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Key messages

►► There is a long history of artificial intelligence (AI) 
in imaging in rheumatology, using classical AI meth-
ods, but most of them did not make it into clinical 
practice.

►► Recently a subgroup of AI methods, called deep 
learning, has shown the potential to automatically 
interpret images beyond human-level accuracy.

►► AI and deep learning have, however, practical and 
theoretical limitations, that may complicate a rapid 
and widespread use in clinical practice.

►► AI will unlikely replace rheumatologists or radiolo-
gists in interpreting images, instead a hybrid solu-
tion will probably develop that benefits from both 
artificial and human intelligence.

Abstract
After decades of basic research with many setbacks, 
artificial intelligence (AI) has recently obtained significant 
breakthroughs, enabling computer programs to outperform 
human interpretation of medical images in very specific 
areas. After this shock wave that probably exceeds the 
impact of the first AI victory of defeating the world chess 
champion in 1997, some reflection may be appropriate on 
the consequences for clinical imaging in rheumatology. In 
this narrative review, a short explanation is given about 
the various AI techniques, including ‘deep learning’, and 
how these have been applied to rheumatological imaging, 
focussing on rheumatoid arthritis and systemic sclerosis as 
examples. By discussing the principle limitations of AI and 
deep learning, this review aims to give insight into possible 
future perspectives of AI applications in rheumatology.

Introduction
Currently, artificial intelligence (AI) receives 
much attention, in which it may sometimes 
be perceived as an obscure technology that 
may elusively affect our society. It is however 
also very clear, that AI can be used less contro-
versially to improve efficacy and efficiency 
in medical care and research, with a special 
focus on medical imaging. This narrative 
review gives an overview of the background 
of AI and its use in clinical imaging in rheu-
matology, together with a discussion on its 
strengths and limitations, and an outlook on 
future applications.

What is AI?
Although it has become well-known to the 
general public only recently, AI is by no 
means new. The first attempts to mimic 
human reasoning by electrical circuits dates 
back to the 1940s.

AI can be defined loosely as the capability 
of a computer system to perform a task that 
usually or traditionally would require human 
intelligence. In the AI domain there are 
different subcategories (see figure  1). AI 
can include systems that simply execute tasks 

that would not require the system to learn at 
all. In medical imaging, for example, AI can 
be applied to detect anatomical structures 
using handcrafted algorithms that simply 
implement the idea of a software engineer. 
The vast majority of methods that have been 
developed during the past decades fall within 
this general category (blue area in figure 1). 
On the other hand, a subgroup of AI tech-
niques, called ‘machine learning’ (ML), is 
able to learn automatically from the data it 
is presented with, mostly using ground truth 
data as training sets (ie, supervised learning). 
This collection of methods again consists of 
many different algorithms to automatically 
recognise patterns, also developed during 
the past decades, of which ‘deep learning’ 
is a subgroup. Deep learning is based on 
the concept of artificial neural networks, 
that mimic human learning capacity using 
mathematical representations of neurons 
and their interconnections. These neural 
networks exist already a couple of decades but 
obtained revolutionary results only in the past 
few years. AI has conquered many obstacles 
during its development, as overestimation of 
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Figure 1  Different subgroups of artificial intelligence 
methods.

AI capabilities in those days (and maybe still today) and a 
lack of major breakthroughs led to several setbacks.

Within the domain of each of the above AI categories, 
there is a wide range of applications using different types 
of data. If AI methods mimic the way, in which humans 
use their sense organs to interpret their environment (eg, 
speech recognition), this is called ‘Machine Perception’. 
If these senses are visual, it is called ‘Computer Vision’.

Artificial neural networks
The basic building block of an artificial neural network 
(ANN) is a mathematical model of a neuron (see 
figure  2A). An artificial neuron can learn to give an 
output signal only if a certain combination of inputs 
occurs. In order to do this, it takes a number of input 
values, x1, …, xn, multiplies each with its corresponding 
weight, w1, …, wn, and accumulate them into a net input 
for an activation function. This activation function then 
produces the output ‘activation’ value, after applying a 
shift (‘bias’) to the net input value. The weights and bias 
are then the parameters that need to be set (‘learnt’) in 
order to produce the proper activation.

