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a b s t r a c t

This study investigated the antimicrobial and antioxidant activity of three Spirulina extracts (methanol,
acetone, and hexane) and the biological selenium nanoparticles (SeNPs) fabricated by Bacillus subtilis
AL43. The results showed that Spirulina extracts exhibited antimicrobial activity against tested patho-
gens. Besides, Spirulina extracts significantly scavenged ABTS and DPPH radicals in a dose-dependent
manner. The methanolic extract had higher total phenolic content, antimicrobial activity, and antioxidant
activity than other extracts. The selenium nanoparticles were synthesized by Bacillus subtilis AL43 under
aerobic conditions and were characterized as spherical, crystalline with a size of 65.23 nm and a net neg-
ative charge of �22.7. We evidenced that SeNPs possess considerable antimicrobial activity against three
gram-positive, three gram-negative bacteria, and three strains from both Candida sp. and Aspergillus sp.
Moreover, SeNPs were able to scavenge ABTS and DPPH radicals in a dose-dependent manner. An asso-
ciation was found between the total phenolic content of Spirulina and SeNPs and their biological activi-
ties. Our results indicate that Spirulina and SeNPs with significant antimicrobial and antioxidant activities
seem to be successful candidates for safe and reliable medical applications.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Foodborne diseases have increased worldwide, with a notice-
able public health concern (Abd El-Hack et al., 2021; Abd El-Hack
et al., 2020c). Besides, the development and outbreaks of
antibiotic-resistance microbes threaten human and animal health
and cause a global health crisis (Abdelhady et al., 2021; Nour
et al., 2021). Additionally, the antioxidant defenses in biological
systems are not fully able to counter oxidative stress due to the

wide variety of stressors and free radical inducers (El-Tarabily
et al., 2021). Among the novel approaches for tackling this problem
are natural products, as antibiotic alternatives, that have antioxi-
dant and antimicrobial activities (Abd El-Hack et al., 2020b; Abd
El-Hack et al., 2020d; Abou-Kassem et al., 2021b; Alagawany
et al., 2021a; Reda et al., 2021a). These natural products may con-
tribute to mitigating oxidative stress via enhancing enzymic and
non-enzymic antioxidants (Abd El-Hack et al., 2020c; Abdel-
Moneim et al., 2021a; Abdel-Moneim et al., 2020c; Abdelnour
et al., 2020a; Abdelnour et al., 2020b; Saad et al., 2021c; Saad
et al., 2020b).

Spirulina platensis is an edible blue-green alga. The beneficial
role of Spirulina in human food and domestic animal feed has
received increased attention across several disciplines in recent
years (Abdel-Moneim et al., 2021b; De La Jara et al., 2018;
EL-Sabagh et al., 2014; Holman and Malau-Aduli, 2013). It contains
high protein levels with all essential amino acids, essential fatty
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acids, minerals, pigments, carotenoids, and vitamins (Abdel-
Moneim et al., 2021b; Mendiola et al., 2007). Spirulina was found
to act as a probiotic and antioxidant agent (Abdel-Moneim et al.,
2021b; Abdelkhalek et al., 2015; Bhowmik et al., 2009). Therefore,
Spirulina is supplemented to human food and animal diets to pre-
vent gut dysbiosis and pathogens colonization and improve antiox-
idant status.

Selenium is an essential trace element and has received consid-
erable attention due to its essential functions in the biological sys-
tem. Selenium is the key component of selenoproteins that is well
known to be involved in animal cells’ antioxidant defense system.
Moreover, the antimicrobial activity of this micronutrient metal-
loid has been demonstrated (Cremonini et al., 2016). Nanotechnol-
ogy is a burgeoning interdisciplinary approach in multiple fields of
academic research. It has the ability to facilitate ground-breaking
applications in human and animal health, involving pathogens
resistance, antioxidant, toxin degradation, nutrient efficiency, etc.
(Abd El-Hack et al., 2020b; El-Saadony et al., 2020a; Reda et al.,
2021b; Reda et al., 2020). Because it is widely thought that sele-
nium in nano form has more effective and affordable antimicrobial
and antioxidant activities and safer than other forms (Abbas et al.,
2021; Forootanfar et al., 2014; Ibrahim et al., 2020), it has gained
much attention and wide applications in recent years. Biogenic
selenium nanoparticles (SeNPs) can be synthesized using bacteria
as biological catalysts, giving a safe and environmental innovation
strategy for producing metal/metalloid nanoparticles with high
bioactivity and low cytotoxicity and without the need to reducing
and stabilizing agents (Abbas et al., 2021; Sheiha et al., 2020; Xu
et al., 2018). To the best of our knowledge, limited investigations
have been done to evaluate both antioxidant and antimicrobial
activities of Spirulina and the biogenic SeNPs. Indeed, antibiotics
and other chemical antimicrobials can inhibit the growth of the
pathogens; however, with concerning the advantages of the high
bioavailability and lower cytotoxicity to humans and animals
(Cremonini et al., 2016; Kata et al., 2018), Spirulina and SeNPs pre-
sent novel antibiotic alternatives with high potential for prevent-
ing infection in the future. The current study was undertaken to
assess the antioxidant and antimicrobial activities of Spirulina
and biogenic SeNPs in order to evaluate the potential of using them
as therapeutic candidates.

