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Abstract: Phenol is an important chemical material that is widely used in industry. Currently, phenol
is dominantly produced by the well-known three-step cumene process, which suffers from severe
drawbacks. Therefore, developing a green, sustainable, and economical strategy for the production
of phenol directly from benzene is urgently needed. In recent years, the photocatalytic hydroxylation
of benzene to phenol, which is economically feasible and could be performed under mild conditions,
has attracted more attention, and development of highly efficient photocatalyst would be a key issue
in this field. In this review, we systematically introduce the recent achievements of photocatalytic
hydroxylation of benzene to phenol from 2015 to mid-2022, and various heterogeneous photocatalysts
are comprehensively reviewed, including semiconductors, polyoxometalates (POMs), graphitic
carbon nitride (g-C3N4), metal–organic frameworks (MOFs), carbon materials, and some other types
of photocatalysts. Much effort is focused on the physical and chemical approaches for modification
of these photocatalysts. The challenges and future promising directions for further enhancing the
catalytic performances in photocatalytic hydroxylation of benzene are discussed in the end.
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1. Introduction

Phenol, as an industrially important chemical, is extensively used in the manufacture
of bisphenol A, adipic acid, resins, fibers, nylon, herbicides, drugs, etc. [1–3] In recent years,
the global demand for phenol has shown an increasing trend. In industry, more than 90%
of phenol is produced from the well-known three-step cumene process [4,5], which suffers
from several notable drawbacks such as harsh reaction conditions, low one-pass yield (~5%)
of phenol, and the considerable amount of by-product [6]. To circumvent these shortfalls,
the direct hydroxylation of benzene to phenol has emerged as an alternative strategy due
to its advantages of high atom economy and an environmentally benign procedure [7,8].
Since the 1960s, great efforts have been devoted to developing new catalytic systems using
oxygen [9], nitrous oxide [10], or hydrogen peroxide [11] as an oxidizing agent, however,
it seems that there have been no significant breakthroughs [8,12]. Direct hydroxylation
of benzene has been considered as one of the top 10 most difficult challenges in modern
catalysis. Most of the developed catalytic systems require elevated temperature and/or high
pressure and suffer from unsatisfactory conversion because of the proverbial low reactivity
of aromatic C−H bonds [13]. Furthermore, phenol is liable to be over-oxidized due to
its increased reactivity compared with benzene, which makes the selective introduction
of the hydroxyl group into benzene very difficult, especially under traditional heating
conditions [14]. Therefore, it is highly desirable to develop methods for the oxidation of
benzene into phenol that are economically feasible and could be performed with high
selectivity under mild conditions.

In recent years, many attempts at direct conversion of benzene to phenol have been
performed by means of palladium membrane [15], electrochemical oxidation systems [16],
nonthermal plasma systems [17], biocatalysis processes [18], photocatalysis systems, and
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utilization of renewable resources such as biomass [19], bio-oils [20], etc. Among these
methods, photocatalysis that utilizes renewable and inexhaustible solar energy has drawn
more attention. Furthermore, photocatalytic oxidation of benzene can take place under
mild conditions. Therefore, it has been commonly recognized as a green, sustainable,
and economical strategy for the production of phenol [21]. How to design and fabricate
a highly selective and efficient photocatalyst is considered to be the key issue in this
photocatalytic reaction.

In the past few years, extensive studies have been carried out on the development of
various photocatalytic systems for the selective oxidation of benzene to phenol, some of
which have been reviewed in previous publications [22–24]. Fukuzumi and coworkers [24–28]
studied a series of homogeneous photocatalysts, such as 2,3-dichloro-5,6-dicyano-p-benzoquinone
(DDQ), quinolines, and transition metal complexes, which exhibited excellent performance
in photocatalytic phenol synthesis and the inhibition of phenol’s over-oxidation. However,
there are some concerns with regard to the separation, recovery, and reusability of catalysts.
In comparison with these homogeneous photocatalysts, the heterogeneous ones are cheaper
to fabricate and can be easily separated for reuse, therefore, displaying promising potential
in industrial application. With regard to this, various heterogeneous photocatalysts have
been developed, including inorganic semiconductors, polyoxometalates (POMs), graphitic
carbon nitride (g-C3N4), metal–organic frameworks (MOFs), carbon materials, and some
other types of photocatalysts. This review aims to provide an updated, comprehensive
review on the development of heterogeneous photocatalysts for hydroxylation of benzene
to phenol, since 2015, and their catalytic performances (as depicted in Figure 1). Much
attention is focused on various strategies for the modification of heterogeneous photocata-
lysts. In the end, the challenges and future promising directions are briefly summarized.
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2. Heterogeneous Photocatalysts for Hydroxylation of Benzene to Phenol

Considerable efforts have been made on developing simple, efficient, and sustainable
materials as heterogeneous photocatalysts over the past decades. Considering that the
intrinsic characteristics of heterogeneous photocatalysts could be selectively adjusted
through appropriate modifications, a variety of approaches have been explored to obtain
high-efficiency heterogeneous photocatalysts for direct phenol synthesis.

2.1. Semiconductor-Based Photocatalysts

Photocatalysis on semiconductor materials is one of the promising candidates for the
clean and direct synthesis of phenol from benzene. Among the various wide-band-gap
semiconductor photocatalysts, TiO2 is the most extensively explored semiconductor in
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photocatalytic phenol synthesis due to its low cost, non-toxicity, and extraordinary chemical
stability against photocorrosion. In addition, holes with high oxidizing power are generated
in their valence band upon light absorption [29,30]. However, due to the wide band gap of
TiO2, it can be activated only under ultraviolet (UV) light conditions. Unfortunately, only
a small portion of solar irradiation falls in this range. In consequence, it is an attractive
challenge for TiO2 to absorb more solar irradiation.

