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Using virtual global landmark 
to improve incidental spatial 
learning
Jia Liu, Avinash Kumar Singh & Chin‑Teng Lin*

To reduce the decline of spatial cognitive skills caused by the increasing use of automated GPS 
navigation, the virtual global landmark (VGL) system is proposed to help people naturally improve 
their sense of direction. Designed to accompany a heads-up navigation system, VGL system 
constantly displays silhouette of global landmarks in the navigator’s vision as a notable frame of 
reference. This study exams how VGL system impacts incidental spatial learning, i.e., subconscious 
spatial knowledge acquisition. We asked 55 participants to explore a virtual environment and then 
draw a map of what they had explored while capturing electroencephalogram (EEG) signals and 
eye activity. The results suggest that, with the VGL system, participants paid more attention during 
exploration and performed significantly better at the map drawing task—a result that indicates 
substantially improved incidental spatial learning. This finding might kickstart a redesigning 
navigation aids, to teach users to learn a route rather than simply showing them the way.

Spatial abilities are considered to be amongst the most important capacities for the survival of all species1–3. 
Developing navigational skills is not only a benefit for independence and personal well-being but also has posi-
tive effects on the human brain4–8. The discovery of brain’s ‘global positioning system’ by O’Keefe’s team7 built 
up a direct bridge between our brain and orientation skills, which reveals that the ability to navigate could be 
associated with improved brain functions. This close relationship can be found when new mental maps are 
formed through the act of navigation, the neural connections then increase, and new neural pathways are cre-
ated accordingly4–8. In other words, our navigation skills, i.e., our spatial learning ability, directly and positively 
affects the physical condition of our brain. A well-known study on the enlarged hippocampi of London cab 
drivers is a good example of how spatial navigation skills can biologically impact the brain’s cortical plasticity9. 
This is because during their working time, they are required to continuously process the surrounding streets 
and environment, which, in turn, expands their brain to accommodate the cognitive demands of navigating 
London’s streets.

Today, with the development of technology on the global positioning system (GPS), the essential demands 
of spatial navigation and orientation are being offloaded to automatic orientation systems. This technology 
undoubtedly benefits human navigation with reliable, efficient directions, especially in outdoor environments. 
However, as a negative effect, this automated support replaces our fundamental tendency to build up a cognitive 
map of our surroundings through self-active exploration with trials and errors1,7,10, in other words, it may turn 
off the brain’s own GPS. Following simple turn-by-turn navigation instructions can easily cause an ignorance of 
processing of environmental information1,11,12. Researchers have noted that people who use GPS-based naviga-
tion systems have a poorer sense of direction, which leads to a decline in spatial memory11,13. This declines in 
spatial memory can negatively impact the ability to construct mental maps11–13. One could argue that automated 
navigation services are damaging the development of spatial skills in humans1,14,15.

To overcome this spatial deskilling, a new generation of navigation assistance systems is being developed that 
incorporates some of the natural elements of the human internal navigation system. The idea is to incorporate 
more of one’s surroundings into the directions to positively influence spatial awareness in the brain16,17. More 
spatial cues while a person is moving through an environment might encourage the user to process more spa-
tial information, which can help them retain more awareness and attention on their actual surroundings, even 
in unfamiliar territory. As one of the most basic external references for an environment, landmarks are easily 
recognized and remembered to serve as the key navigation cues18,19. Recent empirical studies have uncovered 
the benefits of associating landmarks with navigation instructions16,20. For instance, integrating references to 
landmarks into turn-by-turn verbal directions, e.g., “Please turn right at the concert hall.”, has proven to bolster 
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spatial learning1,16,21. Similarly, displaying distant landmarks at the edge of a mobile screen to support spatial 
orientation positively contributes to the user’s wayfinding efficiency and awareness of spatial information for 
surrondings20. This approach may enhance how a user encodes spatial knowledge while using a navigation sys-
tem. Overall, as a common heading reference, the application of landmarks on navigational aids could help to 
overcome the negative effects of relying on navigation assistance systems.

Inspired by the constructive role landmarks can play in spatial learning, we developed a system called virtual 
global landmark (VGL) system that incorporates global landmarks into a virtual heads-up display (see Fig. 1). 
The way the system works is that it constantly ensures a global landmark is visible, even when obscured by one’s 
surroundings. Global landmarks include things like city skylines or mountains—features that are visible from 
far away and serve as a broad frame of reference. In a process called landmark encoding, these landmarks do not 
disappear or change when the observer moves a small distance away22. Our idea is to ensure that the navigator 
is always aware of their own position relative to a global landmark. Learning this information not only helps 
people to develop a cognitive map of the environment, it is also considered to be one of the most significant 
strategies for the allocation of attention23 and developing spatial memory7,10. It therefore serves as a sort of proxy 
for a compass. Continuous neural processing of this basic point of reference could then help to increase route 
knowledge in an environment and in the meantime, grab more chance to motivate the user to continually survey 
the spatial knowledge, which contributes to spatial learning.

