-1 cells treated with IGF-1. We further assessed the

mTOR activity, which is another pathway for induction of

autophagy, by measuring phosphorylation of mTOR, and

found that the mTOR pathway was not affected by UA

treatment and WNK1 knockdown (Figure 5D).
Discussion

Systemic chemotherapy with a combination of gemcitabine

and is globally considered the standard first-line therapy for

advanced CCA (27). However, effective chemotherapy for CCA

is still limited, and the development of new therapies has not
Frontiers in Oncology 07
proressed sufficiently. Many targeted therapies for CCA,

targeting FGFR2 fusions (28), IDH mutations (29, 30), major

downstream pathways (31), and growth factor receptors (32),

have been reported. However, clinical trials on therapies that

appeared promising on basic research have not led to clinical

breakthroughs due to various challenges (33).

UA is a metabolite generated by intestinal bacteria after

ingestion of EA- and ET-rich foods and health supplements (34).

UA is reported to have antitumor effects in many cancers, such

as lung, prostate, colon, bladder, pancreatic, and neuroblastoma

cancers (15–21). Given that UA undergoes enterohepatic

recirculation (24), we speculated that UA might have

significant antitumor effects in CCA, which grows in a special

environment that is constantly exposed to both blood and bile.

In this study, we demonstrated that UA showed antitumor
A B

C

FIGURE 3

UA-mediated upregulation of autophagy in cholangiocarcinoma cells. (A) HuCCT-1 and SSP-25 cells were treated with 20 mmol/L CQ
and 40 mmol/L UA for 24 h Autophagy was detected by Western blotting for LC3-II. b-actin was used as an internal loading control. LC3-
II levels were normalized against b-Actin and represented the means of three independent experiments. Bars, standard deviation; *P <
0.05; **P < 0.01. (B) Immunofluorescence for LC3 (green) was performed after the same treatment as shown in (A). Blue staining denotes
DAPI-labeled nuclei. (C) Electron microscopy after the same treatment as shown in (A). N, nucleus; Mt, mitochondrion; AP,
autophagosome; AL, autolysosome.
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A
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C

FIGURE 4

UA inhibits xenograft tumor growth in vivo. (A) Experimental design for UA treatment in the xenograft model. HuCCT-1 cells were injected into
the flank of nude mice. UA (20 mg/kg, 3 times a week) or DMSO (control) were administered by oral gavage for 35 days. (B) The volume of
subcutaneous tumors in the xenograft model was measured twice a week. Data represent the means of the control group (n = 5) or the UA
group (n = 8). Bars, standard deviation; *P < 0.05; **P < 0.01. (C) Representative macroscopic images of tumors in nude mice obtained at day
35 after the start of the treatment. Data represent the means of the control group (n = 5) or the UA group (n = 8). Bars, standard deviation;
**P < 0.01. (D) Representative Ki67-stained immunohistochemical images of the two groups. The positive rates of Ki67 staining were quantified
by measuring five high spot areas from each tumor. Data represent the means of the control group (n = 4) or the UA group (n = 4). Bars,
standard deviation; **P < 0.01. (E) Autophagy was detected by Western blotting for LC3-II in the two groups. b-actin was used as an internal
loading control. LC3-II levels were normalized against b-Actin and represented the means of three independent experiments. Bars, standard
deviation; *P < 0.05.
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effects by inhibiting cell viability, migration, and invasion in

HuCCT-1 and SSP-25 cells (Figure 1). In addition, UA

administration dramatically reduced tumor growth in a

xenograft mice model (Figure 4).

The mechanism of the antitumor effects of UA is

characterized by various factors that regulate intracellular
Frontiers in Oncology 09
molecule targets, ultimately influencing cancer cell survival.

Our data suggested that UA showed antitumor effects mainly

via autophagy in cholangiocarcinoma cells (Figure 3).

Autophagy is a self-degradative process required to maintain

cellular homeostasis, development, differentiation, survival, and

death (35). In cancer, suppression or induction of autophagy can
A

B

D

C

FIGURE 5

UA treatment downregulated AKT and WNK1 pathways, and induced autophagy in cholangiocarcinoma cells. (A) HuCCT-1 and SSP-25 cells
were treated with 40 mmol/L UA for 3 h and analyzed using the human Phospho-Kinase array. Relative levels of protein phosphorylation
(normalized intensity for each antibody) were quantified as a ratio of the UA-treated sample to the untreated one. (B) Results of the human
Phospho-Kinase array were verified by Western blotting. b-actin was used as an internal loading control. Protein phosphorylation levels were
normalized against b-Actin and represented the means of three independent experiments. Bars, standard deviation; NS, not significant; *P <
0.05. (C) Western blotting for LC3-II in WNK1 knocked down HuCCT-1 cells. Cells were treated with 40 mmol/L UA for 24 h b-actin was used as
an internal loading control. LC3-II levels were normalized against b-Actin and represented the means of three independent experiments. Bars,
standard deviation; NS, not significant; **P < 0.01. (D) Western blotting for WNK1 (Thr60 and total), mTOR (Ser2448 and total), and AKT (Ser473
and total) in HuCCT-1 cells transfected with control (siNT) or WNK1-specific (siWNK1) small interfering RNAs. Cells were treated with 40 mmol/L
UA and 50 ng/mL IGF-1 for 3 h.
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exert antitumor effects through promotion of cell death or

survival, which are two main therapeutic targets (36). Thus, it

is essential to identify key autophagy targets for new therapeutic

agents. Previous studies have reported a cross-talk relationship

between autophagy and apoptosis in anti-tumor therapy (37),

but in our study, UA treatment did not lead to apoptosis

(Figure 2). We suggest that UA significantly affects cancer cell

survival by inducing autophagy in cholangiocarcinoma.