In attempting to extend the photoresponse of TiO2 into the visible wavelength re-
gion, tris(2,2′-bipyridine) ruthenium(II) complex ([Ru(bpy)3]2+) was widely used for TiO2
modification. In a study by Goto et al. [31], a sodium-type synthetic saponite (SSA) was
employed to separate [Ru(bpy)3]2+ from TiO2, while maintaining the interaction between
the photo-excited complex and TiO2, which realized the photocatalytic benzene oxidation
with the catalyst in the flow reactor. Shiraishi et al. [32] prepared disordered mesoporous
TiO2 (mTiO2) with different pore sizes and specific surface areas and compared the catalytic
performances of mTiO2 and non-porous TiO2 (nTiO2) for the hydroxylation of benzene
under UV light. It was found that the phenol selectivity (81%) obtained from mTiO2 was
10 times more than that obtained from nTiO2. One potential explanation offered by the
researchers is that the adsorption ability of benzene on mTiO2 was much stronger than that
of phenol, and the rapid desorption of phenol inhibited its further oxidation on catalyst
surface, resulting in higher phenol selectivity. In a report from Ide et al. [33], H2Si14O29
(H-mag) was used to selectively adsorb the newly formed phenol to prevent it from over-
oxidizing (Figure 2). In the presence of H-mag, phenol was recycled with a high selectivity
up to 100%, although the same benzene conversion was obtained.
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In the study by Zhang et al. [34], TiO2 nanoparticles were entrapped into a hydropho-
bically modified mesocellular siliceous foam (MCF) to provide a hydrophobic environment,
in which the generated hydrophilic phenol could be rapidly released out of the catalyst,
as schematically illustrated in Figure 3. Both the adsorption of benzene and desorption of
phenol on the surface of TiO2 were facilitated, thereby increasing phenol selectivity from
15.8% to 34.7%.
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In the past decades, hydroxylation of benzene to phenol over Au-deposited TiO2
(Au/TiO2) has been systematically studied. The excited electrons are stored in Au nanopar-
ticles, which promote the oxidation of benzene by TiO2. Ide et al. [35] employed layered
TiO2-supported Au nanoparticles for benzene oxidation under visible light. In their study,
Au nanoparticles were deposited in the interlayer space of a layered titanate to form a
clay-type material with molecular sieving ability, which expedited the separation of the
desired product. The presence of seed phenol was demonstrated to play a pivotal role in
the reaction; with the addition of an excess of seed phenol (18,000 ppm), a phenol yield of
62% can be realized, and no phenol formation was observed in the absence of seed phenol.
Additionally, they also reported a facile method to improve the efficiency and selectivity of
photocatalytic hydroxylation of benzene, by introducing CO2 into the reaction [36]. The
presence of CO2 (230 kPa) was revealed to be able to promote the desorption of phenol,
thus inhibiting the over-oxidation of phenol. In another work by Marino et al. [37], Au
nanoparticles were loaded on anatase TiO2 for the photocatalytic benzene oxidation re-
action. Compared with the reaction rate with unmodified TiO2, the reaction rate with
Au/TiO2 was lower at the initial stage, but then surpassed that of TiO2 as the reaction time
prolonged. The highest phenol yield was obtained at 1.0 wt% Au loading. Zheng et al. [38]
prepared M@TiO2 (M: Au, Pt, Ag) composites through an efficient in situ method. In
their research, TiO2 powder was dispersed in absolute ethanol to generate Ti3+ ions on
the surface of TiO2 particles upon irradiation with UV light. The generated Ti3+ ions then
reduced the noble-metal ions in dark, which made the noble-metal nanoparticles uniformly
deposited on the surface of TiO2. Among these three composites, Au@TiO2 exhibited the
highest phenol yield (63%) and selectivity (91%).

Besides the above studies on noble-metal nanoparticles and TiO2, Su et al. [39] inves-
tigated the selective oxidation of benzene to phenol over a series of metal nanoparticles
loaded on TiO2, including metal (Au, Pd), alloy (Au-Pd), and shell-core (Au-Pd and Pd-Au).
It was revealed that by adjusting the morphology and composition of Au-Pd bimetallic
nanoparticles, the degradation of benzene and the successive oxidation of phenol could be
reduced. Among these catalysts, the TiO2-supported Au-Pd (shell and core, respectively)
nanoparticles that could simultaneously increase phenol formation rate and decrease the
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generation of hydroquinone exhibited the highest photocatalytic performance. Although
the conversion of benzene was still low (30%), it provided a novel method for the direct
synthesis of phenol with high purity. For the purpose of enhancing the trapping of excited
electrons, Devaraji and coworkers [40] firstly doped V into the TiO2 lattice to generate
a V5+ energy level below the conduction band (CB) of TiO2, followed by depositing Au
on the resultant Ti0.98V0.02O2 (TV2), in which Au acted as an electron sink for promoting
the separation and migration of electrons and holes to the catalyst surface. The Schottky
junction between Au and TiO2 as well as V5+ synergistically increased the availability of
holes in the valence band (VB) of TiO2, thereby enhancing the conversion of benzene to
phenol under UV light. Considering the high thermal stability and large oxygen storage
capacity of CeO2, dispersed Pd nanoclusters incorporated on CeO2/TiO2 nanocomposite
were also developed by Ma and coworkers for selective benzene oxidation [41], in which
the synergistic effect between Pd and the support was regarded as an important factor for
the improved photocatalytic activity. Furthermore, the prepared catalyst could be used
five times without any loss in activity. Park et al. [42] investigated the effects of TiO2
surface modification (platinum deposition, fluorination, SiO2 loading) and the combination
with polyoxometalate (i.e., TiO2 and POM system) on photocatalytic hydroxylation of
benzene. Platinum deposition and surface fluorination of TiO2 were thought to contribute
to the generation of free •OH radicals on the catalyst surface, which could significantly
improve the yield and selectivity of phenol, while the loading of SiO2 had little effect on
the catalytic activity. When POM was added into the catalytic system, it acted as both a
homogeneous photocatalyst and a reversible electron acceptor, thus increasing the phenol
yield to 11%. This work offered a new way in the design of novel photocatalysts for benzene
hydroxylation.

