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Abstract

Objective: We examined whether a panel of SNPs, systematically selected from genome-wide association studies (GWAS),
could improve risk prediction of coronary heart disease (CHD), over-and-above conventional risk factors. These SNPs have
already demonstrated reproducible associations with CHD; here we examined their use in long-term risk prediction.

Study Design and Setting: SNPs identified from meta-analyses of GWAS of CHD were tested in 840 men and women aged
55–75 from the Edinburgh Artery Study, a prospective, population-based study with 15 years of follow-up. Cox proportional
hazards models were used to evaluate the addition of SNPs to conventional risk factors in prediction of CHD risk. CHD was
classified as myocardial infarction (MI), coronary intervention (angioplasty, or coronary artery bypass surgery), angina and/or
unspecified ischaemic heart disease as a cause of death; additional analyses were limited to MI or coronary intervention.
Model performance was assessed by changes in discrimination and net reclassification improvement (NRI).

Results: There were significant improvements with addition of 27 SNPs to conventional risk factors for prediction of CHD
(NRI of 54%, P,0.001; C-index 0.671 to 0.740, P= 0.001), as well as MI or coronary intervention, (NRI of 44%, P,0.001; C-
index 0.717 to 0.750, P= 0.256). ROC curves showed that addition of SNPs better improved discrimination when the
sensitivity of conventional risk factors was low for prediction of MI or coronary intervention.

Conclusion: There was significant improvement in risk prediction of CHD over 15 years when SNPs identified from GWAS
were added to conventional risk factors. This effect may be particularly useful for identifying individuals with a low
prognostic index who are in fact at increased risk of disease than indicated by conventional risk factors alone.
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Introduction

There has been much discussion of personalised medicine

and the use of genetic risk scores for identifying people at

increased risk for chronic diseases including coronary heart

disease (CHD). The expectation is that such individuals might

benefit from targeted interventions, thereby reducing their risk

of developing disease. The Framingham risk score [1] is the

most commonly used method of CHD risk prediction, and has

been widely assessed for validity. However, the accuracy of this

score differs between populations, commonly over-estimating

risk in European countries [2], and overall accuracy is generally

low for individuals not at the extremes of risk distributions.

Alternative risk prediction models have been developed which

incorporate a range of additional risk factors, such as bio-

markers [3], socio-economic indicator, or family history [4], but

these still have limited predictive power.

Family history is predictive of CHD after adjusting for other

conventional risk factors [5,6], and CHD is estimated to be

approximately 40–50% heritable [7,8]. Despite this, genetic in-

formation has so far generally not resulted in appreciable

improvements in prediction over non-genetic risk factors, (apart

frommonogenic disease). This is likely due in part to the small effects

exerted by individual single nucleotide polymorphisms (SNPs)

relative to established risk factors; but the selection of SNPs for

evaluation, and methods of inclusion in a predictive model, are also

likely contributors. Previous genetic risk prediction models have

often relied on candidate SNPs that have a known biological role in,

or association with, CHD or atherosclerosis [9]. The publication of

genome-wide association studies (GWAS) has provided another

method for identification of SNPs, independent of known biological

function, but based on statistical evidence of association. Models

have often used genetic risk scores, basically a sum of the number of
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risk alleles, which do not take into account the individual effect sizes

and assume independence of these alleles.

The primary aim of this analysis was to determine whether

a systematically selected panel of SNPs, already found individually

to be reproducibly associated with CHD through GWAS, could

improve prediction of CHD over and above well established

conventional risk factors, thereby contributing additional clinical

utility. Since the majority of coronary events occur in individuals

with Framingham based risk scores of less than 20% [10], the

inclusion of genetic information has the potential to create a more

personalised and accurate risk evaluation.

Methods

Study Population
Details of the Edinburgh Artery Study (EAS), have been

published previously [11,12]. In brief, the EAS enrolled 1592 men

(809) and women (783) aged 54–75 years living in Edinburgh,

Scotland. Recruitment used an age-stratified random sample from

ten general practices, resulting in a geographical and socio-

economic representation of the population of Edinburgh. Clinical

examinations were held during 1987/8, and DNA samples were

collected at a five year follow-up examination (attended by 1165

(73%) subjects). At time of genotyping for the current study (2009),

DNA was available for 856 subjects, of which 840 were

successfully genotyped (409 men, 431 women). Reasons for not

having a DNA sample included refusal to provide a blood sample

or allow genotyping at the 5-year examination, or insufficient

sample remaining. Baseline characteristics of the full EAS

population and the population used for the current analysis were

very similar (Table 1).