To tackle more complex problems, a network of 
neurons can be constructed containing many different 
layers of neurons, hence the term ‘deep’ learning. There 
can be millions of parameters of weights and biasses that 
then need training. In a hypothetical example of automat-
ically diagnosing rheumatoid arthritis (RA), presented in 
figure  2B, the first layer may contain input values and 
the final layer may then provide the outcome of the clas-
sification (RA vs not-RA). The input values may repre-
sent relevant measurements, such as rheumatoid factor, 
erythrocyte sedimentation rate, C-reactive protein and 
anti-citrullinated protein antibodies, but also irrelevant 

biomarkers (hair colour). For a single subject, the set of 
input values can be considered a coordinate in a multi-
dimensional ‘feature space’ (see figure  2C). Applying 
consecutive layers in an ANN can then be considered 
transformations of these coordinates, followed by non-
linear scaling. If input values turned out to be irrelevant, 
the dimension of this space will be reduced by setting 
the corresponding weights to zero. In the end, an ANN 
therefore repeatedly deforms the feature space in such a 
way that in the final layer there are (in this example) only 
two dimensions left, in which the two groups of patients 
can be distinguished by taking the label with the highest 
output value.

Convolutional neural networks
A special type of ANNs are convolutional neural networks 
(CNNs) that mimic biological vision by taking an image 
as input layer and adding layers that process images 
by filters (defined by convolution kernels, the weights 
of which are trainable). After training, these weights 
take values such that certain structures (like edges) are 
enhanced in the images, which are needed to recognise 
more complex structures by deeper layers in the network. 
Remarkably, this mechanism resembles the way, in which 
images are perceived in biological vision. In the human 
retina, the output of the receptors are preprocessed by 
retinal ganglion cells in a similar way.1 Therefore, a CNN 
not only models learning mechanisms but also seems 
to mimic evolution of human vision into ‘hard-wired’ 
circuits, for example, in the retina (see figure 3, for an 
example of a CNN for detecting anatomical structures in 
the wrist).2 3

One of the most important steps of developing CNNs 
for a particular task, is not only designing the network 
architecture and their settings (hyperparameters), but 
also collecting and defining the proper data sets. Gener-
ally, three separate data sets are used: (1) for training 
the neural network, in order to set the proper weights 
and biasses; (2) for validation of the performance of a 
trained network using separate data, in order to deter-
mine the appropriate architecture and hyperparameters 
and to prevent overfitting and (3) for testing the ultimate 
network, since usually the design of a network is adapted 
after a couple of training-validation cycles. If a neural 
network is successful, a fourth data set may be needed for 
external validation, in order to prove its general appli-
cability for other scanner manufacturers, imaging proto-
cols or study populations.

Image interpretation
To analyse images with greater efficacy and efficiency, 
considerable effort has been put into the development 
of AI methods to perform image processing. It is only 
recently, however, that these automated methods have 
gained the accuracy that matches or even surpasses 
human performance in specific areas, that is, in classi-
fying skin lesions4 and detecting diabetic retinopathy.5
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Figure 2  Diagram of an artificial neural network. (A) an artificial neuron takes a number of input values x1, …, xn, multiplied 
by the corresponding weights, w1, …, wn. The inputs, summed by the transfer function, is then input for the activation function 
that produces the output signal after applying a bias (or threshold). (B) A multi-layered network of artificial neurons could for 
example be trained to distinguish RA from non-RA, based on blood markers. since irrelevant biomarkers like hair colour obtain 
small weights, these input values are neglected. (C) The working of an artificial neural network can be considered a consecutive 
deformation of the feature space such that the last layer makes a clear distinction between RA and not-RA, based on only two 
values, that are non-linear combinations of the input values. RA,rheumatoid arthritis.

Ever since the advent of digital imaging in the 1970s, 
human interpretation of images gradually started to rely 
on image processing techniques. This may even go unno-
ticed, but digital images are nowadays always fully auto-
matically enhanced or reconstructed first, before they are 
presented to the observer. Thus, human interpretation is 
now fully dependent on computerised image processing. 
But there are other levels, at which a computer can help 
the physician to subsequently interpret the resulting 

images (see figure 4). Dependent on the level of automa-
tion, these methods are divided into fully-human, semi-
automatic and fully-automatic interpretation.