In attempting to overcome the high cost of the noble metals (e.g., Au, Pd, Pt, and
Ag), numerous efforts have been explored to replace them with inexpensive materials for
TiO2 modification. Devaraji et al. [43] prepared disordered mesoporous Ti0.98Fe0.01Cr0.01O2
by doping Fe and Cr into TiO2, which enabled the CB to generate an electron-trapping
level. Besides, with a short carrier-diffusion length, the as-prepared co-doped TiO2 could
inhibit the recombination of photogenerated carriers and accelerate their migration to the
catalyst surface, thus resulting in enhanced UV photocatalytic activity. Cu nanoparticles
have also been demonstrated as appropriate alternatives to expensive noble metals in
recent studies. Tanarungsun et al. [44] investigated multiple transition metals (FeCu,
FeV, and FeVCu) supported on TiO2 for the liquid-phase photocatalytic hydroxylation of
benzene to phenol under UV light. Compared with bimetallic composites (FeCu/TiO2,
FeV/TiO2), the synergistic catalytic effect observed in trimetallic composites (FeVCu/TiO2)
facilitated benzene oxidation. In a recent work by Devaraji et al. [45], Cu(OH)2-loaded 2D
leaf-structured dual-phase (anatase-rutile) mesoporous leaf titania (LT) was developed and
exhibited enhanced photocatalytic activity in benzene hydroxylation. It was revealed that
the synergistic effect of the surface–phase junction, the disordered mesoporous 2D leaf
structure, and the integration of Cu2+ into LT had increased the mobility of the photoexcited
charge carriers, thereby facilitating the benzene-to-phenol photocatalytic conversion.

Additionally, WO3, as an n-type semiconductor with a direct band-gap excitation at
2.4~2.8 eV, is another well-researched semiconductor for the photocatalytic synthesis of
phenol from benzene [46]. However, the lower CB position of WO3 inhibits the generation
of VB holes with higher oxidation ability. Furthermore, the high recombination of the photo-
generated charges in WO3 would lead to a relatively low photoelectric catalytic activity [47].
Yoshida et al. [48] demonstrated that Pt-loaded TiO2 could significantly improve the phenol
selectivity without O2. However, the efficiency was not ideal, possibly due to the lower
capability of water (or protons) in capturing the photoexcited electrons, compared with O2.
Thus, nano-Pt loaded on WO3 was employed to improve the photocatalytic performance
of WO3 for selective oxidation of benzene in water and oxygen under UV light and visible
light (300 < λ < 500 nm) [49]. The results showed that Pt/WO3 afforded a phenol selectivity
up to 74%, which was much higher than Pt/TiO2 and bare TiO2. The mechanistic investi-
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gation demonstrated that the photoexcited electrons on the Pt/WO3 photocatalyst were
mainly formed through the two-electron reduction of O2, and the generated H2O2 could
not participate in the oxidation of benzene. On the contrary, the oxygen radical species
generated on TiO2 promoted the oxidative decomposition of benzene, thus reducing the
selectivity of phenol. No production of reactive oxygen radicals in O2 together with the
ability to selectively oxidize water into •OH radicals were considered to be the reasons
for the high phenol selectivity obtained from Pt/WO3 [50]. In Kurikawa’s recent work,
the reaction mechanisms for photocatalytic hydroxylation of benzene under visible light
(420 < λ < 540 nm), over Pt-WO3, was further investigated [51]. According to this study,
Pt-WO3 with different contents of Pt species could absorb the light above 450 nm because
of the scattering effect from the Pt particles and surface resonance, so their photocatalytic
activity increased significantly with both Pt species deposited on WO3 and the reaction
time increased. Mechanistic studies have shown that the dissociation rate of the O-H bond
in water played an important role in the hydroxylation reaction, and the photogenerated
H2O2 was proposed to replace the OH derived from H2O with H abstracted from benzene,
indicating that the benzene hydroxylation reaction proceeded in a push–pull way. This
research provided a new perspective for the deep understanding of the mechanism of
benzene hydroxylation to phenol over Pt-WO3.

In comparison with TiO2, ZnO is a direct band-gap semiconductor with more oxygen
vacancies on its surface, which benefits the formation of electron traps and prolongs
the lifetime of charge carriers, thus absorbing a wider range of the solar spectrum [52].
Sathu et al. [53] prepared inorganic leaves composed of ZnO by intercalating Zn2+ ions
into the porous channels of magnolia tree leaves (IL-ZnO). Compared with commercial
ZnO, the amounts of defects related with the IL-ZnO were effectively suppressed. In
addition, the diffusion of charge carriers resulted from the preservation of nanospace
and nanoarchitecture further improved the catalytic performance of IL-ZnO in benzene
hydroxylation under UV-light.

Hierarchical nanostructures with specific morphology have attracted specific at-
tention in recent years [54]. Chen et al. [55] prepared a novel three-dimensional (3D)
Bi2WO6/CdWO4 (BCW) through the decoration of CdWO4 micro rods with Bi2WO6
nanosheets. Due to the unique hierarchical heterostructure, which facilitated the absorption
of visible light and separation of photogenerated carriers, BCW exhibited a high phenol
selectivity (>99%). The FeVO4 nanorods grafted with covalently bonded organosilane (OS)
groups was explored by Wei et al. for the photocatalytic hydroxylation of benzene [56].
The OS groups grafted on FeVO4 could not only modify the surface affinity of FeVO4 to
enhance the benzene adsorption and phenol desorption ability, but also act as an effective
protective coating to suppress metal leaching with maintaining the visible light response
ability of FeVO4, therefore, resulting in an excellent photocatalytic performance in the
benzene to phenol reaction.

The results of photocatalytic hydroxylation of benzene to phenol using different types
of semiconductors are summarized in Table 1.

Table 1. Catalytic performance of semiconductor-based photocatalysts for benzene hydroxylation.

Photocatalyst Reaction Conditions Con./% Sel./% Yield/% Ref.