Data collection for identification and validation of coronary

events at baseline and throughout follow-up included the WHO

chest pain questionnaire, ECG (coded using Minnesota Classifica-

tion Code), self-reported doctor diagnosis of disease, record linkage

to hospital discharge data and death certificates, and scrutiny of

general practitioner records [12]. Conventional risk factors mea-

sured at baseline included lipids and blood pressure. Complete

follow-up was available until June 2003, a mean follow-up of 15

years.

The classification of CHD used in the current analyses was

based on validated events and comprised of fatal or non-fatal

myocardial infarction (MI), angioplasty, coronary artery bypass

surgery, angina and/or unspecified ischaemic heart disease as

a cause of death. To reduce the potential for mis-classification,

further analyses were restricted to fatal or non-fatal MI or

coronary intervention (angioplasty or coronary artery bypass

surgery). Family history was also collected at baseline, but was

limited to unconfirmed self-reports of MI or angina in a parent.

Ethical Approvals
Ethical approval for the EAS was granted by the Lothian

Health Board Medical Research Ethics Committee. Written

informed consent was obtained from all participants.

SNP Identification
Selection of SNPs used recent large scale meta-analyses of

GWAS of CHD to identify SNPs that have demonstrated

reproducible associations with CHD [13,14]. This provided 36

SNPs, of which six were not available on Metabochip

(rs10953541, rs1412444, rs17609940, rs216172, rs46522,

rs964184) and no proxy was available; rs4977574 was replaced

with rs133049 (r2 = 0.97, D’ = 1.0). Three SNPs were removed

because they were in LD (r2.0.85) with other included SNPs

(rs646776, rs1199338, rs12526453). Details of SNPs used in

prediction models are presented in Table 2 (detailed in Table S1).

Additional SNPs for use in a secondary, exploratory analysis

were selected based on nominal significance (P,161025) in

GWAS of CVD, significant associations with lipids in GWAS,

and/or biological plausibility. This provided an additional 44

SNPs (detailed in Table S2) that were available and successfully

genotyped in the study population, resulting in a total set of 74

Table 1. Comparison of baseline characteristics of the EAS population used in genetic risk prediction models and full study
population.

Study population (1592) Genotyped population (840)

Mean (95%CI) Mean (95%CI)

Age at baseline 64.9 (64.6,65.1) 64.4 (64.0,64.8)

Body Mass Index 25.6 (25.4,25.8) 25.5 (25.3,25.8)

Systolic Blood Pressure 144 (143,146) 143 (142,145)

Diastolic Blood Pressure 77 (77,78) 77 (77,78)

Total Cholesterol 7.03 (6.97,7.10) 7.08 (6.99,7.02)

HDL Cholesterol 1.44 (1.42,1.46) 1.45 (1.42,1.50)

LDL Cholesterol 5.28 (5.22,5.34) 5.33 (5.25,5.40)

log(Triglycerides) 0.15 (0.14,0.16) 0.14 (0.13,0.20)

n (%) n (%)

Sex Male 809 (51) 409 (49)

Diabetes 288 (18.1) 136 (16.2)

Family History in parent 576 (36.2) 257 (38.0)

Current Smoker 404 (25.4) 182 (21.7)

Previous Smoker 582 (36.6) 315 (37.5)

Never Smoked 561 (35.2) 328 (39.0)

doi:10.1371/journal.pone.0057310.t001

Genetic Markers in Prediction of CHD Risk
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SNPs for use in secondary analysis. This was a more subjectively

selected and therefore potentially biased set of SNPs.

Genotyping
Genotyping used the Illumina MetaboChip, from which the

chosen SNPs were extracted. Quality control was carried out on

the full MetaboChip results, 16 samples with call rates below 75%

were excluded. Table S1 reports: call rates, mean genotypic call

rate of 97.7% (range 85.5–99.5); Hardy Weinberg Equilibrium

(HWE), one SNPs showed deviation from HWE (rs4773144); and

minor allele frequencies (MAF), range 3–49%.

Statistical Analysis
Statistical analysis used R version 2.14.0 [15], all p-values were

two-sided. Prediction of coronary risk used multivariate adjusted

Cox proportional hazards in the survival library [16], the

assumption of proportional hazards was satisfied for all models.