Autophagy is mainly mediated through the PI3K/Akt/

mTOR and AMPK/mTOR signaling pathways, the molecular

mechanisms by which mTOR kinase induces autophagy (36).

We examined the change in mTOR phosphorylation after UA

treatment and found that UA did not cause any change in

mTOR phosphorylation (Figure 5D). Kankanamalage et al.

reported that reduced WNK1 expression accelerates autophagy

independently of the mTOR signaling pathway (38). In

concordance with that report, we found that WNK1

knockdown induced autophagy regardless of the mTOR

signaling pathway in HuCCT-1 cells (Figures 5C, D).

WNKs (With-no-lysine kinases) are a family of four serine-

threonine protein kinases, WNK1–4, with an atypical placement

of the catalytic lysine (39). Initial attention was focused on these

enzymes as regulators of blood pressure because mutations of

two fami ly members , WNK1 and WNK4, caused

pseudohypoaldosteronism type II, a heritable form of

hypertension (39). WNK1 was also reported to be involved in

PI3K-AKT pathway activation in several cancers (40). Likewise,

our study indicated that IGF-1 stimulation upregulated AKT

phosphorylation in WNK1 knockdown cells, indicating that

WNK1 was downstream of AKT (Figure 5D). From these

results, we proposed a schematic representation of the
Frontiers in Oncology 10
signaling pathway involved in the inhibition of cancer growth

by UA-modulation of the AKT/WNK1 axis (Figure 6).

According to recent pharmacokinetic studies, UA is reported

to undergo phase-II metabolism, to be mainly glucuronides,

after absorption (41). Several in vitro studies showed that UA

phase-II metabolites have lower bioactivity than deconjugated

UA, including anti-tumor effects and inflammation (42–44).

However, in the present study, UA oral administration exerts

significant anti-tumor effects in xenograft model. Some reports

indicated UA glucuronides are susceptible to b-Glucuronidase,
which is known to present at high concentration in the

microenvironment of most solid cancers (45, 46). On the basis

of these findings, we speculated that b-Glucuronidase might be

related to deconjugation of UA in in vivo study. Further

investigation is needed.

In terms of safety of UA supplementation, a human clinical

study revealed that UA was biologically safe and improved

mitochondrial function in older adults (47). A recent randomized,

double-blind, placebo-controlled clinical study demonstrated that

daily 1000-mg UA supplementation in healthy older adults for 4

months was biologically safe, and improved muscle endurance and

mitochondrial health (48). In our study, the UA dose used in mice

(20mg/kg) was convertible to a human equivalent dose (HED) of

approximately 1.62 mg/kg for adults (49), and is expected to be safe.

The potential clinical application of UA appears promising on the

basis of its safety and benefits.

Collectively, our in vitro and in vivo data revealed that UA

exerted antitumor effects by suppressing the AKT/WNK1

signaling pathway and inducing autophagy. Thus, UA, a

natural, well-tolerated compound, may be a promising

therapeutic candidate for advanced CCA.
FIGURE 6

A proposed model of the mechanism. UA treatment reduces cell proliferation by inhibiting the activation of AKT, and inducing autophagy via the
WNK1 pathway. As a result, cancer cell survival is suppressed by UA in cholangiocarcinoma cells.
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SUPPLEMENTARY FIGURE 1

UA treatment inhibits cell proliferation and induces G2/M phase cell cycle

arrest in cholangiocarcinoma cell lines. HuCCT-1 and SSP-25 cells were
treated with 0 or 40 mmol/L UA for 24 and 72 h. Cell cycles were

determined using flow cytometry. Data represent the means of three

independent experiments. Bars, standard deviation; **P < 0.01.

SUPPLEMENTARY FIGURE 2

Positive control for the apoptosis assay. HuCCT-1 cells were treated with

30 mmol/L Camptothecin for 24 h, and then stained with annexin-V FITC
and PI. Apoptosis cells were evaluated using flow cytometry.

SUPPLEMENTARY FIGURE 3

Effects of UA on apoptosis progression. HuCCT-1 cells were treated with

0 or 40 mmol/L UA for 48 or 72 h, and then stained with annexin-V FITC
and PI. Apoptosis cells were evaluated using flow cytometry.
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11. Espıń JC, Larrosa M, Garcıá-Conesa MT, Tomás-Barberán F. Biological
significance of urolithins, the gut microbial ellagic acid-derived metabolites: The
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.963314/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.963314/full#supplementary-material
https://doi.org/10.1021/acs.jnatprod.9b01285
https://doi.org/10.1055/a-0633-9492
https://doi.org/10.3390/toxins8050151
https://doi.org/10.3390/nu10111756
https://doi.org/10.3390/metabo8040086
https://doi.org/10.3748/wjg.v26.i23.3170
https://doi.org/10.2147/dmso.s268146
https://doi.org/10.2147/dmso.s268146
https://doi.org/10.1038/s41598-021-86514-6
https://doi.org/10.3389/fnut.2021.647582
https://doi.org/10.1002/mnfr.201500901
https://doi.org/10.3389/fonc.2022.963314
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sahashi et al. 10.3389/fonc.2022.963314
evidence so far. Evidence-Based Complement Altern Med: eCAM (2013)
2013:270418. doi: 10.1155/2013/270418
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