[Ru(bpy)3]2+–SSA@TiO2
(0.42 g/L) Simulated solar, benzene (600 ppm), phenol (83,000 ppm), H2O, 5 h 72 96 63.5 [31]

mTiO2
(10 mg) λ > 320 nm, 0.02 mmol benzene, 10 mL H2O, 40 ◦C, 6 h 42 81 34 [32]

H-MAG TiO2
(120 mg) Simulated solar λ > 320 nm, aqueous benzene (20 mL H2O, saturated

with O2), 42 ◦C, 24 h
80 100 80 [33]

Na-MAG TiO2
(120 mg) 80 28 22.7

TiO2@MCF
(1 g/L) λ > 320 nm, 29.7 mL H2O, 0.3 mL acetonitrile, 10 mmol benzene, RT, 2 h 72 30.7 22.2 [34]

Au@TiO2
(50 mg) Xe arc lamp λ > 400 nm, 0.07 mL benzene, 50 mL H2O, 30 ◦C, 3 h 65 96 62 [35]
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Table 1. Cont.

Photocatalyst Reaction Conditions Con./% Sel./% Yield/% Ref.

Au/TiO2
(60 mg) λ > 320 nm, 60 ppm benzene, 230 Kpa CO2, 20 mL H2O, 34 ◦C, 24 h 15 89 13 [36]

Au/TiO2
(60 mg) Hg lamp (240–440 nm), 5 mL benzene, 500 mL H2O, 25 ◦C, 6 h [37]

Au @TiO2
(2 g/L)

λ > 400 nm, 50 mL H2O, 0.07 mL benzene, RT, 2 h
69 91 63

[38]Pt @TiO2
(50 mg) 60 52 31

Ag@TiO2
(50 mg) 0.3 0.9 0.3

Aushell-Pdcore/TiO2
(5 mg/L) UV LED light, 1 mmol/L benzene and H2O (100 mL), RT, 1 h 30 [39]

Au/Ti0.98V0.02O2
(30 mg)

Hg lamp (200–400 nm), 2 mL benzene, 1 mL H2O2, 1 mL CH3CN,
25 ◦C, 18 h 18 88.1 15.9 [40]

Pd/CeO2/TiO2
(100 mg)

Xe lamp λ > 420 nm, 1 g benzene, 10 mL CH3CN, benzene:H2O2
(molar ratio) = 1:5, 80 ◦C, 10 h 73 95 69.4 [41]

TiO2+POM
(25 mg)

Xe arc lamp λ > 300 nm, benzene:H2O:CH3CN = 0.05 mL:24 mL:1 mL,
O2, RT, 8 h 13 85 11.0 [42]

Ti0.98Fe0.01Cr0.01O2
(30 mg)

Hg lamp (200–400 nm), 1 mL benzene,2 mL CH3CN, 2 mL H2O2, H2O,
25 ◦C, 3–18 h 15 94 14.1 [43]

FeVCu/TiO2
(10 mg)

Black light blue fluorescent bulb, benzene:H2O2 = 0.5, 40 mL CH3CN,
30 ◦C, 4 h 18.6 52 9.7 [44]

Cu(OH)2/LT
(5 mg)

UV illumination, 100 µL benzene, 500 µL CH3CN, 13 mL H2O, 87 µL
H2O2, RT, 6 h 50 97 45 [45]

Pt/WO3
(20 mg) 220 < λ < 470 nm, 1 mL benzene, 1 mL H2O, 60 ◦C, 3 h 97 [48]

Pt(0.2)-WO3
(20 mg) 300 < λ < 500 nm, 2.5 mmol benzene, 7.5 mL H2O, 60 ◦C, 4 h 69 74 49 [49]

Pt/WO3
(20 mg) Xe lamp (420–540 nm), 0.3 mmol benzene, 5 mL H2O, 25 ◦C, 20 h 70 [51]

IL-ZnO2
(25 mg)

Hg lamp (250–450 nm), 1 mL benzene, 2 ml CH3CN, 2 mL H2O2,
25 ◦C, 12 h 5.2 92 4.8 [53]

Bi2WO6/CdWO4
(50 mg)

Xe lamp (λ > 420 nm), 3 mL CH3CN, 0.1 mL H2O, 0.5 mmol benzene,
25 ◦C, 3 h 7.3 99 7.2 [55]

FeVO4@TMOS
(30 mg) Xe lamp (λ > 420 nm), 3 mL CH3CN, 3 mL H2O, 0.1 mL benzene,

2 mL H2O2, 24 ◦C, 4 h
20 98 20 [56]

FeVO4@DTOS
(30 mg) 13 98 13

2.2. POMs-Based Photocatalysts

POMs are anionic nanoclusters of transition metal oxides with a variety of structures [57,58].
Due to their high oxidation stability, excellent water solubility, and unique structure-
dependent reversible redox properties, POMs have been exploited as a versatile class of
redox reagents for photocatalytic hydroxylation of benzene to phenol (summarized in
Table 2). In order to enhance the stability and reusability of homogeneous POMs catalytic
systems, POMs-based heterogeneous catalysts have been fabricated via various “immobi-
lization” or “solidification” strategies. Zhang et al. [59] conducted benzene oxidation with
functional POMs paired ionic salts (IL-POMs), which were prepared by pairing quinoline
cations with Keggin-type phosphotungstic (PW) anions. It was described that the solubility
of these IL-POMs was dependent on the length of the carbon chain in the alkyl groups
of quinoline cations, and heterogeneous photocatalysts could be formed only with a long
carbon chain. Due to the suppressed recombination of photo-induced carriers benefitting
from the unique redox property of POM anions, IL-POMs showed a higher phenol yield
(20.9%) than the quinoline salt precursor and phosphotungstic (PW) alone. Xu et al. [60]
realized the direct oxidation of benzene to phenol with NH2-MIL-88/PMo10V2–3. In their
research, a K-type vanadium-substituted POMs (PMo10V2) was immobilized on amine-
functionalized MIL-88 (NH2-MIL-88) to fabricate a stable heterogeneous photocatalyst,
in which heteropoly acid anions were able to “grab” NH3+ ions. The obtained NH2-MIL-
88/PMo10V2 exhibited outstanding catalytic performance, which would be attributed to the
high dispersion of PMo10V2, •OH radicals generation and the V5+/V4+ redox pairs formed
in situ in the presence of electrons (e−). Recently, Gu et al. [61] reported the development
of supramolecular catalysts based on vanadium-substituted POMs anion and quinolinium
ions for the oxidation of benzene to phenol. A vanadium-substituted POMs anion was
found to be able to not only stabilize quinolinium radicals but also reuse H2O2 produced
by quinolinium ions, to offer a high phenol yield of 50.1%. However, the reusability of
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the as-prepared supramolecular catalysts remained a concern because of the presence of
quinolinium ions.