Fully-human interpretation
As performed mostly in daily clinical practice, a physician 
interprets the digital image by visually detecting lesions 
and directly classify them (route A-1 in figure 4, from visual 
detection to cognitive characterisation). Alternatively, 
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Figure 3  An axial MRI image of the wrist2 (A), processed by a CNN. The neural network decomposes the image into different 
so-called ‘feature maps’.3 The CNN apparently learnt to apply low level filters first, by, for example, enhancing transitions 
from dark to bright in the vertical direction (B), or enhancing bright spots surrounded by a dark area (C). In the deeper layers 
of the network, it highlights higher level patterns, that seem to represent, for example, bony structures (D) and skin (E). In 
the final layers, the network combines all information into one output image that consists of labels for skin (yellow), bones 
(green), vessels (pink) and the different tendon groups (in separate colours) (F). ACPA,anti-citrullinated protein antibodies; 
CNN, convolutionalneural network; CRP, C-reactive protein; ESR, erythrocytesedimentation rate; RA, rheumatoid arthritis;RF, 
rheumatoid factor.

Figure 4  Possible pathways for classifying diseases based on imaging. Each phase (lesion detection, feature selection and 
classification) can be performed in three different ways: (1) By an observer using her/his knowledge, experience or ‘gut feeling’ 
(indicated by grey labels, A, I and 1, respectively); or (2) by an observer who manually annotates, measures and classifies (blue 
labels B, II and 2, respectively) or (3) by computer (green labels, C, III and 3, respectively).

in order to come to a semi-quantitative interpretation, 
the severity of the detected lesion can be scored visually, 
based on visually estimating handcrafted features (such 
as joint space narrowing or image intensities that indi-
cate inflammation). Based on this visual score the lesion 
can be classified (route A-I-2). These features can also 
be obtained from manual calliper measurements (route 
A-II-2). An example of the latter approach is using meas-
urements of the joint space width in mm’s from X-rays 
(for assessing joint space narrowing in hand and feet 
joints), or the extent of inflammatory region around a 
tendon from MRI also in mm’s (to measure tenosynovitis 
in RA).

Semi-automatic interpretation
In a hybrid or ‘computer-aided’ approach, the computer 
can facilitate parts of the detection, quantification and 
classification tasks, in different ways:
a.	 The detection of lesions or anatomical structures is 

done manually, after which quantification is done au-
tomatically by computer. The subsequent classification 
can then be done either manually (route B-III-2) or 
automatically (route B-III-3). Early examples of the 
latter approach is the manual annotation of the syno-
vial membrane in MRI scans, followed by an automatic 
calculation of the synovial volume to quantify synovitis 
in RA.6
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b.	Both detection and quantification of a lesion is per-
formed automatically by AI methods, followed by a 
manual classification in order to come to a diagno-
sis (route C-III-2). Since the quantification is usually 
based on clearly defined (handcrafted) features, the 
quantification is performed automatically.

Fully-automatic interpretation
Here one can take one of two approaches.
a.	 In the ‘classical’ image processing approach, the le-

sions or anatomical structures are first detected auto-
matically, followed by quantification of handcrafted 
features, and subsequently classification (route C-
III-3); or

b.	By using machine (deep) learning the handcrafted 
features are replaced by automatically learnt features. 
This means that detection, quantification and classifi-
cation are performed in one step.

Applications of AI in imaging in rheumatology
In most publications, the goal of developing and applying 
AI in medical imaging is described along the same 
pattern. Sometimes, automation is required as an alterna-
tive to visual scoring, because automation would be less 
expensive, time-consuming and/or subjective, producing 
less interobserver and intraobserver variability; and it may 
require less extensive training and/or specific examiner 
skills. This goal is especially relevant for clinical trials, 
where subtle changes or treatment effects are expected 
that need to be detected accurately. Other reasons for 
automation are that these measurements could be more 
specific than visual scoring because a computer program 
is more consistent and less distracted by other image 
information.7

In some situations however, automatic quantification is 
not an alternative to visual scoring but a measurement on 
its own, because the imaging modality is already quanti-
tative by nature (eg, CT densitometry or compositional 
MRI). The same applies when an automated method 
can quantify features that are impractical or impossible 
to assess by humans, because of the sheer amount of 
imaging data, or limitations in the human visual system, 
for example, difficulties in detecting subtle differences in 
absolute intensities.

The next three paragraphs give some examples of 
automatic quantification or classification in two distinct 
rheumatic disorders, RA and systemic sclerosis (SSc), 
representing primarily joint disorders and typical multi-
organ diseases, respectively, followed by a special AI topic 
on comparative imaging.