In this study, we examined the effects of the VGL system on spatial learning and, in particular, its impact 
on spatial knowledge acquisition. According to the model introduced by Siegel and White24, spatial knowledge 
acquisition can be described at different levels from the simple to the complex. The model also describes different 
types of spatial learning acquisition—landmark knowledge, which represents knowledge about objects in space; 
route knowledge, which refers to the connections between those landmarks in space; and survey knowledge, 
which is map-like knowledge that includes spatial relations between landmarks. Survey knowledge also enables 
complex computations like calculating short-cuts from previously unknown routes. Thus, to assess overall levels 
of spatial knowledge acquisition gained via the VGL system, we conducted a trial where the participants had to 
draw a map of a relatively unfamiliar environment. A map drawing task is a common method of evaluating the 
spatial knowledge gained from an environment that contains certain spatial information because it is robust to 
reflecting cognitive impact25–27.

A cohort of 55 students from the University of Technology Sydney participated in the study. Each was 
equipped with a head-mounted VR system, which they used to explore a medium-scale VR environment called 
“Sydney Park”, and a mobile brain/body imaging (MoBI)28–30 setup that captured brain dynamics via EEG signals 
while they explored. During exploration, a fixed route was predefined to control and standardize how participants 
explored the environment. The route was defined in a way that balanced the participant’s exposure to local and 
global landmarks. In this stage, the participants were divided into two groups for exploration. One group explored 
Sydney Park following auditory instructions, but with the VGL system equipped. The other did not use the VGL 
system; they simply followed the auditory instructions. The idea with providing the instructions in verbal form 
was to guide participants walked through the predefined route, as well as simulate navigation aids that provide 
turn-by-turn instructions. Adding the VGL system provided a way to assess an incidental knowledge acquisi-
tion alongside this guided navigation process. Before and during their explorations, the participants were not 
informed that they would subsequently be asked to draw a map of the route they had taken. We measured the 
fit of the sketch map’s configuration to the actual target configuration as a score against seven points of fidelity 
to show the outcome of spatial knowledge acquisition.

To investigate human brain spectral activity during exploration, we evaluated event-related spectral pertur-
bations (ERSP) originating in the occipital and parietal cortices of the participants. The ERSP31,32 measured the 
average dynamic changes in amplitude of the broad band EEG frequency spectrum as a function of time relative 
to fixation events generated by the eye tracker. Many studies have demonstrated involvement by the parietal cor-
tex in spatial navigation33–36. We then focused on brain activity in parietal regions to evaluate the brain encoding 
on the spatial knowledge related to navigation in exploration. And, as the visual processing area of our brains, 
the occipital lobe is responsible for interpreting the visual world around the body, such as the shape, color, and 
location of an object37,38. Thus, we were also interested to see whether brain dynamics in the occipital cortical 
areas would differ when participants were fixating on VGL as compared on other landmark stimuli during the 

Figure 1.   Working mechanism of the VGL system. When the selected global landmark reference is obscured 
from view, the VGL is displayed to constantly indicate its direction.
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exploration. We also took notes on behavioral activity and asked each of the participants to complete a Santa 
Barbara Sense of Direction39 (SBSOD) test together with Perspective Taking/Spatial Orientation Task40 (PTSOT) 
before completing the trials to control for individual differences in spatial abilities.

Based on our design of VGL system as a steady reference frame for surroundings, we hypothesized that 
participants using the VGL system during exploration would be more aware of the surroundings, process more 
spatial knowledge incidentally. Thus, in exploration phase, as measures to show whether more awareness and 
attention occur, we expected to find participants voluntary to spent longer time to complete the exploration and 
fixated longer in the environment. Being a method to visualize the outcomes of spatial knowledge processing in 
exploration, we expected to see an improved performance in map drawing task by participants with aid of VGL 
system, which would be the evidence of an increased spatial knowledge processed from exploration. Additionally, 
the mental demand investigated by NASA Task Load Index (NASA-TLX)41 was expected to show no increase for 
participants drawing with VGL information. Lastly, the increased alpha and decreased theta power over parietal 
and occipital cortex has been revealed by the suppressing distractions from the visual system42–45. Hence, to assess 
whether VGL could help attracting awareness and attention of the surroundings, we also expected to find the 
same phenomena in the ERSPs related to VGL stimuli around parietal and occipital sites.

Results
Learning performance in the exploration and map drawing task were assessed via one-way ANOVAs. Separate 
ANOVAs were computed for: (i) total time spent in exploration; (ii) average blink intervals during exploration; 
(iii) NASA-TLX mental demand scores during the map drawing task; (iv) total map scores for the map drawing 
task; and (v) single indexes scores for the map drawing task, including canonical organization scores, recalled 
points percentage, rotational bias, scaling bias, canonical accuracy, distance accuracy, and angle accuracy. The 
group conditions, VGL and (non-) NVGL, were entered as a between-subjects factor. All the above indexes for 
both groups were normally distributed (p > 0.05). The Spearman’s correlations result between each individual’s 
spatial ability and the above indexes are shown in Fig. S1 of the supplementary. Significantly correlated factors 
were entered as covariates to compute the ANOVAs. Additionally, gender was added as a between-subjects fac-
tor when calculating one-way ANOVAs to evaluate gender effect on results. However, there was no significant 
interaction between gender and group condition for any of the measures. The test results of the between-subject 
effects are provided in the supplementary materials.