Table 2. Catalytic performance of POMs-based photocatalysts for benzene hydroxylation.

Photocatalyst Reaction Conditions Con./% Sel./% Yield/% Ref.

IL-POMS
(25 µmol)

Xe lamp (λ > 420 nm), 1.28 mmol benzene, 10 mL CH3CN, 1 mL
H2O, RT, 10 h. 21 99 20.9 [59]

NH2-MIL-88/
PMo10V2
(20 mg)

LED lamp (320–780 nm), 1 mL benzene, 3 mL acetic acid,
3 mL CH3CN, 1 mL H2O2, 60 ◦C, 3 h 12.5 99 12.4 [60]

Quinolinium and
Polyoxovanadate-Based

Supramolecular
(0.0125 mmol)

Xe lamp (λ > 420 nm), H2O:CH3CN = 3:17(v:v),
0.5 mmol benzene, 25 ◦C, 12 h 51 99 50.8 [61]

2.3. g-C3N4-Based Photocatalysts

As a class of N-doped polymeric materials, carbon nitride (CN) has attracted world-
wide attention owing to its prominent performance as catalyst or catalyst support [62,63].
Among various nanostructured CNs, the weakly ordered g-C3N4 is recognized as the most
stable one under ambient conditions and can be prepared from low-cost nitrogen-rich
precursors (e.g., melamine, dicyandiamide, urea, etc.) [64]. Furthermore, a stacked 2D
structure and a suitable band gap (2.7 eV) enable g-C3N4 to be utilized in photocatalytic
oxidation reactions [65]. In particular, porous g-C3N4 was found could chemically adsorb
and activate benzene [66]. However, the photocatalytic activity of pristine g-C3N4 was
not ideal, owing to its low surface area and the fast recombination of the photo-induced
carriers. So far, non-metallic and metallic materials have been employed to dope in g-C3N4,
to promote its photocatalytic performance for hydroxylation of benzene (as summarized in
Table 3).

Table 3. Catalytic performance of g-C3N4-based photocatalysts for benzene hydroxylation.

Photocatalyst Reaction Conditions Con./% Sel./% Yield/% Ref.

CNF
(50 mg)

Xenon lamp (λ > 420 nm), 0.8 mL benzene, 4 mL H2O, 4 mL CH3CN,
0.51 mL H2O2, 60 ◦C, 4 h 16.8 [67]

Fe-g-C3N4/SBA-15
(50 mg)

Xenon lamp (λ > 420 nm), 0.8 mL benzene, 4 mL H2O, 4 mL CH3CN,
0.51 mL H2O2, 60 ◦C, 4 h 11.9 [68]

FeCl3/mpg-C3N4
(25 mg)

Mercury lamp, 4.5 mmol benzene, 2 mL H2O, 2 mL CH3CN,
0.255 mL H2O2, 60 ◦C 38 97 32.5 [69]

Fe-g-C3N4-LUS-1
(50 mg) Mercury lamp, 4 mL CH3CN, 1 mL benzene, 0.5 mL H2O2, 4 h, 60 ◦C 98 [70]

Fe-CN/TS-1
(50 mg)

Xenon lamp (λ > 420 nm), 0.8 mL benzene, 4 mL H2O, 4 mL CH3CN,
0.5 mL H2O2, 60 ◦C, 4 h 54 18.4 10 [71]

Fc-MCN
(50 mg)

Xenon lamp (λ > 420 nm), 0.8 mL benzene, 4 mL H2O, 4 mL CH3CN,
0.51 mL H2O2, 60 ◦C, 4 h 48 34.7 16.5 [72]

Fc-CN
(50 mg)

Xenon lamp (λ > 420 nm), 0.8 mL benzene, 4 mL H2O, 4 mL CH3CN,
0.51 mL H2O2, 60 ◦C, 4 h 16.9 [73]

Fe-g-C3N4
(50 mg)

Xenon lamp (λ > 420 nm), 0.8 mL benzene, 4 mL H2O,
4 mL CH3CN, 0.51 mL H2O2, 60 ◦C, 4 h

100 8.3 8.3

[74]Cu-g-C3N4
(50 mg) 76.7 3.6 2.6

Ni-g-C3N4
(50 mg) 12 1.7 0.2

Mn-g-C3N4
(50 mg) 42.9 0.15 6.2

Co-g-C3N4
(50 mg) 40.2 0.003 0.002

Cu-Ag@g-C3N4
(25 mg)

Domestic bulb, 1 mmol benzene, 5 mL CH3CN,
1.1 mmol H2O2, RT, 30 min 99 [75]

Cu-Au@g-C3N4
(50 mg)

Cool LED bulb, 1 mmol benzene, 5 mL CH3CN,
1.1 mmol H2O2, RT, 30 min 99 [76]

Au-Pd@g-C3N4
(10 mg)

Mercury lamp (λ > 420 nm), 1 mL benzene,5 mL CH3CN,
2 mL H2O2, 50 ◦C, 2 h 26 100 26 [77]

Ni-CuWO4/g-C3N4
(20 mg)

Sunlight, 1 mL benzene, 0.2 mL H2O,
0.5 mL H2O2, 15 min 98.5 81.5 80.3 [78]

