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Abstract: An overactivation of hepatocyte growth factor (HGF)/mesenchymal-epithelial transition
factor (MET) axis promotes tumorigenesis and tumor progression in various cancer types.
Research data recently evidenced that HGF/MET signaling is also involved also in the immune
response, mainly modulating dendritic cells functions. In general, the pathway seems to play an
immunosuppressive role, thus hypothesizing that it could constitute a mechanism of primary and
acquired resistance to cancer immunotherapy. Recently, some approaches are being developed,
including drug design and cell therapy to combine MET and programmed cell death receptor-1
(PD-1)/programmed cell death receptor-ligand 1 (PD-L1) inhibition. This approach could represent a
new weapon in cancer therapy in the future.
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1. Introduction

The mesenchymal-epithelial transition factor (MET) gene encodes for a membrane-bound receptor
tyrosine kinase (RTK) that is mainly expressed in epithelial cells, the MET receptor. Physiologically,
MET RTK is activated by a serum ligand, the hepatocyte growth factor (HGF), which is produced
predominately by stromal cells and fibroblasts. MET activation triggers, through subsequent
phosphorylations, various intracellular signaling cascades, including proliferation and survival
pathways such as the extracellular signal-regulated kinase 1 and 2 (ERK1/2)/mitogen-activated protein
kinases (MAPK) and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and inflammation
pathways such as signal transducer/activator of transcription (STAT) and nuclear-factor-κB (NF-κB) [1].

Physiologically, the HGF/MET pathway plays a main role in embryonic development, sustaining
stem cell growth in early phases [2,3] and regulating the polarity and motility of more differentiated
cells in later ones. The core of this process is the induction of the epithelial-to-mesenchymal (EMT)
transition, which represents in organogenesis the gain of migratory abilities by multipotent cells that
can differentiate into various cell types [4]. Similarly, HGF/MET signaling is involved in regeneration
and tissue repairs [5,6].

An over-activation of the HGF/MET axis promotes tumorigenesis and tumor progression in
various cancer types [7]. This happens through genomic activation, like germline MET mutation,
such as in hereditary papillary renal cell carcinoma [8] or sporadic MET mutations, detected in various
cancer types, including brain, gastric, and head and neck cancers [9] or even protein over-expression.
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In particular, MET protein levels increase in metaplasia-dysplasia-adenocarcinoma evolution in
esophageal cancer [10], while higher levels of HGF are detectable during the carcinogenesis of
gliomas [9], breast cancers, osteosarcomas, and melanomas [11,12].

Taken together, these findings elucidate a leading role of MET as a proto-oncogene in tumorigenesis.
Moreover, changing in MET expression explored in clinical settings revealed that it is a

mediator of anti-cancer drugs resistance, like EGFR inhibitor resistance in non-small cell lung cancer
(NSCLC) [13,14] and colorectal cancer (CRC) [15], and also that it correlates with worse prognosis and
aggressiveness [16], such as in hepatocellular carcinoma [17], breast cancer [18], and CRC [19].

MET role as a marker of resistance to anti-tumor therapy and bad prognosis mainly relies on its
ability in inducing EMT, and consequent changes in gene and protein expression phenotype in cancer
cells, which become more malignant and highly invasive [20]. In the last few decades, researchers
have pointed out that oncogene alterations are involved in cancer progression, and they are potentially
targetable, with new molecularly targeted agents. Even if these agents are selective and able to arrest
tumor growth, the majority of patients sooner or later experience relapse. Resistance is the result of
complex interactions among various receptor tyrosine kinases (RTKs) and other proliferative signals,
including MET, and they have been the object of previous works of our group [20,21] (Figure 1).
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Figure 1. Roles of the hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor
(MET) pathway.