Rheumatoid arthritis
As imaging of RA is mainly focused on (teno)synovitis, 
bone marrow oedema, bone erosions and cartilage loss, 
the developed automated image analysis methods are 
aimed to detect and assess these manifestations. Synovitis 
and bone marrow oedema can be assessed directly, as 
they invoke an increase or decrease in image intensity. In 

other words, the lesion creates its own signal; if there is no 
signal, there is no pathology. Bone erosions and cartilage 
loss would require a slightly different approach where 
bone or cartilage is first detected, followed by a compar-
ison with an estimated original (or normal) volume of 
bone or cartilage. In other words, there is always a signal, 
but the question is whether its volume has decreased after 
disease onset. If a comparison with the original situation 
is not possible, the bone/cartilage measurement can only 
be used for monitoring disease progression, for example 
by quantifying changes in bone lesions over time.8

(Teno)synovitis
One of the first attempts to generally quantify inflam-
mation in contrast-enhanced MRI scans of the hand 
was made in 2007, by classifying the image intensities 
into normal and inflamed using ML (Fuzzy clustering).9 
Alternatively, dynamic contrast enhanced (DCE-)MRI of 
the hand and wrist have been used to quantify synovitis. 
These methods have been developed to align the time 
sequence of images through automatic image registra-
tion and subsequently classify the intensity versus time 
curves of each voxel into different patterns. The resulting 
perfusion maps can be used to detect synovitis and quan-
tify their extent.10 As both of the above approaches may 
produce false positives outside the synovium, research 
has also been focussed on separately detecting and quan-
tifying the synovium, based on prior segmentation of the 
bones, in, for example, the wrist.11 Deep learning has not 
been applied yet to classify MR images in terms of syno-
vitis.

In ultrasound (power Doppler), the amount of avail-
able automated methods to quantify synovitis is relatively 
small compared with other imaging modalities, prob-
ably because of the technical challenges in analysing 
these images, due to image noise. Using classical image 
processing and ML, a method has been presented to 
automatically detect skin, bones and synovitis regions, the 
latter of which was quantified by their area.12 As in MRI, 
efforts have been made to detect bones as a preprocessing 
step for accurately defining the synovium, with classical 
AI methods13 and deep learning.14 Recently, applications 
of deep learning have been proposed to directly quantify 
synovitis from the entire image, by training a CNN with 
visual scoring as ground truth.15

Similarly to synovitis, quantification of tenosynovitis 
requires an automatic segmentation of tendons, in order 
to define the surrounding synovium and quantify inflam-
mation in contrast-enhanced MRI. Our group has devel-
oped such an automatic framework in order to quantify 
tenosynovitis in the wrist.2 Next steps in our research are 
to apply deep learning in order to detect tendons (see 
figure 3) and quantify tenosynovitis, but also to classify 
the entire image by a single CNN.

Bone lesions
In order to quantify bone marrow oedema (BME), the 
first classical AI methods were based on DCE-MRI of the 
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Figure 5  Deep learning-based detection of the arterial and venous pulmonary vascular.35 (A) Sagittal cross-section of a right 
lung on chest CT; (B) detection of all centre lines of the pulmonary vessels; (C) classification into arteries (red) and veins (blue) 
by deep learning.

wrist.16 Using static postcontrast MRI scans of the wrist, 
BME could also be assessed automatically, specifically in 
early RA.17 So far, however, deep learning has not been 
investigated yet in measuring BME.

Early AI developments for automatically quanti-
fying bone erosion use fractal analysis to characterise 
the texture of trabecular bones in the radius, based on 
plain radiographs.18 This type of analysis has only been 
employed in research, probably because measures from 
fractal analysis may be difficult to interpret clinically, 
especially if there are no normal values.

An alternative method detects the bones from hand 
radiographs and compare their shape with a statistical 
shape model from healthy bones and determine devia-
tions from that model to detect and quantify erosions.19 
More recently, deep learning has been employed to 
detect bone erosions from radiograph of hands.20 
Using peripheral CT of the hand, classical AI-based21 
and CNN-based22 methods were able to detect bone 
erosions.

Cartilage loss
Of the different RA features, most effort has been put 
into automatic quantification of cartilage loss, prob-
ably because of the wide availability of radiographs and 
because cartilage loss is also relevant for osteoarthritis.