2. Materials and methods

2.1. Isolation of Spirulina

Zarrouks medium was used to isolate and cultivate the pure
culture of Spirulina as follow; 10 mL of 5 d old Spirulina was mixed
with 250 mL of Zarrouks medium pH 9.5 in screw bottles then
incubated at 25 �C for 10 d under continuous illumination (600–
800 lx) (Zarrouk, 1966). The pure culture of Spirulina was obtained
by streaking method on Zarrouks medium to get a single culture
from this isolate. The plates were incubated at 25◦C under contin-
uous illumination (600 lx). Developed colonies were picked up and
microscopically examined, and those composed of Spirulina cells
were preserved on slants containing Zarrouks medium.

2.2. Preparation of Spirulina platensis extracts

The Spirulina platensis was obtained from Soda lake in Wadi
El-Natrun, Monufia Governorate, Egypt, then was dried and
powdered. Forty grams of Spirulina powder were homogenized in
200 mL of solvents (methanol, acetone, and hexane) and were stir-
red for 2 h, and the supernatants were obtained (Hassanin et al.,
2020; Saad et al., 2020a). The rotary evaporator retained the

solvents, and the residues were stored at 4 �C for further analysis.
All chemicals used in this work were of analytical grade.

2.3. Preparation of SeNPs

2.3.1. Isolation, screening, and identification of Se-tolerant bacterium
0.85 g of sodium selenite was dissolved in one liter of sterilized

water to prepare a stock solution of sodium selenite 5 mM concen-
tration. 1 mM and 2 mM concentrations were prepared by taking
200 and 400 mL of stock solution and diluted to a liter with
sterilized water. All solutions were stored to use in further exper-
iments. The heavy metal contaminated soil was collected from
Abu-Hammad City, Wady El-Moulak village, Sharkia governorate,
Egypt. 10 gm of soil were homogenized in 90 mL peptone buffer
and stirred for 15 min to obtain 10�1 dilution. Serial dilutions were
prepared to 10�7 (Desoky et al., 2020a; Desoky et al., 2020b;
Hassan et al., 2021). 100 mL of each dilution was spread over Muel-
ler Hinton agar (MHA) plates supplemented with different sodium
selenite concentrations (1, 2, and 5 mM), then incubated at 30 �C
for 24 h and observed the colonies in each plate (El-Saadony
et al., 2020b).

The Se-tolerant bacterium was identified based on the morpho-
logical, biochemical, and physiological tests in Bergey’s Manual
(DeVos et al., 2011). The identification was confirmed by and
MALDI-TOF mass spectrometry (bioMérieux, Marcy l’Etoile,
France) (Singhal et al., 2015).

2.3.2. Biosynthesis and characterization of biogenic SeNPs
Sodium selenite (0.17 g) was homogenized in Luria-Bertani

Broth (100 mL) containing 100 mL of bacterial isolate inoculum.
The conditions were adjusted to obtain the best yield of SeNPs:
pH 7.2, incubation temperature 30 �C, reaction time 24 h under
agitation at 150 rpm in shaking incubator. Luria-Bertani Broth
(LBB) without sodium selenite was considered a control
(El-Saadony et al., 2021e; Fesharaki et al., 2010; Yadav et al.,
2008). The produced SeNPs were characterized using six advanced
instruments. UV–Vis spectroscopy was used to estimate the optical
property of the SeNPs mixture (El-Saadony et al., 2020a; Saad et al.,
2021a). Fourier Transform-Infrared (FT-IR) spectroscopy (‘‘Bruker
Tensor 37, Kaller”, Germany) was used to identify the potential
active compounds in the SeNPs mixture (Beekes et al., 2007; El-
Saadony et al., 2021b). Powder X-ray diffraction (XRD) was used
to identify the crystalline nature of SeNPs (El-Saadony et al.,
2021g). The shape and size of SeNPs were measured by Transmis-
sion Electron Microscopy (TEM) (JEOL 1010, Japan) (Akl et al.,
2020). Size distribution and Zeta potential were estimated by Zeta
sizer analysis (Nano ‘‘Z2 Malvern, Malvern Hills, UK”) (El-Saadony
et al., 2021c; El-Saadony et al., 2021f; Saad et al., 2021b).