2. Relevant Immune Pathways for Cancer Treatment

Among the main so-called hallmarks of cancer identified by Hanahan and Weinberg [22], there
the “immune surveillance”: the role played by the immune system against the formation and
progression of incipient neoplasia, late-stage tumors, and micro-metastases. However, immune
surveillance is counteracted by the ability of cancer cells to escape recognition and killing by
immune cells. Indeed, there is a constant dynamic interaction between immune cells and cancer
cells: for example, cancer cells may block infiltrating T-cells and natural killer (NK) cells by
secreting TGF-β or other immunosuppressive factors [23]. Another mechanism is the recruitment
of immunosuppressive cells such as regulatory T-cells (Tregs) and myeloid-derived suppressor cells
(MDSCs) [24,25]. Thus, “immunoevasion” is another key hallmark of cancer [22]. Several target proteins
acting as key checkpoints in the regulation of immune cell activity have been described. One of the
earliest to be identified was the cytotoxic T lymphocyte associated antigen-4 (CTLA-4). The expression
of a CTLA-4 molecule is upregulated after the activation of T-cells [26]. CTLA-4 induces T-cell cycle
arrest [27] and competitively binds with B7 molecules present on the antigen presenting cell (APC),
thereby inhibiting T-cell activity stimulation [28]. Programmed cell death receptor-1 (PD-1) is another
important molecule that is expressed by activated T-lymphocytes. Upon binding with programmed cell
death receptor-ligand 1 (PD-L1), it downregulates T-cell activity and proliferation [29]. More recently,
other checkpoints have been identified that deliver a positive costimulatory signal, such as the 4-1BB
receptor (CD137) and the OX40 molecule [30–32].
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In particular, PD-L1 is an extracellular protein that downregulates immune response primarily in
peripheral tissues through binding to its two receptors, PD-1 and B7.1. PD-1 is an inhibitory receptor
expressed on T-cells following T-cell activation, which is sustained in states of chronic stimulation,
such as in chronic infection or cancer [33,34]. Their interaction delivers an inhibitory signal on T-cell
proliferation, cytokine production, and cytolytic activity, leading to the functional inactivation or
exhaustion of T-cells. B7.1 is a molecule that is expressed on APCs and activated T-cells. PD-L1 can also
bind to B7.1 on T-cells, and APCs can mediate the downregulation of immune responses, including the
inhibition of T-cell activation and cytokine production [35].

The overexpression of PD-L1 on cancer cells has been reported to block anti-tumor immunity,
resulting in immune escape [33], and blocking the PD-1/PD-L1 pathway is a key strategy for restoring
tumor-specific T-cell immunity.

3. HGF/MET and Immune System in Cancer

Research data has demonstrated that HGF/MET signaling is also involved in immune
responses [36–38]; nevertheless, its role is still unclear: it can act as an immunosuppressive stimulus
by negatively affecting dendritic cells (DC) and T lymphocytes, or as an immune-positive stimulus,
by promoting the recruitment of DC [39–41], B cells [42], and T lymphocytes [43,44].

HGF itself is also able to control the migration of B and T lymphocytes, and to counteract
the anti-inflammatory effect of TGF-β [45,46]; as an example, in experimental animal models of
auto-inflammatory diseases, higher levels of HGF have a defensive role against inflammation
and fibrosis [47,48].

Moreover, HGF itself induces the expansion of all blood cell types precursors, in cooperation with
other hematopoietic stimuli [49].

Specifically, in the context of cancer, the role of HGF/MET is very complex: HGF is secreted
by cancer cells themselves, and also by stromal cells. Its oncogenic and pro-metastatic effects
are well known and studied, while very recently, the interest in its effect on the immune system
in cancer is increasing, due to the direct therapeutic implications in the clinical scenario of new
immunotherapy drugs [50].

First of all, MET itself can be recognized as a tumor-associated antigen (TAA) by CD8
cytotoxic T-cells, and this mechanism can trigger immune system activation against cancer cells
that overexpress MET [51].