From plain radiographs, cartilage loss can be assessed 
only indirectly, by measuring the joint space, since carti-
lage itself is not visible. Early AI development to quan-
tify joint space width in the hand23 and knee24 date back 
to 1989. More recently, classical AI methods have been 
proposed to automatically measure joint spaces within 
the wrist.25

In MRI scans, cartilage thickness and volume have been 
measured using a wide variety of classical AI methods.26 
Deep learning has been used to detect knee cartilage,27 
which has been developed further more recently in order 
to classify cartilage lesions.28 Similarly, CNNs have also 
been applied to detect cartilage in the wrist joints.29

Systemic sclerosis
As SSc involves multiorgans, research on automated 
imaging biomarkers for vasculopathy and fibrosis has 
been focussed on different anatomical sites, such as skin, 
heart and lungs.

Vasculopathy
Nailfold capillaroscopy is an established modality to distin-
guish and classify sequential patterns of capillary abnor-
malities that are considered representative to the general 
microvascular involvement of SSc. With early comput-
erised tools, the observer was able to perform calliper 
measurements (capillary dimensions and density) on 
screen, based on completely manually drawn contours30 
or manually defined landmarks.31 Initially, the developed 
image processing methods closely followed the way, in 
which human observers would recognise morphological 
abnormalities (loop width, capillary density, etc), but 
researchers have also designed morphological features 
that are less obvious to quantify by hand, such as tortu-
osity32 and texture,33 followed by automated classification 
by ML.

Using chest CT, vasculopathy can be quantified with AI 
by detecting pulmonary vessels that can be resolved by 
CT (ie, down to ~0.5 mm in diameter) and subsequently 
quantifying their morphology to produce imaging 
biomarkers.34 These biomarkers estimate the number of 
small vessels and the difference in occurrence between 
small vessels and large vessels, which are found to be 
correlated with functional impairment of the lungs, in 
the absence of lung fibrosis. This is a typical example 
where a method is intended to be complementary to 
visual scoring, since it is practically impossible to measure 
all vessels in the lungs by hand or score them visually. 
Currently, our research group is working on applying 
neural networks to automatically distinguish pulmo-
nary arteries from veins,35 so that it becomes feasible 
to measure the pulmonary vasculature separately, to 
increase its specificity (see figure 5).



7Stoel B. RMD Open 2020;6:e001063. doi:10.1136/rmdopen-2019-001063

ImagingImagingImaging

Figure 6  Two examples of comparative imaging. (A) Baseline (left panel) and follow-up (right) sagittal T1-weighted turbo 
spin echo (TSE) MRI scan of three thoracic vertebrae of a patient with suspected axial spondyloarthritis. Change in low signal 
intensity at the posterior vertebral body (high on stir – not shown) consistent with bone marrow oedema is appreciated. The 
middle panel shows the progression map, where a decrease in intensity is displayed in orange, and an increase in blue.45 
(B) Baseline (left) and follow-up (right) CT scan of a patient with diffuse systemic sclerosis44 (left lung). The progression map 
in the middle panel shows the local density changes, with the same colour code; blue: decrease in density, orange: density 
increase. The map demonstrates that the ground glass densities were partly resolved by treatment. These two examples show 
clear changes in the images as an illustration, but more subtle difference that are less obvious to the human eye can also be 
displayed in this manner.47

Cardiac complications of SSc can be quantified auto-
matically from imaging by methods that rely on a long 
history of general applications in cardiology. ML methods 
have already been able to automatically quantify left and 
right ventricular function, based on ultrasound,36 MRI37 
and CT.3835

Fibrosis
In estimating fibrosis as manifested in changes in skin 
thickness, the modified Rodnan Skin Score methods 
based on palpation is the gold standard. Fully-quantitative 
alternatives have been proposed to measure skin thick-
ness more directly from imaging.39 These methods 
employ for example ultrasound, MRI or optical coher-
ence tomography (OCT) to determine skin thickness and 
other characteristics. AI-based image analysis methods 
have been introduced, to fully automatically measure 
skin thickness40 and other (epi)dermal characteristics41 
from ultrasound images, and MRI42 and OCT.43 These 
automated imaging biomarkers, however, still need to be 
evaluated because the relatively new imaging techniques 
require further optimisation and standardisation, and 
have not yet been applied in SSc.