2.4. Chemical studies

2.4.1. Total phenolic content
The total phenolic contents of S. platensis (Table 1) and biogenic

SeNPs suspension (Table 2) were estimated using the
Folin-Ciocalteu method (Kalagatur et al., 2018). 50 mL of each eval-
uated Spirulina extract or SeNPs suspension was mixed with 50 mL
of sodium carbonate (Na2CO3 7.5%, w/v) and 25 mL of diluted Folin-
Ciocalteu reagent with water (1:10, v/v). The microtiter plate was
placed in a microtiter plate reader (BioTek Elx808, USA) and the
absorbance was read at 750 nm after 30 min. The total phenolic
content was expressed as Gallic acid equivalent (mg GAE/mL).
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2.5. Microbial studies

2.5.1. Bacterial and fungal strains
Bacterial isolates (Bacillus cereus, Staphylococcus aureus, Listeria

monocytogenes, Salmonella typhi, Escherichia coli, and Klebsiella
pneumonia) and fungal isolates (Candida tropicalis, Candida albicans,
Candida glabrata, Aspergillus niger, Aspergillus flavus, and Aspergillus
fumigates) were obtained from Microbiology department, Faculty
of Agriculture, Zagazig University, Zagazig, Egypt. Both bacterial
and fungal isolates were stored at 4 �C on nutrient agar (NA) slants
and Sabouraud’s dextrose agar (SDA) slants, respectively.

2.5.2. Preparation of bacterial and fungal inoculum
A streak of tested bacteria slant was mixed in 5 mL of nutrient

broth and then incubated at 30 �C until 1.5x108 CFU/mL
(Alagawany et al., 2021b). A loop of tested fungi slant was mixed
in 5 mL of SDA and incubated at 28 �C until 0.5 McFarland stan-
dards 2.3 � 103 (El-Saadony et al., 2019).

2.6. Antimicrobial activity

2.6.1. Disc diffusion method
The antibacterial and antifungal activities of Spirulina extracts

and SeNPs were estimated by the disc diffusion method
(El-Saadony et al., 2021d). Spirulina extracts were prepared at three
concentrations (2.5, 5, and 10 mg/mL). 100 mL of each concentra-
tion was dissolved in 1 mL of DMSO 5%. Sterilized paper discs
(6 mm) were prepared and saturated with Spirulina extracts.

100 mL of bacterial inoculum (1x108 CFU/mL) and fungal spore sus-
pension (2.3 � 103 CFU/mL) were spread on MHA and SDA plates
surface, respectively. The previously saturated discs (6 mm) were
placed on both sides of MHA and SDA plates. The discs saturated
with ciprofloxacin or diniconazole were positive controls. The
MHA plates were incubated at 37 �C for a day, and SDA plates were
incubated at 28 �C for five days (fungi). The same procedure was
repeated with SeNPs concentrations (100, 200, 300, 400, and
500 mg/mL). The inhibition zones (mm) around discs were mea-
sured by the transparent ruler.

2.6.2. Minimum inhibitory concentration (MIC)
The MIC of Spirulina extracts and SeNPs were estimated by the

microdilution method according to Ericsson and Sherris (1971).
Spirulina extracts and SeNPs concentrations were dissolved in 5%
DMSO. 500 mL of spirulina extracts and SeNPs concentrations were
homogenized in Mueller Hinton broth (MHB) and Sabouraud dex-
trose broth (SDB) tubes that inoculated with 100 mL of bacterial
(1.5 � 108 CFU/mL) and standard size of fungal spore suspension
(3 � 103 CFU/mL). The controls were MHB and SDB tubes inocu-
lated with tested microorganisms. All tubes were incubated for a
day at 37 �C and 5 days at 28 �C, respectively. The MIC values were
recorded as the lowest concentration of antibacterial agents that
prevented the growth of bacteria or fungi (Ashour et al., 2020;
El-Saadony et al., 2021a).

2.7. Antioxidant assay

2.7.1. ABTS assay
The ABTS� radical scavenging activity (RSA) was determined by

the ability of antioxidant agents to eliminate the ABTS� radical. The
scavenging activities of Spirulina extracts and SeNPs were
estimated (Gil et al., 2002) with some modifications. 3 mL of
0.1 mM ABTS� was added to 1 mL of Spirulina extracts (2.5, 5,
and 10 mg/mL) and SeNPs concentrations (100, 200, 300, 400,
and 500 mg/mL). The tubes were left for 30 min, then the absor-
bance was read at 745 nm by spectrophotometer. The control
was ABTS� solution, and Tret-Butyl hydroquinone (TBHQ) was used
as an antioxidant reference. The ABTS�RSA (%) of Spirulina extracts
and SeNPs was calculated as the following equation:

ABTS radical scavenging ability ð%Þ

¼ Abs:control� Abs:sample
Abs:control

� 100

2.7.2. DPPH assay
The antioxidant activity of Spirulina extracts and SeNPs concen-

trations was estimated by the scavenging DPPH_ radical as com-
pared to a positive control (TBHQ). 2 mL ethanolic DPPH was
added to 1 mL of each concentration and incubated in the dark
for 30 min. The absorbance was estimated at 517 nm. DPPH�

reagent was a control (Hassanin et al., 2020). TBHQ was used as
an antioxidant reference, and DPPH_ scavenging activity (%) was
measured as the following:

DPPH radical scavenging ability ð%Þ

¼ Abs:control� Abs:sample
Abs:control

� 100

2.8. Statistical analysis

All experiments were performed in triplicate, and data were
recorded and analyzed with SPSS package (v 20, SPSS Inc., Chigaco,
IL, USA). The Two-way ANOVA test was used to examine the effect
of solvent type and concentration on the total phenolic component

Table 1
Total phenolic component in Spirulina extracts.