Until now, the most widely investigated role of MET is that which is played on DCs. These are
involved in the presentation of TAAs, and they induce the activation of regulatory T-cells (CD4+)
that control cytotoxic CD8+ T-cells. It has been shown that HGF is able to increase this function,
thus suggesting a positive role in anti-cancer immunity [39,47,52,53]. However, some papers have
demonstrated that HGF can also be a potent negative regulator of DC function, and they can induce
an increase of T regulatory lymphocytes, a decrease of interleukin-17-producing lymphocytes [39],
and an increase in interleukin-10 (IL-10) and transforming growth factor beta (TGF-β), known for
their immunosuppressive role [40]. Thus, the inhibition of DCs, the decrease of CD8+ T lymphocytes,
and the increase of T reg cells result in the inhibition of the immune response [39]. This inhibitory effect
has also been demonstrated in monocytes, particularly with an induction towards a differentiation
into regulatory IL-10 producing cells [54].

Besides antigen-presenting cells, the HGF/MET interplay with immune system is also identifiable
in granulocytes. Interestingly, MET deletion in neutrophils enhances tumor growth and metastasis,
as MET is required for chemoattraction and neutrophil-mediated cytotoxicity. In clinical samples,
this phenomenon is represented by a correlation between MET deletion and reduced neutrophil
infiltration to both primary tumor and distant metastases. In particular, tumor-derived TNF-α or
other inflammatory stimuli can induce MET in human neutrophils, thereby leading to neutrophils
transmigration across an activated endothelium and free radical production, which can actually
induce cancer cell killing. This is an important issue to be considered when treating cancer patients



Int. J. Mol. Sci. 2018, 19, 3595 4 of 13

with MET-inhibitors. Indeed, this mechanism could represent an escape from tumor killing upon
MET-inhibitor treatment, as they also block the kinase activity in neutrophils [55]. This is a perfect
example of the complex role that is played by MET in cancer. Indeed, if in some cases, HGF/MET is
essential for cancer cell survival and it is one of the main drivers, in other cases it promotes anti-cancer
effects. This would be of great importance when testing new combinations.

Another key topic is represented by the interaction of MET with other pathways and with immune
check-points. Recently, it has been demonstrated that renal cancer cells, after they have been stimulated
with HGF, display PD-L1 upregulation and co-localization with MET, and that PD-L1 upregulation
was dependent on the PI3K pathway [56].

Moreover, the PI3K pathway is involved also in the HGF-mediated inhibition of DC [57],
where is causes the inhibition of the NF-kB pathway at different levels, through mTOR [57], c-Src [57],
or Bruton’s tyrosine kinase (Btk) [58].

Apart from these preclinical data, there are also some clinical evidences. As an example, in multiple
myeloma, HGF expression is related to a worse immune response deficiency through the upregulation
of indoleamine 2,3-dioxygenase 1 (IDO1) [59], and this could be an important issue to consider, giving
the role of PD-1 and PD-L1 in multiple myeloma immune evasion and progression [60] (Figure 2).
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4. Implications of HGF/MET in Anti-Cancer Immunotherap

MET overexpression is very common in several types of solid cancers, and there are numerous
experimental and clinical evidences of its role in mediating resistance to conventional anti-tumor
therapies, thus making MET a very attractive druggable target [61]. MET overexpression is also
often a negative prognostic factor itself, due to its intrinsic ability to induce cell cycle progression,
cell migration, invasion, EMT, and angiogenesis [20]. Currently, three main strategies target MET
kinase activity: the blockade of extracellular MET–HGF interaction by monoclonal antibodies directed
against MET, and the inhibition of phosphorylation of the tyrosine kinase domain by small-molecule
inhibitors or downstream inhibitors.