Conventional risk factors were based on the Framingham model

[1], and included: sex, baseline age, systolic blood pressure,

smoking (Yes/No), diabetes and/or glucose intolerance (Yes/No),

and total cholesterol/HDL cholesterol. SNPs were added as

covariates to the conventional risk factors, assuming an additive

model. This was thought preferable to creation of a single genetic

risk score as it allows more influential SNPs to exert more of an

effect on the model, whereas a composite risk score assumes all

SNPs have the same effect size. The derived ß coefficients were

used to calculate prognostic indices, thereby creating weighted

prediction models. Prognostic indices were converted to predicted

probabilities as 12S0(t)
exp(PI) [1].

Model performance was evaluated by C-indices, net reclassifi-

cation indices (NRI), integrated discrimination improvement (IDI),

and plotted ROC curves. ROC curves were plotted using the

ROCR library [17], C-indices, NRI, and IDI used the Hmisc library

[18]. The C-index used in survival analysis is analogous to area

under the ROC curve used in logistic regression, simply it is

a measure of the concordance in predicted and observed survival

times between subjects [19]. NRI was based on event specific

reclassification and used continuous measures rather than

categories, which increases statistical power. NRI can be used to

compare the clinical impact of different models, simply, it is

a comparison of the proportion of subjects with disease who have

appropriately increased risk scores with the new model, and the

proportion of subjects without disease who have appropriately

decreased risk scores with the new model [20]. IDI represents

desired improvements in average sensitivity corrected for undesir-

able increases in 1-specificity, it therefore compared whether the

new models improved sensitivity without affecting specificity, as

described in Pencina et al. (2008). ROC curves are plots of 1-

Table 2. SNPs identified from meta-analysis of GWAS of CHD used in risk prediction models.

SNP Chr Position (b37) Gene(s) Alleles Minor allele MAF

rs11206510 1 55,268,627 PCSK9 C/T C 0.16

rs17114036 1 56,735,409 PPAP2B A/G G 0.11

rs599839 1 109,623,689 SORT1 A/G G 0.28

rs17011666 1 220,865,588 MIA3 A/G G 0.17

rs17465637 1 220,890,152 MIA3 A/C A 0.27

rs6725887 2 203,454,130 WDR12 C/T C 0.16

rs2306374 3 139,602,642 MRAS C/T C 0.18

rs1332844 6 12,996,990 PHACTR1 C/T C 0.39

rs12190287 6 134,256,218 TCF21 C/G G 0.40

rs3798220 6 160,881,127 LPA C/T C 0.00

rs11556924 7 129,450,732 ZC3HC1 C/T T 0.39

rs1333049 9 22,115,503 CDKN2A, C/G C 0.46

rs579459 9 135,143,989 ABO C/T C 0.20

rs2505083 10 30,375,128 KIAA1462 C/T C 0.43

rs1746048 10 44,095,830 CXCL12 C/T T 0.15

rs12413409 10 104,709,086 CYP17A1, CNNM2, NT5C2 A/G A 0.08

rs974819 11 103,165,777 PDGFD C/T T 0.22

rs3184504 12 110,368,991 SH2B3 C/T T 0.45

rs4773144 13 109,758,713 COL4A1, COL4A2 A/G G 0.42

rs2895811 14 99,203,695 HHIPL1 C/T C 0.42

rs3825807 15 76,876,166 ADAMTS7 A/G G 0.45

rs4380028 15 76,898,148 ADAMTS7-MORF4L1 C/T T 0.41

rs12936587 17 17,484,447 RASD1, SMCR3, PEMT A/G G 0.47

rs1122608 19 11,024,601 LDLR G/T T 0.26

rs2228671 19 11,071,912 LDLR C/T T 0.11

rs9982601 21 34,520,998 MRPS6 C/T T 0.21

rs7278204 21 34,543,235 SLC5A3-MRPS6-KCNE2 A/G G 0.17

doi:10.1371/journal.pone.0057310.t002

Genetic Markers in Prediction of CHD Risk
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specificity vs sensitivity, allowing visualisation of changes in

discrimination over different sensitivities.

All analyses used first incident events only, subjects with

a diagnosis of prevalent CHD at baseline were excluded, as

appropriate. Time to event was determined individually for both

CHD and fatal or non-fatal MI or coronary intervention, based on

appropriate diagnostic criteria. Since models based on different

subjects could differ, risk prediction models that were compared

contained identical population groups. Power was calculated using

the gap library [21]. Though underpowered to detect significant

associations for individual SNPs, it was hypothesised that a set of

SNPs with high prior probability could jointly have a sufficiently

large effect size. There was 80% power to detect an effect size of

1.5 with a minor allele frequency (MAF) of 30% in a multiplicative

model, at 5% significance with a disease prevalence of 20%.