Solvents Concentration
(mg/mL)

Total polyphenols
(mg GAE/mL)

Methanol 2.5 1120c,A,*

5 1403b,A,**

10 1592a,A,***

Acetone 2.5 645f,B,*

5 747e,B,**

10 928d,B,***

Hexane 2.5 337 h,C,*

5 463 g,C,**

10 519 g,C,***

SEM 80.53
P-values
Solvent <0.001
Concentration <0.001
Solvent � Concentration <0.001

GAE, gallic acid equivalent, SEM, standard error of means, means in the same col-
umn with different lowercase letters indicating significant differences of the
interaction, different uppercase letters indicating significant differences between
Spirulina extracts, but different *, ** and *** indicating significant differences
between concentrations of the same extract.

Table 2
Total phenolic component in biogenic selenium nanoparticles (SeNPs).

SeNPs Conc. (mg/mL) Total polyphenols (mg GAE/mL)

100 569.0e

200 852.3d

300 994.0c

400 1140.7b

500 1381.3a

SEM 72.97
P-value <0.001

GAE, gallic acid equivalent, SEM, standard error of means, means in the same col-
umn with different letters are significantly different.

Abdel-Moneim Eid Abdel-Moneim, M.T. El-Saadony, A.M. Shehata et al. Saudi Journal of Biological Sciences 29 (2022) 1197–1209

1199



of Spirulina platensis and its antimicrobial and antifungal activities.
One-way ANOVA was performed to analyze the rest of the param-
eters and to compare the concentrations of Spirulina platensis
within different solvents with the positive control. LSD test was
used to compare the statistically significant differences among
mean at P < 0.05.

3. Results

3.1. Isolation, screening, and identification of Se-resistant isolate

Thirty-three bacterial isolates were obtained from soil samples
at PCA plates supplemented with sodium selenite (1 mM). Only
five bacterial isolates were recovered at a 2 mM concentration,
and coded as (AL17, AL26, AL39, AL43, and AL51), one isolate
was tolerated with sodium selenite (5 mM), and called AL43, and
it was considered Se-resistant bacteria. Based on the biochemical
tests in the Bergy manual, the screened isolate was gram-
negative, motile, short rod, and non-spore-forming under a light
microscope and aerobic conditions, and it was identified as Bacillus
subtilis AL43. The obtained findings showed a maximum similarity
of 99% to several Bacillus spp., predominantly Bacillus subtilis. Thus,
the local screened bacterial isolate (Bacillus subtilis AL43) was sim-
ilar to Bacillus subtilis spp subtilis DSM 10 T DSM.

3.2. SeNPs characterization

The biological SeNPs were fabricated by homogenizing sodium
selenite with selected isolate B. subtilis AL43 under optimal condi-
tions. After incubation, the appearance of red color in the culture
flask suggested the formation of SeNPs. The maximum UV–visible
absorption of SeNPs was found at 300 nm (Fig. 1). The TEM
observed that the mean diameter of the produced SeNPs was
45–80 nm, indicating that B. subtilis AL43 could synthesize intra-
cellular SeNPs (Fig. 2). XRD showed that the biosynthesized
nanoparticles are crystalline with a spherical structure. The crys-
talline size of SeNPs was in the range of 32–86 nm. Zeta seizer
and Zeta potential results indicated that the average SeNPs size
was 65.24 nm and the Zeta potential was �22.7 mV (Fig. 3). FTIR
spectrum showed that the bands at 3242.71 cm�1 and
3390.09 cm�1 matched the OAH and NAH stretching vibration.

The hydrogen-bonded SH stretching vibration appears at
2424.62 cm�1. The band at 1653.93 cm�1 is related to C@O. The
bands around 1076.81 cm�1 are probably correlated to the CAO
stretching vibrations. 887.69 cm�1 is probably the vibration
absorption peak due to the CAOAC. The bands at 540.09 cm�1

and 616.63 cm�1 indicated the stretching vibration of CAS bond.
The increase in depth and width of peaks may result from the
CAO stretching vibrations of phenolic compounds attached to
SeNPs. These results confirmed the presence of functional biomole-
cules (protein, phenols, and polysaccharides) attached to the SeNPs
surface (Fig. 4).

3.3. Chemical studies

The values of total phenolic content in Spirulina extracts
showed significant differences, as shown in Table 1. Methanol
extract exhibited higher values for all the tested levels, followed
by acetone extract and then hexane extract. Table 2 presents the
values of the total phenolic content of the different concentrations
of SeNPs, which increased in a concentration-dependent manner.