VGL system users paid more attention during exploration.  During the exploration phase of the 
trial, the participants determined their own walking speed. Hence, the time spent by the two groups was depend-
ent on each participant. As presented in Fig. 2a, we found a statistically significant difference in the time spent 
(F1,50 = 12.08, p = 0.001, partial η2 = 0.20) with 54.83 s longer spent by the VGL group (M = 267.78, SE = 10.72) 
than the NVGL group (M = 212.95, SE = 11.58). To assess the impact of accuracy in navigation and response to 
verbal prompts on time spent during exploration, we analyzed the Spearman’s correlation between time spent 
and the number of wrong response to verbal prompts. The result reveals no significant correlation between these 
two (rs(55) = 0.16, p = 0.25). These findings suggest that participants aided by the VGL system walked more 
slowly and might be attracted more attention with significant more time spending while exploring. Addition-
ally, due to the significant difference in time spent during exploration between two groups, we used this time for 
exploration as a covariate to compute ANOVAs for other measured indexes to control the time effect.

To find more evidence on attention during exploration, we also computed the average blink interval for each 
participant. As shown in Fig. 2b, the results are statistically significant (F1,48 = 14.02, p < 0.000, partial η2 = 0.23). 

Figure 2.   Comparisons between the VGL and NVGL groups in exploration. Each dot of the scatter plot 
indicates the average value for one participant. (a) Total time spent; (b) Average blink interval. The black dots 
represent means, and the error bars indicate standard deviations. *: p < .05 and ***: p < .001.
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The VGL group had a 0.86 s longer blink interval (M = 2.16, SE = 0.15) than the NVGL group (M = 1.30, SE = 0.16). 
The longer interval between blinks relates to a lower blink rate. By the interpretation of split attention revealed 
with higher blink rate46,47, the significant longer blink interval for VGL group indicates an increased attention 
while exploring when participants were aided by VGLs.

VGL system users scored higher for incidental spatial knowledge acquisition in the map draw‑
ing task without additional mental workload.  The map drawing task was our basis for assessing inci-
dental spatial knowledge acquisition during exploration. Assessments of the sketched maps were made using 
Gardony Map Drawing Analyzer (GMDA)27. Of these, the NASA Task Load Index (NASA-TLX)41 indicates 
mental workload. The results in Fig. 3a demonstrated no statistically significant difference in mental demand 
scores (F1,52 = 1.75, p = 0.19, partial η2 = 0.03), which indicates an equal level on mental workload in two groups. 
However, as indicated in Fig. 3b, there was a significant difference in the total map scores (F1,51 = 4.60, p = 0.04, 
partial η2 = 0.09) with higher map scores in the VGL group (M = 3.24, SE = 0.06) than that in the NVGL group 
(M = 3.05, SE = 0.06) by 0.19, reflecting an overall better preformation in sketch map for VGL group.

Figure 4 charts all the single indexes used to calculate the total map scores. No significant differences between 
the two groups were found for canonical organization score (F1,51 = 1.96, p = 0.17, partial η2 = 0.04), recalled points 
percentage (F1,51 = 0.73, p = 0.40, partial η2 = 0.01), scaling bias (F1,52 = 0.34, p = 0.56, partial η2 = 0.007), canonical 
accuracy (F1,51 = 3.09, p = 0.09, partial η2 = 0.06) and distance accuracy (F1,51 = 2.77, p = 0.10, partial η2 = 0.05). 
However, significant differences were found for rotational bias (F1,52 = 4.15, p = 0.047, partial η2 = 0.07) with 
6.78 degree lower in the VGL group (M = 10.08, SE = 2.20) than that in the NVGL group (M = 16.86, SE = 2.25). 
As the rotational bias measures the direction of angular error of inter landmark angles27, the significant lower 
rotational bias for VGL group suggests a higher precision on landmark rotation. This outperformance on angle 
representation of VGL group is also further shown by a significant higher angle accuracy (F1,51 = 7.71, p = 0.008, 
partial η2 = 0.13) with 0.05 percentage higher in the VGL group (M = 0.88, SE = 0.01) than that in the NVGL 
group (M = 0.83, SE = 0.01).

VGL system users saw ERSP desynchronization in the theta and alpha bands of occipital‑pari‑
etal clusters.  Figure 5 shows the spectral fluctuations in the left and right occipital clusters and parietal 
midline clusters as measured via ERSPs. The readings are from −1 to 5 s, where the time point 0 indicates where 
the participant reached one of the virtual checkpoints (see the checkpoint map in Fig. 9 of the “Materials and 
methods” section). The time point 1000 ms indicates where a fixation on one kind of landmark started, and the 
time point 5000 ms shows where the participant reached the next position (offset in ERSPs). Only one landmark 
of any kind was viewed before reaching the next position (offset) (i.e., a virtual global landmark in the VGL 
group, a local landmark in the NVGL group). For both the occipital and parietal clusters, the non-green pixels 
indicate differences in the ERSPs (Fig. 5c,f,i). Within one group, the significant differences level for mean ERSP 
is p < 0.001. Between the two groups, these differences were statistically significant at p < 0.05.