An exploratory method of selecting SNPs used regression trees

in the rpart library [22]. To identify SNPs that were informative

after conventional risk factors, the residuals of a model containing

conventional risk factors were used as the dependent variable. This

analysis included the full collection of 74 SNPs as potential

covariates. Tree development used the Gini Index as the splitting

rule, SNPs were treated as ordinal, and splitting was only

considered as dominant or recessive models. Regression trees

sequentially selected SNPs that best partitioned subjects into the

appropriate group [23]; the sets of SNPs that were identified by

the regression trees were then used to develop prediction models.

Results

Risk Prediction Using SNPs with Confirmed Associations
with CHD
27 SNPs identified in meta-analysis of GWAS of CHD were

successfully genotyped in the EAS population (Table 2), and results

of prediction models are summarised in Table 3 (hazard ratios given

in Tables S3 and S4). Addition of the 27 SNPs to conventional risk

factors in prediction of CHD increased the C-index from 0.671 to

0.740 (P=0.001) and NRI was 54% (95%CI 35–74; P,0.001).

When restricted to fatal or non-fatalMI or coronary intervention the

C-index increased from 0.717 to 0.750 (P=0.256), and NRI was

44% (95%CI 20–67; P,0.001). The results were almost identical

when family history of CHD was also included in the models.

Plotted ROC curves (Figure 1) showed that addition of SNPs

improved prediction over much of the curve for CHD, however

for fatal or non-fatal MI or coronary intervention the models

performed differently at different sensitivities when SNPs were

added; here the addition of SNPs better improved discrimination

when the sensitivity of conventional risk factors was lower,

translating to improved identification of an individual with a low

prognostic index in fact at increased risk of an event. This was

mirrored in density plots, in which a second distribution of higher

risk scores for subjects with events emerged upon addition of SNPs

(Figure S1). Addition of SNPs to conventional risk factors moved

10 subjects to predicted risk $20%, and increased the OR of

having any CHD given a $20% predicted risk increased from

3.86 (95%CI 2.52,5.93) to 5.42 (95%CI 3.54,8.38). When

restricted to fatal or non-fatal MI or coronary intervention, 16

subjects moved to predicted risk $20%., and the odds ratio of

having an event given a $20% predicted risk increased from 4.42

(95%CI 1.78,10.46) to 12.18 (95%CI 6.30,24.03).Reclassification

tables are presented in Table S5.

Risk Prediction Using SNPs Identified from Regression
Trees
The use of regression trees to identify SNPs that explained the

remaining variance after consideration of conventional risk factors

was a secondary, exploratory approach to developing prediction

models. Of the potential 74 SNPs, seven SNPs were found to

explain some of the remaining risk of CHD: rs1122608

(SMARCA1), rs3798220 (LPA), rs780094 (GCKR), rs1332844

(PHACTR1), rs11668477 (LDLR), rs3184504 (SH2B3), rs2505083

(KIAA1462). When done for fatal or non-fatal MI or coronary

intervention, the list of nine predictive SNPs differed: rs780094

(GCKR), rs17011666 (MIA3), rs11556924 (ZC3HC1), rs3798220

(LPA), rs4939883 (LIPG), rs12413409 (CNNM2), rs17145738

(TBL2/MLXIPL), rs174570 (FADS1/2), rs173539 (CETP). Re-

gression trees are shown in Figure S2, model results in Table 3,

and ROC curves in Figure S3. Addition of regression tree SNPs to

conventional risk factors increased the C-index for prediction of

CHD from 0.668 to 0.709, (P=0.027), had a NRI of 42% (95%CI

25,58; P,0.001), and moved six subjects with CHD to predicted

risk $20%. The SNPs predictive of fatal or non-fatal MI or

coronary intervention increased the C-index from 0.694 to 0.718

(P=0.463), had a NRI of 43% (95%CI 22,63; P,0.001), and

moved 15 subjects to predicted risk $20%.