3.4. Microbial studies

3.4.1. Antimicrobial activity of Spirulina
Tables 3 and 4 show the inhibition zones diameter (IZD) of spir-

ulina extracts (methanol, acetone, and hexane) against tested bac-
teria and fungi compared to ciprofloxacin and diniconazole,
respectively. The IZD values increased in a concentration-
dependent manner. Gram-positive bacteria (B. cereus, S. aureus,
and L. monocytogenes) showed higher sensitivity to Spirulina
extracts than Gram-negative bacteria. Our results showed that
the antimicrobial effect against all tested bacteria and fungi was
varied among the different extracts. Spirulina methanolic extract
had higher antimicrobial activity than other extracts, with inhibi-
tion zones ranging from 17 to 22 mm for 10 mg/mL concentration.
Results of MIC confirmed these results (Fig. 5) where Spirulina
methanolic extract exhibited the lower MIC (1–2 mg/mL) against
tested microorganisms compared to other extracts. On the other
hand, the methanolic extract of Spirulina had higher antifungal

Fig. 1. UV–Vis spectra of SeNPs synthesized by B. subtilis AL43.

Fig. 2. TEM image of biogenic selenium nanoparticles (SeNPs) synthesized by
Bacillus subtilis AL43.
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activity than other extracts with IZDs ranged from 15 to 21 mm as
compared to diniconazole. Disc diffusion and MIC results showed
that Candida sp. were more resistant to spirulina extracts than
Aspergillus sp.

3.4.2. Antimicrobial activity of SeNPs
Tables 5 and 6 present the antimicrobial activity of SeNPs

against three gram-positive bacteria and three gram-negative bac-

teria and six fungal isolates. The results showed that the values of
IZD increased gradually in a concentration-dependent manner. B.
cereus exhibited a higher sensitivity to the SeNPs, followed by L.
monocytogenes and then S. aureus. Gram-negative bacteria showed
higher resistance than gram-positive bacteria, with the lowest
value of IZD for S. typhi (13.3–22.4 mm). Concerning the antifungal
activity, SeNPs showed higher potential against Aspergillus spp.
compared to Candida spp. The results of IZD showed that A. niger
had a higher value (27.5 mm), and C. glabrata had a lower value
(9.9 mm). Further analysis using the MIC test (Fig. 6A) showed sig-
nificant differences among the tested microbes. The lower MIC
value (35 mg/mL) was observed with B. cereus, while the higher
value (70 mg/mL) was detected with S. typhi. A significant difference
was found in the MIC level of SeNPs between the fungal isolates. As
shown in Fig. 6B, the MIC value of SeNPs against A. niger (55 mg/mL)
was lower than that detected against other strains, while the higher
value (90 mg/mL) was observed against C. glabrata.

3.5. Antioxidant activity

3.5.1. Antioxidant activity of Spirulina
The scavenging activity of Spirulina extracts (methanol, hexane,

and acetone) was evaluated by the antioxidant assays: ABTS� and
DPPH� methods (Fig. 7A). All Spirulina extracts showed consider-
able ABTS and DPPH radical scavenging activities. Among Spirulina
extracts, the methanolic extract exhibited higher ABTS and DPPH
radical inhibition (93% and 90%, respectively), followed by acetone

Fig. 3. Size distribution (A) and zeta potential (B) of SeNPs synthesized by B. subtilis AL43.

Fig. 4. FT-IR spectrum of SeNPs synthesized by B. subtilis AL43.
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extract (88% and 82%, respectively), and hexane extract (60% and
55%, respectively), compared to the standard compound (96% and
94%, respectively).

3.5.2. Antioxidant activity of SeNPs
ABTS� and DPPH� methods were applied to evaluate the antiox-

idant activity of SeNPs concentrations (100, 200, 300, 400, and
500 mg/mL) (Fig. 7B). SeNPs significantly scavenged the ABTS and
DPPH radicals. The results showed that the antioxidant activity
of SeNPs increased in a concentration-dependent manner. The
standard compound showed the highest scavenging activity
against ABTS and DDPH radicals (96% and 93%, respectively). The
level of 500 mg/mL showed higher ABTS and DPPH radical inhibi-
tion (92% and 89%, respectively) compared to the other tested
concentrations.

4. Discussion

4.1. Antimicrobial activity of Spirulina

Spirulina has long been used as a functional additive in a num-
ber of animal feeds and health food. Therefore, the commercial
production of Spirulina has gained importance worldwide due to

its multiple benefits. The antimicrobial activity of Spirulina has
long been a question of great interest in a wide range of fields dur-
ing the last decades. Spirulina can suppress several microorgan-
isms’ growth due to its rich content of bioactive ingredients with
antimicrobial activity. An objective of this study was to investigate
the antimicrobial activity of Spirulina against three gram-positive,
three gram-negative bacteria, and three strains from both Candida
spp. and Aspergillus spp. The present study results revealed that
Spirulina extracts had a higher potential to inhibit gram-positive
bacteria’s growth than gram-negative bacteria. This effect may be
attributed to the complicated structure of the cell wall (the outer
membrane) of gram-negative bacteria (Breijyeh et al., 2020).

Elshouny et al. reported that Spirulina had stronger antimicro-
bial activity against S. aureus, E. coli, P. aeruginosa, Salmonella
spp., and Shigella spp. than Chlorella vulgaris, Saragassum wightii,
and Saragassum latifolium (Elshouny et al., 2021). Additionally,
Spirulina methanolic extract was the most effective against tested
microorganisms (Gheda and Ismail, 2020). The strong antimicro-
bial activity of methanolic extract may be attributed to its high
total phenolic content. It has been reported that pathogens colo-
nize humans and animals gut with the same mechanism of dhesion
and invasion, and the antimicrobial activity of Spirulina might be
attributed to its potential to disrupt attachment and invasion,

Table 3
Antibacterial activity of Spirulina extracts expressed as inhibition zones diameters (mm).