Average ERSPs in the parietal midline cluster.  The parietal midline cluster comprised 24 independ-
ent components from 18 participants for the VGL group, and 33 independent components from 19 participants 
for the NVGL group. The average scalp maps for these clusters along with the dipole locations are presented in 
Fig. 5a for the VGL group and Fig. 5b for the NVGL group. As presented in Fig. 5c, the average ERSPs for the 
VGL group revealed significant decreases in theta activity shortly after the onset of stimuli, and an increase in 

Figure 3.   Comparisons between the VGL and NVGL groups in the map drawing task. Each dot of the scatter 
plot indicates the average value for one participant. (a) NASA task load index (NASA-TLX) score for the mental 
demand; (b) total sketch map score. The black dots represent means, and the error bars indicate standard 
deviations. *: p < .05.
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alpha power band activity, p < 0.001. By contrast, the ERSPs for the NVGL trials showed significant increases 
in the same frequency bands, p < 0.001. The difference in ERSPs between group conditions had statistical sig-
nificance in these activity bands, p < 0.05, and demonstrates a pronounced suppression in theta activity and an 
increase in the alpha band of the VGL group compared to the NVGL group.

Average ERSPs in the left and right occipital clusters.  The left occipital cluster included 21 inde-
pendent components from 16 participants for the VGL group, and 21 independent components from 15 partici-
pants for the NVGL group. The right occipital cluster included 33 independent components from 25 participants 
for the VGL group, and 15 independent components from 13 participants for the NVGL group. The average 
scalp maps for these clusters along with the dipole locations are presented in Fig. 5d and g for the VGL group 
and Fig. 5e and h for the NVGL group.

As shown in Fig. 5f and i, in both the left and right cerebrum, the average ERSPs in the occipital cortex for the 
VGL group reveals a strong increase in alpha power band activity at the onset of the landmark stimuli (p < 0.001). 
The increase became stronger for a short time after viewing the virtual global landmark. The stimulus induced 
theta-power suppression was also apparent. In contrast, for the NVGL group, power increased significantly in 
the theta bands and decreased in the alpha band (p < 0.001). Theta activity was increased strongly around the 
stimuli of local landmarks, tapering back to slight after a while. The differences in ERSPs between conditions 
was statistically significant for the theta and alpha bands, p < 0.05, and showed a significant suppression of theta 
activity and an increase in alpha band activity for the VGL group compared to the NVGL group.

Discussion
In this work, we seek to explore the particular impact of the VGL system on spatial knowledge acquisition. To 
investigate this, we undertook the neural measures as well as the behavioral traits, most importantly, through 
a map drawing task with 55 participants. These 55 participants were divided into two groups—one equipped 
with the VGL system and one without—and asked to explore an unfamiliar environment. The exploration route 
for both groups was fixed. Once the participants completed their route, we asked them to sketch a map48 of the 
environment they had just explored. We hypothesized that those using the VGL system would absorb more 
spatial information, be more spatially aware of their environment, and draw their maps more accurately than 
those who did not have the aid of the VGL system.

The results of the map drawing task in Fig. 3 demonstrate significantly higher scores for the VGL system 
participants at the same levels of mental workload as the NVGL system participants. Here, mental workload for 
mapdrawing task was assessed through NASA-TLX41, which is a common subjective workload assessment tool. 
Consistent with our hypothesis, there was no difference between the cognitive workloads of the two groups in 
terms of NASA-TLX results. A possible reason for this is that the VGL group did more information processing 
in terms of mentally organizing and sketching their surroundings while exploring. This view is supported by 
the higher map scores achieved by this group. Thus, the comparable mental workload between VGL and NVGL 
group could imply that the VGL system did not carry more or even help to ease the workload of spatial memory 
though more information processing required comparing without VGL system.

Figure 4.   Single index scores for the VGL and NVGL groups in the map drawing task. The indexes include: (a) 
canonical organization score, (b) recalled points percentage, (c) rotational bias, (d) scaling bias, (e) canonical 
accuracy, (f) distance accuracy, and (g) angle accuracy. Each dot of the scatter plot indicates the average value 
for one participant. The black dots represent means, and the error bars indicate standard deviations. *: p < .05 
and ***: p < .001.
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Sketching maps is a common method of evaluating spatial knowledge gained from an environment and one 
that is robust to cognitive impacts25–27 as well as spatial memory49,50. The results of all the measured indexes 
pinpointed the main significant differences for the total map scores came from the indexes to mark the angular 
accuracy level of the sketch map, including angle accuracy and rotational bias. As for the measures to assess the 
organization related scores, including canonical organization score itself, points percentage to show success-
fully recalled landmarks and intersections as well as scaling bias and distance accuracy to show organization of 
interlandmark distances, participants in the environment with VGL and local landmarks showed an equal per-
formance level to those in the environment with local landmarks only. This might be because, as a conspicuous 
and easy-to-pinpoint reference, global landmarks can help participants build a clearer directional relationship 
between themselves and a constant point of reference18,19. Thus, as a persistent reference for global landmark, 
VGL system could support participants to keep well-marking the rotational relationship among environment 
features by a clearer directional sense. This is why the participants aided by the VGL system were able to gain 
a more accurate performance on angular measures of incidental spatial knowledge in this new environment.