Discussion

In this prospective, population-based cohort of men and women

from Edinburgh, Scotland, a systematically-selected set of SNPs

improved prediction of CHD over 15 years, over-and-above

conventional risk factors. A total of 27 SNPs that were significantly

associated with CHD, when added to the Framingham-based

conventional risk factors of age, sex, SBP, total cholesterol/HDL

cholesterol, diabetes and/or glucose intolerance, and smoking,

improved prediction as indicated by significant improvements in

NRI and C-indices. NRI were used to evaluate the clinical impact

of addition of SNPs. Given that an estimated 15–20% of MI occur

in individuals considered as lower risk based on conventional risk

factors [24], the ability of this genetic model to identify such

subjects and increase their predicted risk indicates potential

clinical utility. The highest risk category of at least 20% CHD

risk was of interest as individuals in this category are often

considered suitable for clinical intervention, and the risk of mis-

classification is decreased [25]. The appropriate reclassification of

subjects to $20% predicted risk on addition of SNPs to

conventional risk factors suggests that such a model could affect

treatment decisions for a number of individuals.

Regression trees were used to evaluate whether a smaller

collection of SNPs was sufficient to improve prediction, to account

for the possibility that not all SNPs contribute to prediction. This

allowed for selection of additional SNPs as it was not expected that

GWAS would have sufficient power to identify all associated and/

or predictive SNPs. Though regression trees are prone to over

fitting, they were an exploratory method to limit the number of

SNPs included in the models. They also provided branching

patterns that may show that an effect at one SNP may only occur

in the presence of another SNP. This would indicate that only

SNPs with independent effects should be included, in order to get

more accurate population based risk associated with the SNP.

Previous studies that added candidate SNPs to conventional risk

factors, using either genetic risk scores (a count of the number or

risk alleles) or weighting of SNPs, have generally not significantly

improved model discrimination as measured by C-index. They

have however indicated through NRI [26] and/or increased

hazard ratios that SNPs could improve risk prediction

Genetic Markers in Prediction of CHD Risk
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[27,28,29,30,31]; with significant associations reported between

incident CHD and genetic risk scores [26,27,28]. Humphries et al.

(2007) [32] found a significant improvement in C-index in the

Northwick Park Heart Study II (P,0.001), which was further

improved after inclusion of an interaction with smoking (P=0.01).

More recently there have been other studies that used GWAS-

identified SNPs in prospective cohorts; these contained many but

not all of the GWAS SNPs used in the present analyses. Paynter et al.

(2010) [6] assessed the predictive ability of adding genetic risk scores

to conventional risk factors for prediction of any CVD (MI, stroke,

arterial revascularization, and cardiovascular death) in a large

Table 3. Incidence, Discrimination, and Calibration Estimates of Models Using Conventional Risk Factors* and GWAS or Regression
Tree SNPs in the EAS.

Concordance R2 C-index NRI (95% CI)
NRI event/
nonevent IDI (95% CI)

SNPs identified through GWAS of CHD

CHD (n=508, 131 incident events)

Conventional risk factors 0.658 0.081 0.671

Conventional risk factors & SNPs 0.712 0.137 0.740 54.4 (34.5,74.3) 17.6/36.9 0.04 (0.02,0.06)

Conventional risk factors & Family history 0.658 0.082 0.671

Conventional risk factors, Family history & SNPs 0.712 0.138 0.741 54.4 (34.5,74.3) 17.6/36.9 0.04 (0.02,0.06)

Fatal or non-fatal MI or coronary intervention (n =590, 81 incident events)

Conventional risk factors 0.701 0.062 0.717

Conventional risk factors & SNPs 0.731 0.106 0.750 43.5 (20.1,67.0) 11.1/32.4 0.05 (0.02,0.08)

Conventional risk factors & Family history 0.702 0.063 0.718

Conventional risk factors, Family history & SNPs 0.734 0.107 0.753 42.7 (19.3,66.2) 11.1/31.6 0.05 (0.02,0.07)

SNPs identified through Regression Trees

CHD (n=663, 180 incident events)

Conventional risk factors 0.652 0.077 0.686

Conventional risk factors & SNPs 0.686 0.124 0.709 41.5 (24.6,58.4) 21.5/20.0 0.04 (0.02,0.05)

Fatal or non-fatal MI or coronary intervention (n =768, 107incident events)

Conventional risk factors 0.679 0.050 0.694

Conventional risk factors & SNPs 0.704 0.077 0.718 42.9 (22.5,63.3) 14.0/28.9 0.03 (0.01,0.04)

*Conventional risk factors = Age, Sex, SBP, Total Cholesterol/HDL Cholesterol, Diabetes and/or glucose intolerance, Smoking.
Each analysis used only subjects without a diagnosis at baseline, as appropriate to investigate incident events, and with full genotypic data for included SNPs.
doi:10.1371/journal.pone.0057310.t003