Solvents Conc.
(mg/mL)

Bacillus cereus Staphylococcus aureus Listeria monocytogenes Escherichia
coli

Salmonella
typhi

Klebsiella
pneumonia

Methanol 2.5 19.0de 18.3 cd 16.7de 15.2de 16.6de 17.0c

5 20.0 cd 19.0bc 18.0bc 16.4c 18.0c 16.6c

10 22.0b 20.3b 19.0b 18.7b 19.7b 19.0b

Acetone 2.5 14.7 h 13.3 h 12.3 g 10.6 h 12.0i 11.7 g

5 15.6 h 14.0gh 13.3 fg 12.0 g 13.4 h 12.6 fg

10 17.0 g 15.0 fg 14.4f 13.0f 14.3gh 13.5ef

Hexane 2.5 17.7 fg 16.3ef 15.6e 13.7f 14.6 fg 14.2de

5 18.7ef 17.3de 16.4e 14.6e 15.7ef 15.0d

10 20.3c 18.7 cd 17.6 cd 16.0 cd 17.0 cd 16.3c

Positive control (Ciprofloxacin) 10 30.0a 28.0a 25.0a 22.7a 24.0a 20.3a

SEM 0.447 0.465 0.427 0.457 0.456 0.446
P-values
Solvent <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Concentration <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Solvent � Concentration 0.927 0.966 0.939 0.151 0.852 0.503
Treatments vs. Positive control <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SEM, standard error of means, means in the same column with different letters are significantly different

Table 4
Antifungal activity of Spirulina extracts expressed as inhibition zones diameters (mm).

Solvents Conc.
(mg/mL)

Candida
tropicalis

Candida
albicans

Candida
glabrata

Aspergillus
flavus

Aspergillus
fumigatus

Aspergillus
niger

Methanol 2.5 15.0 cd 17.0 cd 16.0de 18.0 cd 19.0 cd 17.0 cd

5 16.1bc 18.0bc 18.0bc 19.0bc 20.0bc 18.0bc

10 17.0b 19.2b 18.8b 20.0b 21.0b 19.0b

Acetone 2.5 11.0 g 13.1 g 13.0 g 14.0 g 15.0 g 13.0 g

5 12.3 fg 14.3 fg 14.5 fg 15.4 fg 16.3 fg 14.3 fg

10 13.2ef 15.6ef 15.0ef 16.0ef 17.0ef 15.0ef

Hexane 2.5 13.1ef 15.2ef 15.4ef 16.0ef 17.0ef 15.0ef

5 14.4de 16.4de 16.3de 17.3de 18.3de 16.3de

10 15.0 cd 17.0 cd 17.7 cd 18.0 cd 19.0 cd 17.0 cd

Positive control (Diniconazole) 10 20.3a 22.3a 23.4a 25.3a 28.3a 23.3a

SEM 0.381 0.273 0.136 0.564 0.431 0.412
P-values
Solvent <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Concentration 0.001 0.001 <0.001 0.001 0.001 0.001
Solvent � Concentration 0.996 0.996 0.871 0.996 0.802 0.374
Treatments vs. Positive control <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SEM, standard error of means, means in the same column with different letters are significantly different.
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motility, biofilm formation, and quorum sensing of pathogens (Abd
El-Hack et al., 2019; Abd El-Hack et al., 2020c; Abd El-Hack et al.,
2020d; Abdel-Moneim et al., 2020b; Abou-Kassem et al., 2021a;
Saleh et al., 2021). The bioactive compounds in Spirulina can impair
bacterial cell integrity and increase cell permeability, which leads
to cytoplasmic content leakage. Cultures of Campylobacter jejuni
treated with some plant-derived compounds showed a reduction
in the activity of the autoinducer AI-2, swarm motility and biofilm
formation (90% and 35–75%, respectively) (Castillo et al., 2014).

4.2. Antimicrobial activity of SeNPs

The application of metal-based antimicrobial strategies and
nanoparticles presents one of the extremely promising approaches
to prevent diseases caused by antibiotic-resistant microbes
(Chudobova et al., 2014). Our results showed that SeNPs synthe-
sized by the strain B. subtilis AL43 exhibited antimicrobial effect
towards both gram-positive and gram-negative bacteria, and even
antifungal activity against both Candida spp. and Aspergillus spp.
The antimicrobial activity of biologically and chemically synthe-
sized SeNPs was evaluated before, but with different methodolo-
gies and particle sizes (Cremonini et al., 2016; Tran and Webster,
2011; Zonaro et al., 2015). Nevertheless, the biogenic SeNPs
showed stronger antimicrobial activity than the chemically syn-
thesized SeNPs (Cremonini et al., 2016). Furthermore, SeNPs were
found to have twice as much IZD against Staphylococcus aureus as
silver nanoparticles (7 and 3 mm, respectively) (Chudobova et al.,
2014). It has been reported that the antimicrobial effect of SeNPs
exhibits size-dependent responses (Zonaro et al., 2015). The small
size of nanoparticles results in increasing surface-to-volume ratio,
which improves the biological reactivity of the nanoparticles.