As an important modification strategy, fluorination has been utilized to modify
graphite, carbon nanotubes, boron nitride nanotubes, activated carbon, etc. [79] The fluori-
nated polymeric carbon nitride solids (CNFs) have shown promising application potential



Molecules 2022, 27, 5457 9 of 19

in photo-catalysis. As reported by Wang et al. NH4F was directly incorporated into the
thermally induced CN solids [67] to adjust the electronic band gaps and redox properties
of the resultant catalyst, which resulted in an improved conversion of benzene to phe-
nol, although the photocatalytic activity was still limited. In order to expose catalytic
sites, Fe3+ was used to be doped on g-C3N4, followed by coated-on mesoporous Santa
Barbara Amorphous-15 (SBA-15) to obtain a porous catalyst, with which a phenol yield
of up to 11.9% [68] could be realized. To further investigate the catalytic mechanism of
the Fe/g-C3N4 in benzene oxidation, especially the interaction between Fe and g-C3N4,
Zhang et al. [69] conducted the photocatalytic hydroxylation reaction over mesoporous
g-C3N4 hybrids (FeCl3/mpg-C3N4) under visible light illumination. By optimizing the
loading amount of FeCl3 in the catalyst, the activity of the catalyst was effectively enhanced,
which was attributed to the promoted redox cycle of Fe2+/Fe3+. With high surface area
and long-range ordered pores, mesoporous-type Laval University Silica (LUS-1) has been
employed as a support for loading g-C3N4, to improve its photocatalytic activity. In the
prepared Fe-g-C3N4-LUS-1, a single layer of g-C3N4 was formed on the surface of LUS-1,
and 16% of the phenol yield could be obtained under sunlight [70].

Fe-g-C3N4 (Fe-CN)/titanium silicate zeolite (TS-1) composites were also employed
for the hydroxylation of benzene to phenol under visible light irradiation [71]. It was
revealed that Fe doping could promote photocatalytic activity and give a phenol yield
that was ~9 times and ~4 times higher than single Fe-CN and TS-1, respectively. The
effect of metal deposited in the composites (M-CN/TS-1) was also examined for phenol
production. Results showed the catalytic activities of different metal-deposited catalysts
were in the following order: Fe-CN/TS-1 > Cu-CN/TS-1 > Ni-CN/TS-1 > Zn-CN/TS-1
> Co-CN/TS-1. However, due to the weak chemical interaction between the host and
Fe-CN guest, both Fe-g-C3N4/SBA-15 and Fe-CN/TS-1 encountered low catalytic stability
associated with the host–guest separation in the reaction. To avoid this circumstance,
ferrocene carboxyaldehyde (Fc-CHO) was immobilized on the surface of mesoporous
graphitic carbon nitride (MCN) via a covalent C=N linkage, to form a stable π-conjugation
system [72]. It was described that the synergistic donor-acceptor interaction between the
CN matrix and Fc group could not only enhance excited electrons splitting but also act
as an effective electron sink, supporting iron-cascade catalysis. Therefore, the polymeric
material Fc-MCN exhibited superior photocatalytic performance in the benzene oxidation
reaction to unmodified mpg-C3N4 and Fc-CHO. In another work [73], a new polymeric Fc-
CO-NH-C3N4 (Fc-CN) material was synthesized by the amidation of ferrocene carboxylic
acid (Fc-COOH) with -NH2 groups on the surface of MCN, and a phenol yield of 10% was
achieved. Owing to its binary structure, the polymeric Fc-CN can not only expand the
absorption range of visible light but also facilitate the separation and migration of excited
charge carriers to the surface of the catalyst.

As demonstrated by Ding et al., the electronic, optical and catalytic properties of
g-C3N4 were highly adjustable through metal doping. In their research, transition metals
including Fe, Co, Ni, Mn, and Cu were incorporated into the g-C3N4 matrix via a simple
soft-chemical approach [74]. Fe-g-C3N4 and Cu-g-C3N4 exhibited higher performance
than Mn−, Ni−, and Co−modified g-C3N4 in the hydroxylation of benzene under mild
conditions. Bimetal including Cu-Ag, Cu-Au, and Au-Pd were also employed to immobilize
on g-C3N4 for the photocatalytic hydroxylation of benzene to phenol, and the reaction
temperature could be significantly brought down. As for CuAg@g-C3N4, the synergistic
effect between Cu and Ag was thought to play a vital role in the activation of benzene
and production of active •OH radicals [75]. In addition, loading Cu and Au nanoparticles
(NPs) on g-C3N4 with a large surface area could further improve the overall dispersion
of metal NPs, thereby enhancing the catalytic performance of the bimetallic catalysts.
Under this condition, benzene was completely converted to phenol (up to 99% conversion),
without the formation of any by-products [76]. While for Au-Pd@g-C3N4, the Au-Pd
nanoparticles were incorporated into the g-C3N4, electrons transferred from the HOMO of
Au-Pd nanoparticles to the LUMO of g-C3N4, which prolonged the lifetime of the excitons
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and reduced the charge-hole recombination, thereby increasing phenol yield and selectivity
over Au-Pd@ g-C3N4 (Figure 4) [77].
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In a recent work by Basyach et al., g-C3N4 was blended with Ni-doped CuWO4
nanoparticles to prepare a Z-scheme Ni-CuWO4/g-C3N4 nanocomposite. Due to the
narrow band gap between the Ni-CuWO4/g-C3N4 nanocomposite and the enhanced visible
light absorption in a specific wavelength range, the recombination of photogenerated holes
and electrons was minimized, and, therefore, higher benzene conversion and phenol yield
could be obtained than with pristine Ni-CuWO4 under sunlight [78]. Although the g-C3N4-
based photocatalysts described above exhibited enhanced performance in hydroxylation of
benzene, their application was restricted, since urea was usually employed as the precursor
for g-C3N4 preparation, which suffered from extremely low productivity (<10 wt%).