Further, because participants were not aware they would subsequently be required to draw a map, we can 
be sure they were retrieving spatial information from a mental memory map during the map drawing exercise. 
Notably, they formed this map from only one exposure to the route and environment. Still, participants from the 
VGL group drew much more precise maps, which indicates that the global landmarks helped them to process 
the environment’s orientation and structures more accurately.

Figure 5.   Parietal midline cluster (MNI coordinates: VGL group, x = 15, y = −53, and z = 33; NVGL group, 
x = 7, y = −26, and z = 45), left occipital cluster (MNI coordinates: VGL group, x = −22, y = −58, and z = 17; NVGL 
group, x = −11, y = −99, and z = −3) and right occipital cluster (MNI coordinates: VGL group, x = 15, y = −87, and 
z = −15; NVGL group, x = 29, y = −91, and z = −8). (a,b,d,e,g,h) Scalp maps and equivalent dipole locations of 
independent components at the sagittal, coronal, and top view for VGL group (a,d,g) and NVGL group (b,e,h) 
in parietal midline cluster (a,b), left occipital cluster (d,e) and right occipital cluster (g,h). (c,f,i) ERSPs in VGL 
and NVGL groups, as well as significant differences between two group conditions (ERSPs of VGL group minus 
the ERSPs of NVGL group) with p < .05 from parietal midline (c), left occipital (f) and right occipital (i) clusters 
(first dotted lines at the 0 ms time point signify the onset of a trial, and the second dotted lines at the 1000 ms 
time point signify the onset of stimuli). For all ERSPs, non-significant points were masked with zero values in 
the mean ERSPs and are displayed in green. Significant differences with respect to baseline activity are displayed 
in red and blue for positive and negative deviations from the baseline activity, respectively.
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Comparing the other behaviors of the two groups, the participants using the VGL system spent significantly 
more time in the exploration phase, as shown in Fig. 2a. This could simply because the VGL system participants 
hesitated during exploration, or which is more possible that they walked more slowly and were more willing to 
look around and attracted attention to their surroundings rather than simply following the instructions they 
were given. The blink interval readings, given in Fig. 2b, support this idea. A higher blink rate can be interpreted 
as a function of split attention46,47. In other words, when participants show increased interest in stimuli, the eyes 
tend to fixate for longer and the blink count decreases. Figure 2b reveals a significant increase in blink interval 
for the VGL group, which means the participants fixated for longer on their surroundings compared to the group 
that was not using the VGL system.

Consistent with our behavioral findings, desynchronizations in the theta and alpha power bands of the 
occipital and parietal sites also suggested an increased attention in visual stimuli in VGL group versus the NVGL 
group during guided exploration. As indicated in Fig. 5, there were significant differences in the occipital and 
parietal ERSPs of the VGL group versus the NVGL group in terms of theta oscillation suppression and increased 
alpha oscillations. We interpret the increased alpha and decreased theta power over these sites as the participants 
suppressing distractions from their visual system42–45. Previous studies on short-term memory also found alpha 
activity could be increased while brain was carrying more memory load42,51. In other words, the suppression 
of theta activity and the increase of alpha activity signified that more attention was being paid during neural 
processing. Thus, as the ERSP data for the VGL group shows, our findings with the brain dynamics are consist-
ent with our findings for the behavior results, both demonstrating that participants using the VGL system paid 
more attention to spatial knowledge acquisition during the exploration phase.

In summary, the study reveals a significant improvement in incidental spatial knowledge acquisition when 
using the VGL system as reflected in the assessment of sketch maps. As a reference point, the VGL system encour-
ages users to be more actively aware of their surroundings and process their environment. By enhancing user 
perceptions of navigation information, the VGL system can augment the navigation capabilities of users, which 
could be the scientific basis for a new generation of future navigation assistance systems that not only show users 
the way to go but also support spatial learning. In our future work, we will continue studying VGL’s effect on 
the efficacy of spatial learning with more physical task, e.g., assessing orientation accuracy and efficiency with 
VGL after a guided exploration.

Materials and methods
Participants.  The experiment involved 55 participants: 24 females and 31 males (see Table  1 for demo-
graphic information). Experiments were conducted in the UTS Tech Lab. Before participating in the study, the 
experimental procedure was explained, and all participants provided informed consent. The Human Research 
Ethics Committee (HREC) of University of Technology Sydney (UTS) also reviewed the protocols and issued 
their approval (grant number: UTS HREC REF NO. ETH17-2095). All experiments were performed in accord-
ance with relevant guidelines and regulations. None of the participants reported a history of any psychological 
disorders that could have affected the experimental results. To control for individual differences in spatial abili-
ties, we administered a SBSOD test39 and a PTSOT test40 prior to conducting the experiment.