These results suggest a probable mechanism of antimicrobial
activity of SeNPs involves the generation of reactive oxygen species
(ROS) (Galić et al., 2020; Tiwari et al., 2018), penetration of the
nanoparticles into the cell, and disruption of cell survival path-
ways. Nanomaterial-induced ROS plays a fundamental role in cel-
lular toxicity and apoptosis. SeNPs could interact with DNA and

Fig. 5. MIC levels of Spirulina extracts (methanol, hexane, and acetone) against (A)
tested bacteria, and (B) tested fungi, data are presented as mean ± SE.

Table 5
Antibacterial activity of biogenic selenium nanoparticles (SeNPs) expressed as inhibition zones diameters (mm).

SeNPs (mg/mL) Bacillus cereus Staphylococcus aureus Listeria monocytogenes Escherichia coli Salmonella typhi Klebsiella pneumonia

100 20.1f 18.2ef 19.8f 15.2de 13.3e 16.8de

200 23.4e 20.4e 22.3e 17.5d 16.8d 19.6d

300 25.7d 23.5 cd 24.3d 20.0c 19.4c 21.5c

400 28.1c 25.0c 27.5c 21.2c 20.3c 22.7c

500 31.5b 27.6b 30.8b 23.7b 22.4b 24.2b

Positive control (Ciprofloxacin,
20 mg/mL)

37.2a 33.1a 35.4a 28.3a 26.0a 29.2a

SEM 0.532 0.325 0.223 0.323 0.411 0.316
P-values <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SEM, standard error of means, means in the same column with different letters are significantly different.

Table 6
Antifungal activity of biogenic selenium nanoparticles (SeNPs) expressed as inhibition zones diameters (mm).

SeNPs (mg/mL) Candidatropicalis Candida albicans Candida glabrata Aspergillus flavus Aspergillusfumigatus Aspergillusniger

100 11.8f 13.1f 9.9f 14.4f 12.8e 15.6f

200 13.6e 15.5e 11.6de 16.7e 15.9de 18.3e

300 15.4d 17.2d 13.2d 18.5d 17.7d 20.8d

400 18.3c 19.5bc 17.8bc 21.2c 19.9c 23.5c

500 21.4b 20.9b 19.3b 23.2b 22.7b 27.5b

Positive control (Diniconazole, 20 mg/mL) 28.8a 27.9a 25.1a 29.1a 27.4a 33.6a

SEM 0.257 0.316 0.389 0.276 0.311 0.226
P-values <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SEM, standard error of means, means in the same column with different letters are significantly different.
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Fig. 6. MIC levels of biogenic selenium nanoparticles (SeNPs) against (A) tested bacteria, and (B) tested fungi, data are presented as mean ± SE.
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Fig. 7. Scavenging activity of (A) Spirulina extracts and (B) biogenic selenium nanoparticles (SeNPs, lg/mL) against ABTS� and DPPH� radicals at room temperature, data are
presented as mean ± SE.
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impair zntR gene amplified from bacteria (Chudobova et al., 2014).
However, the low cytotoxic effect of biogenic SeNPs has been
reported (Abbas et al., 2021; Forootanfar et al., 2014). Generation
of ROS elevates oxidative DNA damage and membrane lipid perox-
idation and subsequently increases cytoplasmic content leakage
and damaging cell wall. Estevez et al. found that SeNPs exhibited
antimicrobial activity against Mycobacterium tuberculosis via
impairing their cell envelope integrity (Estevez et al., 2020). Fur-
thermore, the antimicrobial activity of SeNPs appears to be linked
to the nanoparticles and the organic cap surrounding biogenic
nanoparticles (Cremonini et al., 2016). Several studies demon-
strated that the protein could bind to the SeNPs surface, either
through free cysteine or amine group in protein, and act as a cap-
ping agent for stabilization (El-Saadony et al., 2020a). Similar
results reported that bioactive compounds, e.g., phenolics, can
attach to the surface of metal nanoparticles (Cheng et al., 2017;
Xu et al., 2018).