2.4. MOFs-Based Photocatalysts

MOFs are a broad family of crystalline micro-mesoporous hybrid materials that have
emerged as fascinating photocatalysts owing to their large surface areas, excellent stability,
and uniform-but-tunable cavities [80]. The light irradiations on MOFs will lead to the
generation of electrons and holes that can participate in the redox reactions, even though
their mobilities are relatively lower compared with those of semiconductors [81]. In
2015, Wang et al. reported the first exploitation of MOFs for photocatalytic benzene
hydroxylation, in which two water-stable Fe-based MOFs, MIL-100(Fe) and MIL-68(Fe),
were prepared [82]. It could be concluded from electron spin resonance (ESR) and kinetic
studies that the photocatalysis of the Fe-O clusters in Fe-based MOFs, combined with
H2O2 oxidized to radicals (•OH) via a Fenton-like route, was involved in the process.
Moreover, MIL-100(Fe) exhibited superior photocatalytic performance, indicating that the
microstructure of the MOFs could significantly affect the photocatalytic efficiency. Inspired
by this work, Xu et al. [83] prepared nanoscale MIL-100(Fe) particles using ethylene glycol
for the first time. Owing to their porosity structure and high surface area, MIL-100(Fe)
nanoparticles provided higher H2O2 efficiency (58.5%) than MIL-68(Fe). In a later work,
CuII-based MOF was prepared for photocatalytic hydroxylation of benzene, and a Fenton
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oxidation mechanism was proposed [84]. In their proposed mechanism, an excited charge
separation occurred in the CuII-based MOFs under visible light, affording an electron
for the reduction of Cu2+, which was then reduced to Cu+. The newly formed Cu+ can
reduce H2O2 to •OH radicals under acidic conditions, while Cu+ was oxidized back to
Cu2+. According to ESR studies, the generated •OH radicals were necessary during the
catalytic process.

In recent years, various post-synthetic chemical treatments have been employed for the
organic functionalization of MOFs. Fang et al. [85] prepared a novel heterogeneous catalyst
UiO-66-NH2-SA-V, by anchoring VO(acac)2 on the Schiff base UiO-66-NH2-SA via chemical
bonds. With acetonitrile and acetic acid used as solvent, a phenol selectivity of 100% and a
phenol yield of 15.3% could be achieved. The excellent catalytic performance of UiO-66-
NH2-SA-V was attributed to the vanadium species, with high catalytic activity, and the
interaction between the Zr-MOF support and benzene molecules. In a later work [86], the
UiO-66-NH2 was replaced with NH2-MIL-88B(Fe) to prepare a high-performance catalyst
NH2-MIL-88B(Fe)-SA-V, which could effectively promote the adsorption of benzene on the
catalyst to generate phenol and further improve the yield of phenol to 22.2%.

The catalytic performance of various MOFs-based catalysts for benzene hydroxylation
are summarized in Table 4.

Table 4. Catalytic performance of MOFs-based photocatalysts for benzene hydroxylation.

Photocatalyst Reaction Conditions Con./% Sel./% Yield/% Ref.

MIL-100(Fe)
(10 mg)

Xenon lamp (λ > 420 nm), 0.5 mmol benzene, 2 mL H2O, 2 mL CH3CN,
0.375 mmol H2O2, RT, 8 h 20.1 98 19.5 [82]

MIL-100(Fe)
(25 mg)

Xenon lamp (λ > 420 nm), 1 mmol benzene, 5 mL H2O, 3 mL CH3CN,
0.6 mmol H2O2, RT, 3–21 h 34.4 98 33.8 [83]

Cu (II) MOF
(10 mg)

LED lamp (λ > 420 nm), 1 mmol benzene, 10 mL H2O, 1.25 mmol H2O2,
60 ◦C, 10 h 29 95 27.4 [84]

UiO-66-NH2-SA-V
(10 mg)

Xenon lamp (λ > 420 nm), 1 mL benzene, 5 mL CH3CN, 1 mL acetic acid,
H2O2, 60 ◦C, 4 h 15.3 100 15.3 [85]

NH2-MIL-88B(Fe)-SA-V
(30 mg) Visible light, 1 mL benzene, 18 mL acetic acid, H2O2, 60 ◦C, 4 h 22.5 98.6 22.2 [86]

2.5. Carbon Materials-Based Photocatalysts

Carbon materials have shown wide applications in the field of organic reactions
as support and catalytic active materials because of their unique properties and high
stability [11,87]. As mentioned earlier, the increased reactivity of phenol compared to
benzene leads to the further oxidation of the phenol, which will lower its selectivity. In
this regard, the high adsorption capacity and interaction affinity toward benzene are the
key factors for efficient photocatalysts. Furthermore, as the hydroxylation of benzene
is a typical conversion of a hydrophobic reactant to a hydrophilic product, a promising
strategy to enhance the benzene-adsorption capability of the catalyst is to improve its
surface hydrophobicity. The aforementioned catalysts are generally hydrophilic and have
a weak interaction affinity with benzene, which hinders the benzene’s activation. In
this context, several types of carbon materials, including multi-walled carbon nanotubes
(CNT), activated carbon, graphene, reduced graphene oxide (RGO), etc., were developed
to increase the hydrophobicity of the catalyst and avoid further degradation of phenol.

Wang et al. [88] prepared ternary hexagonal boron carbon nitride (h-BCN) nanosheets
by in situ doping of biomass glucose into hexagonal boron nitride (h-BN). The ternary 2D
h-BCN nanosheets, which combined the advantages of graphene and h-BN, were found to
possess tunable energy band and exhibit a unique adsorption property toward benzene. In
the reaction system, benzene in the CH3CN phase was strongly adsorbed on the surface of
h-BCN, while FeCl3 and H2O2 were both in the aqueous phase. In such a reaction situation,
h-BCN existed at the interface between the organic phase and aqueous phase, which kept
the benzene molecules well adsorbed on h-BCN and effectively reacted with the •OH
generated by the photo-Fenton reaction, to increase the conversion of benzene to phenol.
The weaker adsorption ability of phenol on h-BCN make the phenol easily desorbed from
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the surface of h-BCN and then solubilized into the organic phase, thus preventing the
over-oxidation of the phenol (Figure 5).
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Among all the reported carbon-based materials, graphene and RGO materials have
been extensively reported to have notable activity in photocatalysis [89,90]. Cai et al. [91]
have demonstrated that through the conversion of the surface wettability of RGO from
hydrophilic to hydrophobic (RGO-Cys), the benzene hydroxylation reaction occurred at the
water–benzene interface, and the rapid desorption of phenol from the interface to the ben-
zene phase was realized, thereby significantly enhancing the photocatalytic performance by
more than three times. In a study by He et al., surface-modified Cu2O supported on defec-
tive graphene was prepared for the selective photocatalytic hydroxylation of benzene [92].
The surface hydrophobicity of the catalyst was increased through the modification of alka-
nethiols to promote the adsorption of the benzene, which largely improved the selectivity
of phenol compared to that of the catalyst without surface modification.