In chest CT, fibrosis has also been assessed automati-
cally in the lungs, as an objective and more reproducible 
alternative to the visual Goh scoring system. Lung densi-
tometry may be used to quantify interstitial lung disease, 
since lung tissue mass is expected to increase over time, 

which has been proven to correlate with a decline in lung 
function.44

With the success of deep learning in classifying images, 
an obvious next step is to develop neural networks that 
can distinguish different patterns for differential diag-
nosis and SSc staging from the different image modalities.

Comparative imaging
Whenever the question arises whether RA has progressed 
or not, a specific task is to basically ‘spot the differences’ 
in consecutive images. The evolution of the human visual 
system has however not been optimised to look for differ-
ences between two images (this is probably the reason 
why ‘spot the difference’ is a popular children’s game). 
On the other hand, computer vision is better equipped 
for detecting differences in image intensities. There-
fore, a separate field of AI research, called ‘comparative 
imaging’ is focussed on providing difference images to 
the radiologist/rheumatologist to help find locations of 
RA progression or regression. In our research group for 
example, software has been developed to show inflam-
matory changes in vertebral lesions in axial spondyloar-
thropathy by matching baseline and follow-up MRI scans 
through image registration and subsequently display 
the changes over time by image subtraction and colour 
coding45 (see figure 6A). For SSc we have developed soft-
ware to map the local changes in lung density over time 
(figure  6B). Other researchers have developed similar 
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comparative imaging techniques to display changes in 
joint spaces in sequential hand radiographs46 and in bone 
lesions8 in MRI of the hand. It is very likely that deep 
learning methods will also enter this area of research, 
where CNNs could learn to distinguish relevant from 
irrelevant changes in image intensity over time.44 45 47

Future perspectives
From the above overview, it is clear that there is extensive 
literature on imaging biomarkers in rheumatology, mostly 
using classical AI methods (using separate segmentation, 
feature extraction and classification steps). Applications 
of deep learning in rheumatology is sparse, but this will 
grow rapidly.

Until recently radiologists and rheumatologists were 
the only interpreters of clinical rheumatological images, 
and these images were digital solely because of their ease 
of archiving and transferring data. Recently, however, 
neural networks started to outperform human inter-
pretation of images in very specific tasks.4 5 It is however 
unlikely that AI will replace humans, since generalisation 
of computerised image interpretation is much more diffi-
cult than in very narrow areas of expertise. A more likely 
scenario would be the development of a hybrid solution, 
which benefits from both artificial and human intelli-
gence. As humans are less capable of analysing large 
amounts of multidimensional data, AI may help reducing 
the dimensionality or recognising patterns that are not 
apparent to the human eye and brain. This is especially 
true when image data is combined with other clinical 
data, producing even more big data, which cannot be 
handled with human power only.

Predicting the future of AI is tempting but difficult, as 
the time scale at which developments will occur is very 
difficult to estimate, considering the many setbacks AI 
experienced during its development. Since overestima-
tion of AI’s capabilities is lurking, we need to be critical 
and be aware of the drawbacks and limitations of AI and 
deep learning.

Limitations of deep learning
All deep learning methods presented in this paper are 
examples of supervised learning, meaning that large 
amounts of ground truth data are needed to train the 
system. If these ground truth data can only be obtained 
from human interpretation, we are actually back to 
square one. Therefore, much effort needs to be put into 
manually annotating anatomical structures and lesions 
in images or classifying them (in consensus), in order 
to provide an accurate ground truth. Without a proper 
quality control, however, deep learning will learn to copy 
human mistakes. Furthermore, visual scoring may not 
be considered ground truth anymore, if our goal were 
to surpass human interpretation. Therefore alternative 
reference outcome measures will be needed, for example 
from longitudinal data, where the task will shift towards 

prediction of clearly defined outcomes instead of static 
assessment of disease severity.

Neural networks are certainly not off-the-shelf solu-
tions, as there is not a generic network that solves all 
possible problems, like the human brain does. Therefore, 
today human expertise is still needed to design a neural 
network, including its settings, and to perform proper 
training, validation and testing. Evolutionary algorithms 
may, however, help designing networks in the future, in 
order to find the optimum architecture and hyperparam-
eters automatically.