The VGL system setup.  The virtual global landmarks were displayed as transparent, two-dimensional sil-
houettes of the real landmark in the VR scenario, which serve as a stable reference for the direction of specific 
locations without disturbing the overall environment. With the displaying of these virtual landmarks, users were 
encouraged to continuously compute directions from a particular location52. The silhouettes were presented in 
the direction of the global landmark within the participant’s sightline. Whether walking or turning, as long as 
the participant looked in that direction, they were able to see either see the real landmark or the silhouette if it 
was blocked by another object, as shown in Fig. 1. During their trials, the participants were shown one of three 
virtual global landmarks: a lighthouse, the Sydney Opera House, or the Sydney Tower Eye.

VR and EEG setup.  Figure 6b provides an overview of the setup for participants. The Sydney Park sce-
nario was based on VR but imitates the real environment of the Sydney Botanical Gardens. The scenario was 
fully immersive so as to hold participants’ attention during the full duration of the navigation experiments. We 
used HTC’s Vive Pro eye headset with an embedded Tobii eye tracker. The Vive Pro eye uses a dual OLED 3.5" 
diagonal display with a resolution of 1440 × 1600 pixels per eye (2880 × 1600 pixels combined) and a refresh rate 
of 90 Hz, as reported by HTC. The participant’s head position was principally tracked with embedded inertial 
measurement units, while an external lighthouse tracking system cleared the common tracking drift with a 
60 Hz update rate. We tracked the eye activity of participants using the Tobii eye tracker at a sampling rate of 
120 Hz.

Table 1.   Participant demographics and average orienting ability test scores at the initial testing. Standard 
deviations are shown in parentheses. SBSOD Santa Barbara Sense of Direction scale, PTSOT Perspective 
Taking/Spatial Orientation Task.

Group Women/men Age (years) SBSOD PTSOT

VGL 15/13 27.57(± 4.78) 0.66(± 0.15) 37.51(± 26.49)

NVGL 9/18 28.19(± 5.33) 0.67(± 0.17) 26.31(± 17.11)
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The EEG data were recorded continuously using Brain Vision’s LiveAmp 64 system (Brain Products, Gilching, 
Germany) using 64 active electrodes mounted on an elastic cap. The sampling rate was 500 Hz with a low-pass 
filter of 131 Hz. The electrodes were positioned according to an extended 10–20 system53. The EEG signals were 
referenced to the electrode located at FCz and the impedance of all sensors was kept below 5kΩ. EEG events were 
created when the participants’ fixated on the surface of a defined landmark, both real and virtual. All data streams 
from the EEG cap, eye tracker and head-mounted display were synchronized with Lab Streaming Layer (LSL).

Sydney Park was created in Unity 2018.3.5f1 (Unity Technologies, USA). Figure 7 presents the screen views 
of Sydney Park scenario in Unity. The Sydney Park environment consists of eleven local landmarks (Label 1 to 
Label 11 in Fig. 7a,b) and three global landmarks (Label 12 to Label 14 in Fig. 7b–d, including a lighthouse, the 
Sydney Opera House and the Sydney Tower Eye), in combination with paths, intersections, bushes, trees, etc. Two 
sides of the scenario were extended with only the sea, and a lighthouse standing in the corner next to the ocean, 
as shown in Fig. 7b. Of the remaining two sides, one had a view of the Sydney Opera House along with Sydney 
Harbour Bridge behind (Fig. 7c) and the other had a view of the Sydney Tower Eye with other tall buildings as 
a city skyline (Fig. 7d). The background views are similar to the actual views from the Royal Botanical Gardens, 
whereas the inner layout of Sydney Park is unique. To control the visibility proportion of all global landmarks, 
we used background plants, e.g., trees, to ensure global landmarks were obscured. The visible status for all global 
landmarks was checked at each checkpoint (checkpoint map is shown in Fig. 9). Overall, global landmarks were 
blocked from view for nearly 60% of the time during the experiment.

Experiment procedure.  An overview of the experimental procedure is shown in Fig. 6a.

Pre‑test.  Before the participants performed the exploratory and navigational tasks, we conducted a pre-test 
(SBSOD39, PTSOT40) to assess their individual spatial abilities. The participants were not aware of the experi-

Figure 6.   Experiment procedure. (a) Overview of the experimental procedure design. First, the participants 
completed a Santa Barbara Sense of Direction (SBSOD) questionnaire about their sense of direction and a 
Perspective Taking/Spatial Orientation Task (PTSOT), which assesses spatial orienting ability. They were then 
asked to walk in a square meadow VR environment. Next, participants from NVGL and VGL group started 
walking through Sydney Park along a pre-defined route by auditory instructions without and with VGL system 
respectively. Last, the map drawing task was conducted. (b) The gear setup for each participant. During the 
tasks in the VR environment, participants were wearing a 64-channel EEG cap covered by the VR headset with 
an HP backpack PC on their back and were holding a controller. The pro eye headset was connected to the 
HP backpack PC with scenario running inside. The remote-control software (HP Remote Graphics Software, 
RGS) was applied in another PC to monitor the scenario and related activity. (c) A pre-defined route map of 
exploration. Auditory instructions were used to guide participants through the route. The background map is a 
top view of the “Sydney Park” scenario. The plants and trees inside and surrounding the scenario were removed 
for a clear view of the path.
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mental procedure to come while completing this phase. Every participant completed the SBSOD questionnaire 
as a subjective measure of his or her sense of direction, as well as a PTSOT to evaluate their spatial orientation 
ability.