Moreover, in EGFR-driven lung cancer and CRC, MET activation is a very common cause of
resistance to anti-EGFR drugs [14,15,20,62], so that the use of MET inhibitors could possibly overcome
this resistance. Actually, in multiple MET-targeted therapies, both monoclonal antibodies and receptor
tyrosine kinases, have been tested, with good results in preclinical models. Unfortunately, all of them
have failed in clinical trials, possibly because studies were held in an unselected population [63–65].
For example, onartuzumab and rilotumumab, two anti-MET monoclonal antibodies, failed respectively
in TNBC [66], and even in MET-positive gastric cancer [67].
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In the last few years, the clinical scenario of anti-cancer therapies has seen a dramatic change with
the introduction of immunotherapy agents. Immunotherapy is a kind of biologic cancer treatment
that boosts the natural immune defenses of the patient to fight tumor cells. This includes monoclonal
antibodies against negative immune checkpoints molecules, oncolytic virus therapy, T-cell therapy,
and cancer vaccines [68]. Immune checkpoints are among the main proteins that mediate the interaction
between cancer cells and the immune system. The PD-1 (programmed cell death-1) receptor/PD-L1
(programmed cell death ligand-1) is the best investigated pathway that is involved in cancer induced
immune-suppression [69]. PD-1 is expressed on activated T-cells, and its ligands PD-L1 and PD-L2 are
expressed on the surface of dendritic cells or macrophages, and they are all co-inhibitory proteins of the
T-cell response. PD-1 activation by the PD-L1 expressed by cancer cells is a mechanism of the adaptive
immune resistance of cancer cells, and it currently represents the main target of immunotherapy in
cancer [69]. In the last few years, anti-PD-1/PD-L1 agents have been approved worldwide for the
treatment of melanoma, lung cancer, urothelial cancer, and lymphoma [70–73]. Like any other type
of cancer treatment, patients can be intrinsically resistant, or develop, at some point of the therapy,
acquired resistance to immunotherapy, but mechanisms of resistance are still unknown.

In lung cancer, PD-L1 expression on tumor tissue, defined by immunohistochemistry and tumor
mutational burden, based on whole exome sequencing analysis, are the only two positive biomarkers
for the response to anti PD-1/PD-L1 immunotherapy, while variants in EGFR and STK11 genes were
found to be associated, with no benefit in NSCLC patients [74–76]. Among the entire population
of NSCLC, there is a small subgroup of patients harboring a MET exon 14 mutation (about 4%).
These patients may benefit from MET-targeted therapy, as already anticipated by data from an
expansion cohort of the phase I study of the MET-ALK inhibitor crizotinib (PROFILE 1001) [77];
other ongoing clinical trials are still evaluating the efficacy of more specific MET-inhibitors such
as tepotinib (NCT02864992) in advanced NSCLC with MET exon 14-skipping alterations or MET
amplification. A very interesting study by Sabari et al. retrospectively investigated the effectiveness
of immune checkpoints inhibitors in MET exon 14-mutated NSCLC patients, and showed that,
despite them expressing high PD-L1 levels, treatment responses were very rare, with very short
durations of response and progression-free survival, and they were also lower than those observed
with MET-targeted therapy [78]. Interestingly, MET exon14-mutated NSCLC patients showed very
low TMB levels, similarly to BRAF and ROS1 mutant NSCLC, which represent other sub-groups
of patients with an absence of clinical benefits from immunotherapy [79]. In our opinion, these
data encourage the testing of combination strategies such as immunotherapy plus MET-inhibitors,
plus/minus chemotherapy in this cohort of patients. In a similar study conducted on a gastric cancers
dataset, Xing et al. correlated PDL-1 and PDL-2 expression to MET, and they found that the majority of
tumors with high PDL-1/2 expression were MET-positive [80]. It is becoming more and more evident
that PDL-1 is not the only marker to consider for guiding the selection of patients for immunotherapy,
especially in the presence of oncogene alterations, and that MET expression/gene alterations are
probably implicated in the resistance to single agent anti-PD-1/PD-L1 drugs. As is arguable from
previously illustrated evidence, there are many factors that mediate this resistance: we can hypothesize
that MET induces the migration of neutrophils from the bone marrow to the lymph nodes, where
they can inhibit T-cell expansion [81]. Thus, a pharmacological inhibition of MET can potentially
synergize with immunotherapy by avoiding this neutrophil mediated immune suppressive effect.
Glodde et al. [81] demonstrated in immune competent mice that the addition of MET inhibitors to
immunotherapy increases the numbers of active T-cells and also changes their phenotype, by reducing
the proportion of exhausted T-cells. These results were independent from MET expression in the tumor
models used, further suggesting that MET inhibition can have a role in increasing immunotherapy
efficacies, not only in MET-driven tumors. Moreover, Kumai et al. [82] showed that MET expression
itself behaves as a tumor-associated antigen and that it is able to activate CD4+ T-cells and to induce
tumor cell killing in NK/T-cell lymphoma (NKTCL) cell lines. In particular, in this model, MET elicited
a specific anti-tumor immune response, with three novel identified MET-induced T-cells epitopes. The
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activation of T-cells was stronger in the presence of MET-inhibitors, since they caused a reduction
of the synthesis of TGF-beta, which is immune-suppressive, from tumor cells. Additionally, the
presentation of MET-derived peptides by major histocompatibility complex class II (MHCII) to CD4+