4.3. Antioxidant activity of Spirulina

Besides the high nutritional value of Spirulina, several studies
provided robust evidence for its potential therapeutic applications.
Spirulina contains distinctive natural antioxidants, such as
polyphenols, carotenoids, and phycocyanin (Abdel-Moneim et al.,
2021b; Estrada et al., 2001; Park et al., 2018). In the current study,
the antioxidant activity of different Spirulina extracts (methanol,
hexane, and acetone) was evaluated by ABTS and DPPH assays.
Results of the current study revealed that all spirulina extracts have
a strong antioxidant effect against ABTS and DDPH radicals. This
scavenging activity of Spirulina is associated with the rich content
of bioactive compounds with multiple biological activities. The val-
ues of the total phenolic content of Spirulina extracts were associ-
ated with the relative polarity of each extract. The more polar
extract (methanol) had higher total phenolic content, followed by
acetone and then hexane (Akkari et al., 2016). A previous study
observed a positive association between the bioactive substances
content and DPPH and ABTS radical scavenging activity (Park
et al., 2018). These bioactive compounds have the potential to
scavenge single oxygen, superoxide, and hydroxyl radicals (Abd
El-Hack et al., 2019; Abo Ghanima et al., 2020; Aladaileh et al.,
2020; Attia et al., 2020; Elbaz et al., 2021; Mesalam et al., 2021;
Naiel et al., 2020; Yaqoob et al., 2021). Spirulina methanol extract
exhibited the highest antioxidant activity compared to other tested
extracts, which may be attributed to the high concentration of the
bioactive substances in the methanolic extract. A recent study
demonstrated that Spirulina methanolic extract had stronger
antioxidant activity compared to ethyl acetate, hexane extracts
(Gheda and Ismail, 2020). The strong antioxidant effect of
methanolic extract appears to be associated with its high total phe-
nolic content. Several previous studies (Abd El-Hack et al., 2019;
Abd El-Hack et al., 2020a; Abd El-Moneim and Sabic, 2019; Abd
El-Moneim et al., 2019; Abdel-Moneim et al., 2020c; Elbaz et al.,
2021) proposed synergetic effect between the bioactive com-
pounds, particularly polyphenols, flavonoids, pigments, polysac-
charides, chlorophyll, and polyunsaturated fatty acids. Despite
the strong antioxidant activity of polyphenols and flavonoids, the
total carotenoid content showed a higher positive correlation with
the antioxidant activity than the total phenolic and flavonoid con-
tent in some extracts of Spirulina products (Park et al., 2018).
Besides, Spirulina act as a probiotic (Abdel-Moneim et al., 2021b;
Bhowmik et al., 2009), and the antioxidant effect of probiotics
has been well-documented (Abd El-Moneim and Sabic, 2019;
Abd El-Hack et al., 2020d; Abdel-Moneim et al., 2020a; Abdel-
Moneim et al., 2020b; Amaretti et al., 2013). Some bioactive
metabolites from Spirulina have been reported to mediate the

activity of the antioxidant enzymes in a cell line model
(Bermejo-Bescós et al., 2008). Furthermore, evidence from in vivo
studies reported a positive correlation between the antioxidant
activity of Spirulina and the anti-inflammatory effect (Abdel-
Daim et al., 2016). These findings are important insights for aggre-
gating the practical and functional importance of these natural
products.

4.4. Antioxidant activity of SeNPs

Recently, there has been renewed interest in the biosynthesis of
nanoparticles owing to the prospect of using them in the future to
make nanomedicine. Several studies have aimed to develop new,
functional, and cost-effective antioxidants with lower toxicity
(Forootanfar et al., 2014). Biogenic synthesis of selenium nanopar-
ticles by microorganisms holds significant potential to be used as
an antioxidant agent due to its eco-friendly, low cytotoxicity, low
cost, and does not involve organic solvents (Xu et al., 2018). In
the current study, the antioxidant activity of SeNPs was investi-
gated by ABTS and DDPH radical scavenging assays. Our results
showed that SeNPs exhibited dose-dependent antioxidant activity
against ABTS and DDPH radicals. It has been demonstrated that
SeNPs synthesized by Lactobacillus casei ATCC 393 (Xu et al.,
2018) and Bacillus paralicheniformis SR14 (Cheng et al., 2017) for
in vivo use decreased lipid peroxidation and improved the activity
of antioxidant enzymes. Besides, SeNPs synthesized by lactic acid
bacteria could attenuate H2O2-induced oxidative injury and apop-
tosis of human normal epithelial cells (NCM460) (Xu et al., 2018). It
was also reported that SeNPs synthesized by Bacillus mitigated
H2O2-induced oxidative damage in porcine jejunum epithelial
(IPEC-J2) (Cheng et al., 2017). The organic cap surrounding bio-
genic nanoparticles was found to play a crucial role in the potency
of SeNPs to scavenge the free radicals (Cheng et al., 2017; Sheiha
et al., 2020; Xu et al., 2018). Consistent with the literature, this
research confirmed that enhanced antioxidant activity of SeNPs
is correlated to the concentration of the total phenolic content
(Akkari et al., 2016; Sheiha et al., 2020; Xu et al., 2018).

5. Conclusion

The obtained results showed that all tested Spirulina extracts
and SeNPs concentration exhibited antimicrobial and antioxidant
activities, which increased in a concentration-dependent manner.
Furthermore, antimicrobial and antioxidant activities of Spirulina
methanolic extract were observed to be the most potent. This
potency of methanolic extract may be attributed to its high total
phenolic content. We conclude that Spirulina and SeNPs may act
as promising antimicrobial agents as well as natural antioxidant
substitutes. Therefore, they can be utilized as alternatives to antibi-
otics and traditional chemical drugs.
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