Exploration phase.  All participants were randomly divided into two groups in this phase, one group 
explored Sydney Park along with VGL system (VGL group), the other without (NVGL group). Each participant 
first had five minutes to walk inside a meadow area in the VR environment. Participants were given this time to 
explore until feel comfortable to do physical movement in the VR environment. If any uncomfortable feedback 
occurs, the experiment would be terminated. In the next step, participants were given an instruction based on 
the map of Royal Botanical Gardens and its surroundings to explain the background layout of our Sydney Park 
scenario as well as the global landmarks. For VGL group, during instruction about global landmarks, VGL was 
also explained. Except the global landmarks within the background surrounding, participants were not shown 
any local landmarks as well as the scenario’s inner layout. After the instruction, scenario was presented in VR 
and participants started walking through the Sydney Park scenario along a fixed, predefined route with the assis-
tance of auditory instructions (see Fig. 6c and Movie S1 in the supplementary). Turn-by-turn auditory instruc-
tions were used to build a familiar navigation aid of automatic orientation environment. To control all partici-
pants from both groups travelling the same fixed route, once wrong response to the verbal prompts occurred, 
the instructor who monitored the experiment would immediately ask the participants to stop and instruct them 
back to the right direction before reaching a different path. This was intended to standardize how participants 
explored the environment, and in the meantime, the use of auditory instruction could help to observe and 
investigate the VGL system’ effects on spatial learning in a common guided-navigation environment. All target 
landmarks involved in the following tasks were passed just twice while navigating the fixed route.

Map drawing task and NASA‑TLX questionnaire.  After the exploration, each participant was given a 
blank 11.7 × 16.5-inch sheet of paper, a pencil and an eraser. They were then instructed to draw any information 
they remembered about the scenario, including landmarks, paths, etc., They were not allowed to conduct the 
scenario or listen to the instructions again. Following the map drawing task, each participant filled out a NASA 
Task Load Index questionnaire (NASA-TLX)41.

Sketch map analysis.  We analyzed the sketched maps with the Gardony Map Drawing Analyzer 
(GMDA)27. This software package provides quantitative measures of map accuracy using novel measures, unique 
to GMDA, that rely on both pairwise comparisons and traditional bidimensional regression parameters54. Fig-
ure 8 show examples of sketch maps from participants. During scoring the total map score for each sketch map, 
we drew upon all the critical measures provided by GMDA, including canonical organization (with a square-
root-corrected measure), canonical accuracy, points percentage, rotational and scaling biases, distance accuracy, 
and angle accuracy. The total map score can be represented by an equation as follows: :

Figure 7.   VR scenario of Sydney Park. (a) Map of local landmarks in the scenario. Label 1 to Label 11 represent 
a spinning wheel, monkey bars, a bell sculpture, a green bench, a horse sculpture, a seesaw, a parterre, a water 
fountain, a picnic table, a brown bench and a lion sculpture, respectively. (b) A birds-eye view of the scenario. 
Label 12 represents a lighthouse. The remaining landmark label beside each landmark is consistent with the 
respective label shown in (a). (c) Sydney Opera House side view of scenario. (d) Sydney Tower Eye side view of 
scenario. This scenario was developed in Unity 2018.3.5f1 (Unity Technologies, USA, https://​unity.​com/).

https://unity.com/
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The total map score ranges from −2 to 5 and a higher score indicates an overall better preformation in sketch 
map. For all the single measures, the canonical organization measures the overall configuration accuracy of 
the sketch map, with penalties for missing landmarks while canonical accuracy measures the configurational 

(1)
Total map score = SQRT

(

canonical organization
)

+ canonical accuracy+ points percentage

−
rotational bias

360
− scaling bias+ distance accuracy + angle accuracy

Figure 8.   Sketch maps from participants. (a) An example of sketch maps from NVGL group. (b) An example 
453 of sketch maps from VGL group.

Figure 9.   Checkpoint map. The red checkpoints define the starting points; the green checkpoints are those in 
the  middle of one path; the purple checkpoints appear at crossroads; and the yellow checkpoints represent a T 
intersection. The background map is a top view of the “Sydney Park” scenario.
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accuracy of only the drawn landmarks. These two measures are all range from 0 to 1 with higher scores indi-
cating better configural accuracy and landmark recall. The points percentage records the successfully recalled 
points of the explored environment, including landmarks and intersections, as percentages, which ranges from 
0 to 1 with higher scores indicating higher proportion of successful recalled points. The scaling bias measures 
the direction of scaling of the inter landmark distances, which ranges from 0 to 1 with lower scores indicating 
higher precision on landmark scaling. Rotational bias measures the direction of angular error of inter landmark 
angles, which ranges from 0 to 360 with lower scores indicating higher precision on landmark rotation; however, 
to equal this index to others, we took rotationalbias360  instead as shown in Eq. (1) to make it range from 0 to 1 as well. 
Distance and angle accuracy reflect the accuracy of inter landmark distances and angles, which all range from 0 
to 1 with higher scores indicating more accurate interlandmark distance and angle representation, respectively.