T-cells was influenced by chaperon processing and autophagy, thus proposing an innovative potential
role of autophagy inducers as immune activators. Finally, since HGF/MET stimulation increases the
proliferation of NKTCL cells in vitro, MET inhibition again displayed a dual role: direct tumor killing
for MET-dependent cell survival, and anti-tumor immune activation [82].

Recently, some approaches are under development, including drug design and cell therapy.
A novel dual inhibitor of MET and PD-1 was designed by Sun et al. [83] and tested in multiple
cancer cell-type models. It demonstrated a strong anti-proliferative and anti-metastatic effect in vitro
and in vivo, and it reduced the production of inflammatory chemokines such as IL-6 and TNF-α,
thus suggesting an important therapeutic potential, although still in the preclinical model stage [83].

Another MET-targeted immunotherapy approach that has already been tested in preclinical
mesothelioma models is the MET chimeric antigen receptor (CAR) T-cell immunotherapy [84].
CAR T-cell therapy is an innovative treatment consisting of the genetic modification of patient’s
T-cells that makes them able to kill specific cancer cells. In particular, T-cells are taken from patients’
blood, modified in the laboratory by inserting a specific CAR, and then re-injected into the patient.
CAR-T therapy is one of the newest immunotherapeutic approaches to be introduced into clinical
practice: this year, two CD19-specific CAR T-cell therapies have been approved by the Food and Drug
Administration (FDA) for treatments of hematological cancers [85]. The efficacy of CAR T-cell therapies
is very promising, but there are still many unaddressed safety concerns, especially in terms of long-term
effects. For any human-derived therapy, FDA approval is based on preclinical and clinical efficacy,
but also on the successful completion of safety processes for testing the infective, genetic, and purity
characteristics of the products, both in vitro and in vivo [86]. With regard to EMA requirements,
complete and updated references can be found at the following link: European Medicine Agency et the
URL https://www.ema.europa.eu/human-regulatory/research-development/scientific-guidelines/
multidisciplinary/multidisciplinary-cell-therapy-tissue-engineering (accessed on 12 November 2018).

In the study of Thayaparan et al., T-cells have been engineered to express HGF as a chimeric
antigen to target MET-expressing cancer cells [84]. The efficacy of this approach was confirmed both
in vitro and in vivo: a consistent level of cancer cell killing and tumor regression was detected in
all models, and it was also accompanied by the release of IFN-gamma and IL-2 from MET-targeted
CAR-T-cells, confirming that cancer cell death was immune-mediated.

Previously, Frigault et al. engineered novel CARs coding for immune signals molecules, such as
CD28, ICOS, and 4-1BB, by using common cancer genes including MET as a referral to design the
promoters to be transfected in T-cells [87].

Only preliminary data are available for MET CAR T on human samples: they come from the data of
intra-tumor injection of MET CAR T-cells in breast cancer tumors. After injection, these tumors displayed
necrosis, loss of MET, and infiltration of macrophages, which are markers of inflammation [88].

These data confirm the good activity of the CAR T method, and suggest subsequent evaluations in
other cancer types with a significant MET expression, thus introducing a very innovative therapeutic
potential of MET targeting.