Figure 1. ROC curves of prediction of coronary heart disease when GWAS significant SNPs were added to conventional risk factors.
A: ROC curves for CHD, comprised of fatal or non-fatal MI, angioplasty, coronary artery bypass surgery, angina and/or unspecified ischaemic heart
disease as a cause of death; B: ROC curves for diagnoses limited to fatal or non-fatal MI or coronary intervention (angioplasty or coronary artery
bypass surgery).
doi:10.1371/journal.pone.0057310.g001

Genetic Markers in Prediction of CHD Risk
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cohort, and found no improvement in discrimination or reclassifica-

tion. Additionally the investigators found that the genetic risk score

alone was not associated with risk of CVD; thismay be due to the use

of a broader phenotype. Davies et al. (2010) [33] assessed the

predictive utility for CHD and found a significant improvement in

the C-index when SNPs were added to conventional risk scores,

from 0.801 to 0.809, (P=0.0073). They additionally found that

weighting SNPs led to models that performed better than un-

weighted models. Ripatti et al. (2010) [34] also reported an

association between incident CHD and genetic risk score after

adjusting for conventional risk factors, however this was observed

through improvements in IDI and NRI, and did not lead to

significant changes in C-index. They also reported that though

family history was associated with increased risk of CVD,

adjustment for family history did not change the risk estimates of

the genetic risk score.

The use of a genetic risk score results in equal weighting of all

SNPs, possiblymissing relevant information on the relative effects of

eachSNPwithin themodel [32].Also, in the development of amodel

in which covariates are not unrelated, the ß coefficients need to be

adjusted to account for the impact covariates have on each other to

prevent distortion of the model. ROC curves measure discrimina-

tion but are ‘insensitive to change’ [19,35], however as our curves

showed, the changes in risk prediction did not always change

consistently over the full range of sensitivities, a large change in one

portion of the curvemay be clinically relevant but not represented in

summary measures. The clinical value was demonstrated by the

increased NRI, and subsequent increased odds of subjects with

CHD to have predicted risk$20%, showing that addition ofGWAS

SNPs can have clinical applicability.

There were a number of strengths and weaknesses of the current

study. A strength of the EAS population was the long follow-up of

15 years, and the prospective method that included regular contact

with study participants and general practitioners, as well as use of

hospital discharge records and death certificates. This enabled

confirmation of reported events, providing accurate phenotypic

data and minimising misclassification bias; as well as detailed and

accurate records for subjects that died during follow-up, thereby

removing survivor bias. Here we found that genetic data was more

informative than self-reported family history of CHD. This was

possibly due to the difficulty in collecting accurate reports of family

history in epidemiological studies, which would also exist clinically

and therefore not result in accurate risk prediction.

As the cohort was recruited from Edinburgh only and was

primarily white, the risk of population stratification was low.

However, the EAS study population was small for a genetic study.

There may also have been temporal trends that affected CHD risk

and consequently risk prediction, such as smoking habits and

primary prevention of CHD. At baseline, medications for CHD

risk factors were not as commonly used as recently, and during

follow-up a considerable portion of the population were prescribed

anti-hypertensive, lipid lowering, and/or diabetes treatments.

With such a long follow-up this may have been a confounder

that was not accounted for.

This is not a definitive list of predictive SNPs. Further analysis of

GWAS and fine mapping is necessary to identify causal SNPs that

will be more accurate in risk prediction. There remains the

possibility that some of the GWAS significant SNPs did not

contribute to risk prediction. It is also likely that there are gene-

environment and gene-gene interactions that were not accounted

for, for example Humphries et al. (2007) found an interaction with

smoking [32], and HMGCR genotypes may affect lipid lowering

responses to statins [36]. Though use of GWAS results removed

sources of bias associated with the inclusion of candidate gene

study results, there remain problems specifically associated with

GWAS, such as poor representation of low MAF SNPs, that

debatably have larger effect sizes [37]. However, we have shown

that use of a systematically selected panel of SNPs can significantly

improve prediction of CHD risk over-and-above conventional risk

factors, indicating that this approach to incorporating genotypic

data into prediction models has potential clinical utility.

Supporting Information

Figure S1 Density plots of risk scores in prediction of
CHD with addition of GWAS SNPs to conventional risk
factors. A: Plots for CHD, comprised of fatal or non-fatal MI,
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