EEG analysis.  Pre‑processing.  All raw EEG data were imported into MATLAB version 2018a (MathWorks 
Inc., USA) for processing. We used the EEGLAB toolbox version 2020.055 to aid in the analysis. For each partici-
pant’s raw data, we first checked the data quality by eye to ensure the EEG data was consistently recording with 
active movements during experiment. Of the 55 participants, data of one participant from NVGL group was 
excluded due to poor EEG quality. The raw data for the remaining 54 participants were first bandpass filtered 
from 1 to 100 Hz and downsampled to 250 Hz. Then, data from each single task were merged into one large EEG 
dataset for the following pre-processing steps. Line noise and flatlines were removed in turn using the cleanline 
and clean_flatlines functions in EEGLAB. Noisy channels were rejected with the clean_channels function. All 
missing EEG channels were interpolated by spherical splines before re-referencing to the average of all chan-
nels. Noisy data in the time domain were removed through automatic continuous data cleaning. On average, 
48.55% ± 17.79% of the data in the time domain were removed. The data were then submitted to adaptive mixed 
independent component analysis to obtain independent components55,56. The equivalent dipole model of each 
independent component was computed using a boundary element head model as implemented in EEGLAB’s 
DIFIT2 routines57. Last, the sphere and weights of the ICA and dipole models were copied back to the pre-
processed but uncleaned EEG single-task data for further analysis. (There was no cleaning in the time domain).

Event‑related spectral perturbation (ERSP).  The cleaned data for the exploration was extracted with a time 
window of [−1 s to 7 s]. The onset and offset events were generated based on checkpoints (see Fig. 9). For each 
single fixation period between two checkpoints (on the virtual global landmarks in the VGL group or the local 
landmarks in the NVGL group), the onset event was generated at the first checkpoint, and an offset event was 
defined at the second checkpoint. Bad epochs were detected and removed based on component activities using 
the autorej function. On average, 0.08 ± 0.40% epochs of the NVGL group condition were removed; 6.95 ± 2.89% 
epochs of the NVGL group condition were removed. All trials were then time-warped to time lengths of [−1 s to 
6 s], and ERSPs were plotted for each independent component with the newtimef function.

Independent component clustering.  The independent components from all participants were first selected with 
less than 15% residual variation of the equivalent dipole model, and the components with an equivalent dipole 
model located outside the head sphere were removed. Then, the selected components were clustered using 
K-means clustering in EEGLAB. To avoid the “double dipping” problem58,59, only dipole locations were included 
as the measure for clustering. For the ERSP analysis, we focused on the clusters of components located in or 
near the parietal cortex and occipital cortex. We looked for active neural dynamic differences related to spatial 
navigation34,60–63 or visual stimuli42,44 between the VGL and NVGL groups. We used the Talairach client tool64,65 
to evaluate the nearest gray matter of the dipole locations from the targeted cluster centroid and clustered com-
ponents.

Group‑level ERSPs and statistics.  We first computed the ERSPs at the single independent component level 
based on the cluster of interest, then averaged them at the participant level, and finally at the group level. The 
time–frequency data of all independent components from the same participant were averaged. Then, the ERSPs 
of all participants were averaged for the final ERSPs at the group level. Significant differences from the baseline 
activity are displayed in red for positive deviations, blue for negative deviations, and green for nonsignificant 
differences. We determined conditional differences using the newtimef function with a statistical threshold of 
p < 0.001 for all selected independent components. A global overview of our processing steps for the EEG analy-
sis is provided in Fig. S2 in the Supplementary.

Statistical analysis.  The statistical analyses were conducted using SPSS Statistics 26 (IBM Analytics, 
Armonk, USA). Data visualizations were created with the ggplot function of R66 (RStudio Inc, USA). We com-
puted one-way ANOVAs for the between-subject factor trial by group (VGL and NVGL) for the exploration, 
as well as for the map drawing task and for eye activity. The dependent values for exploration analysis were the 
response time (time spent in exploration) and blink intervals. For the map drawing task, the dependent values 
included the NASA-TLX score and total sketch map score along with all single indexes, i.e., canonical organiza-
tion, recalled points percentage, rotational bias, scaling bias, canonical accuracy, distance accuracy and angle 
accuracy. Each measure was calculated separately for the VGL and NVGL group.

For all measures, we first explored the data to check if outliers existed for the within-subject factor computa-
tions. All outliers inspected by boxplots for values greater than 1.5 box lengths from the edge of the box were 
removed. In addition, we ran a Shapiro–Wilk test to determine whether the mean values for both groups were 
normally distributed. We used Spearman’s rank-order correlation to assess the relationship between individual 
spatial ability factors (SBSOD and PTSOT scores) and all measures. The Spearman’s correlations result between 
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each individual’s spatial ability and the measures are shown in the Supplementary Fig. S1. With the significantly 
correlated factors, we then used the scores from these tests as covariates to assess how much the participants’ 
inherent, subjective sense of direction and orientating ability affected their completion of the navigation tasks.

Received: 2 November 2021; Accepted: 14 April 2022
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