5. Future Perspectives and Conclusions

From clinical datasets, only few datasets are already available on the resistance to the currently
used anti-PD-1/PD-L1 immunotherapy, and further studies are needed to select and identify
subpopulations of patients that can derive clinically consistent benefit from these drugs.

The HGF/MET pathway plays many distinct roles with an impact on tumor aggressiveness.
Among these, a poorly explored one is that on the immune system. Considering the previously cited
references, it is evident that this role is not sufficiently understood. Indeed, currently available data are
quite contradictory, at least in some circumstances. For example, IDO1 upregulation appears to favor

https://www.ema.europa.eu/human-regulatory/research-development/scientific-guidelines/multidisciplinary/multidisciplinary-cell-therapy-tissue-engineering
https://www.ema.europa.eu/human-regulatory/research-development/scientific-guidelines/multidisciplinary/multidisciplinary-cell-therapy-tissue-engineering
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tumor growth [59], while the fact that MET itself can act as a TAA may enforce the immune system
against the tumor [51]. Nevertheless, HGF/MET seems to have a preponderant immune-suppressive
role in cancer immune response, through the direct inhibition of DCs and an indirect inhibition of
active T-cell proliferation as mediated by neutrophils. Since immunotherapy agents in cancer have
re-modeled the prognosis and the treatment of major cancer types in last years, future research
on the MET role in the immune system are strongly encouraged. Moreover, giving the role of
HGF/MET in inducing angiogenesis, and with the fact that pro-angiogenetic signals are themselves
immunosuppressive, we think that deeper studies are needed to clarify whether there is a direct link
between HGF/MET-induced vascularization and its autocrine signals, and the immune suppression of
the tumor microenvironment in HGF/MET-positive tumors.

Various preclinical data support the immunological mechanisms and the potential efficacy of
combining MET-inhibitors with immunotherapy; in a clinical context, dose-limiting toxicities could
be an issue for this combination, and no data are currently available on their safety in humans. As a
consequence, we can only make hypotheses on the probable side effects. Besides class-effect adverse
events of MET targeting agents (peripheral edemas for instance) [64,65], HGF/MET proper immune
effects are to be motifs of concern. In particular, the immunological targeting of MET may cause
disequilibrium to the same immune response regulated by MET; thus, further clinical evaluation is
strongly necessary. Major attention even needs to be played when combining MET inhibition with
anti-PD1/PD-L1; for instance, since immunological disruption might be even stronger. The onset
of very innovative immunotherapy approaches, like the engineered CAR-T method, is opening a
new road toward more targeted immunotherapies. Results are promising from various cancer types,
but also in this case, off targets effects should be carefully considered. CAR-T cell therapy, indeed,
is accompanied by some important (even life-threatening) side effects, such as massive cytokine release
syndrome [89], which could possibly be even more pronounced when used to target MET-expressing
cells. Moreover, giving the multiple effects of HGF/MET inhibitors on angiogenesis, it can be argued
that a deeper level of homeostasis can be perturbed with, as an example, vasculature impairments and
worsening of the previous cited syndrome.

Another issue to be considered is the selectivity of action of the putative combination (anti-MET
+ anti-PD-1/PD-L1 or MET-CAR-T-cells). Indeed, the MET receptor is expressed with a plethora of
normal cells, which implies the possibility of safety concerns to the effect on normal besides tumor
cells. Too little data are now available; thus, further studies should help to quantify the off-target
effects of these therapies.

Other interesting approaches rely on the possibility of improving immune checkpoint inhibitor
delivery through the use of nanotechnologies [90,91].

In conclusion, the HGF/MET pathway is one of the most important pro-oncogenic,
pro-angiogenetic, and pro-metastatic signals in various cancer types. Interestingly, from various
studies, its activation emerges as one of the main mediators of resistance to anti-cancer therapies,
including the novel anti-PD-1/PD-L1 immunotherapies, thus reinforcing the potential of MET-targeted
therapies and giving the rationale for testing them in combinational strategies or integrated innovative
approaches, like CAR-T therapy, in multiple cancer types.
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