Much like humans may sometimes rely on their experi-
ence or ‘gut feeling’ without being able to clearly explain 
their decision, neural networks can also be considered 
‘black boxes’. There are developments towards opening 
the ‘black box’ by providing so-called class-discriminating 
attention maps,48 which may give at least an indication 
of where the network had focussed on, in order to come 
to a certain classification. When it has been proven irre-
futably that a neural network outperforms humans in 
a certain task, we will probably need to adapt and trust 
these systems in much the same way we would need to 
trust human experts. Legal and ethical issues are still 
open, however, especially on liability of machine-based 
clinical decisions and in collecting large amounts of 
confidential data.

It is unlikely that deep learning will completely replace 
all classical AI algorithms. For simple problems, deep 
learning may be too complex and non-linear to produce 
the proper solution. Furthermore, deep learning invents 
and extracts its own features from the images to come 
to a classification, whereas classical AI uses man-made 
features to measure. In many cases, however, there is a 
need for measurements, of which the physical meaning 
is clear. For example, the dimensions of a vessel is much 
more informative than a classification of this vessel by a 
neural network. In those cases, deep learning can still 
be very useful in the first part of the process, where the 
vessels need to be detected first.

Similar to the education and certification of a biolog-
ical neural network (ie, the rheumatologists), an artificial 
neural network also needs to be trained and validated 
extensively, before it can be applied in the clinic. There 
is, however, an imbalance between the amount of 
published technical innovations, as described above, and 
the amount of techniques that actually make it into clin-
ical practice. Due to publication bias, a large part of the 
innovations simply does not pass external validation, or 
only works on very specific data sets. But it also seems 
that performing validation studies is a limiting factor in 
itself. Researchers may only be interested in the purely 
technical innovation without aiming for a clinical appli-
cation (‘hit and run’ research), and software validation 
is less interesting to basic researchers because of the 
amount of administration needed to obtain clearance 
from regulatory organisations for such a medical device. 
Software validation is therefore mostly performed by 
commercial companies, but still only if there is clear 



9Stoel B. RMD Open 2020;6:e001063. doi:10.1136/rmdopen-2019-001063

ImagingImagingImaging

market viability for this product. Thus, a closer collabo-
ration between universities and industry may be needed, 
as well as between technical and clinical researchers. For 
these types of collaborations, interdisciplinary university 
studies are essential to bridge this gap further. There are 
already several initiatives from the different professional 
organisations to create new training programme in the 
use of AI in medical imaging.

Dependency on image acquisition and reconstruction
Although this may sound trivial, it is good to keep real-
ising that AI – as any assessment – is bounded by the 
somewhat denigrating concept of ‘garbage in, garbage 
out’. The accuracy of AI in image analysis is in the end 
limited to the accuracy of the image modality it takes 
as input. In cases where human image interpretation is 
the limiting factor, AI can help improving sensitivity and 
specificity of a particular assessment, by extracting addi-
tional information from the images. If not, the best AI 
can do is to improve reproducibility and time-efficiency 
and cost-efficiency. But even then, overall reproduci-
bility may be limited by physiological variations (respi-
ration or perfusion, for example, in pulmonary vascular 
imaging), or by operator dependency, for example, in 
ultrasound imaging.49 But even for the latter, CNNs may 
help reducing variability by automatic selection of the 
most informative frame.50 It is therefore important for 
AI experts to be on the watch for new image acquisition 
and reconstruction methods that may be more tailored 
to detect the specifics of a disease with higher reproduc-
ibility, and continuously adapt their AI methods to these 
new modalities or imaging protocols.

Dependency on image acquisition settings can also be 
more subtle, especially in follow-up analysis. As image 
analysis becomes more and more quantitative and sensi-
tive, these methods may also pick up subtle changes in 
the imaging modality itself instead of the study subjects. 
In lung CT densitometry for example, the measured 
densities may shift or drift, simply by an update of the 
scanner’s reconstruction software or due to ageing of 
the X-ray tube. Therefore, quantitative analysis will 
put stricter requirements on the constancy of imaging 
devices. Moreover, so far image acquisition protocols 
have been optimised primarily for human interpretation. 
It could well be, however, that the optimal settings for 
image acquisition and reconstruction are fundamentally 
different for AI methods. Therefore, this has opened a 
new field of research aimed at formalising these image 
quality requirements and developing standardisation to 
guarantee stable diagnostic accuracy of AI.

Conclusions
Artificial intelligence has already been applied in imaging 
in rheumatology for a long time. In clinical practice 
however, only few of these methods have been adopted. 
The recent successes of deep learning will dramatically 

change this, where AI will be supplementary to human 
image interpretation and clinical reasoning.
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