An enhanced phenol selectivity was obtained by supporting Cu impregnated TiO2
with CNT [93]. The strong interphase interaction between Cu, TiO2, and CNTs could not
only extend the light absorption of composites to longer wavelengths but also lead to an
improved benzene-adsorption capacity and, therefore, enhance the sequential interaction
between the hydroxyl radicals and the adsorbed benzene on copper/titania surfaces. As de-
picted in Figure 6, the mechanism of photocatalytic benzene oxidation over Cu/TiO2/CNTs
was proposed, in which the following processes were involved: the photo excited electrons
of CNTs transferred into the CB of TiO2 enabling the production of highly reactive peroxide
radicals, and positively charged CNT might grab electrons from the VB of TiO2, with holes
reserved for the formation of •OH radicals from H2O.



Molecules 2022, 27, 5457 13 of 19

Molecules 2022, 27, 5457 13 of 19 
 

 

the modification of alkanethiols to promote the adsorption of the benzene, which largely 
improved the selectivity of phenol compared to that of the catalyst without surface 
modification. 

An enhanced phenol selectivity was obtained by supporting Cu impregnated TiO2 
with CNT [93]. The strong interphase interaction between Cu, TiO2, and CNTs could not 
only extend the light absorption of composites to longer wavelengths but also lead to an 
improved benzene-adsorption capacity and, therefore, enhance the sequential interac-
tion between the hydroxyl radicals and the adsorbed benzene on copper/titania surfaces. 
As depicted in Figure 6, the mechanism of photocatalytic benzene oxidation over 
Cu/TiO2/CNTs was proposed, in which the following processes were involved: the pho-
to excited electrons of CNTs transferred into the CB of TiO2 enabling the production of 
highly reactive peroxide radicals, and positively charged CNT might grab electrons from 
the VB of TiO2, with holes reserved for the formation of OH radicals from H2O. 

 
Figure 6. Proposed mechanism of photocatalytic benzene oxidation to phenol over copper/titanium 
dioxide/CNT catalysts. Reprinted with permission from ref. [93]. 2018 Elsevier. 

Spinel ZnFe2O4 (ZFO) has also shown catalytic behavior toward H2O2 activation via 
a photo-Fenton route [94]. However, the rapid charge recombination, inevitable metal 
leaching, and hydrophilic surface structure greatly limited its catalytic performance. The 
encapsulation of spinel ZFO@C by ultrathin carbon was conducted by Yang and 
coworkers [95], which not only protected the ZFO@C from corrosion and metal leaching 
but also increased the surface affinity for benzene molecules. The hydrophobic carbon 
with a π-conjugated electron system was beneficial for the adsorption of benzene instead 
of phenol, which consequently facilitated the conversion of benzene to phenol (Figure 7).  

Figure 6. Proposed mechanism of photocatalytic benzene oxidation to phenol over copper/titanium
dioxide/CNT catalysts. Reprinted with permission from Ref. [93]. 2018 Elsevier.

Spinel ZnFe2O4 (ZFO) has also shown catalytic behavior toward H2O2 activation via a
photo-Fenton route [94]. However, the rapid charge recombination, inevitable metal leach-
ing, and hydrophilic surface structure greatly limited its catalytic performance. The encap-
sulation of spinel ZFO@C by ultrathin carbon was conducted by Yang and coworkers [95],
which not only protected the ZFO@C from corrosion and metal leaching but also increased
the surface affinity for benzene molecules. The hydrophobic carbon with a π-conjugated
electron system was beneficial for the adsorption of benzene instead of phenol, which
consequently facilitated the conversion of benzene to phenol (Figure 7).
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Recently, the use of N-doped carbon layer to encapsulate iron nanoparticles (Fe@NC)
has been adopted to functionalize the iron-containing catalyst for photocatalytic benzene
hydroxylation, which benefited from its unique core-shell nanostructure as well as strong
host–guest electronic interactions between iron and carbon [96]. Due to the excellent
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stability against acid etching and the hydrophobic surface properties of rigid carbon shells,
the synthesized Fe@NC promoted the adsorption of benzene and exhibited excellent
catalytic durability and high selectivity.

The catalytic performance of various carbon-materials-based photocatalysts for hy-
droxylation of benzene are summarized in Table 5.

Table 5. Catalytic performance of carbon-materials-based photocatalysts for benzene hydroxylation.

Photocatalyst Reaction Conditions Con./% Sel./% Yield/% Ref.

h-BCN
(50 mg)

Xenon lamp (λ > 420 nm), 0.8 mL benzene, 4 mL FeCl3 (aq), 4 mL CH3CN,
0.5 mL H2O2, 60 ◦C, 2 h 16 88.3 14 [88]

RGO-Cys
(60 mg) LED lamp, 5 mmol benzene, 25 mL H2O, 5 mmol H2O2, 60 ◦C, 20 h 1.0 87 0.87 [91]

Cu2O/dG
(5 mg) ED lamp, 1 mmol benzene, 5 mL H2O, 1 mmol H2O2, 25 ◦C, 16 h 30 63.9 19.3 [92]

Cu/Ti/CNT
(100 mg)

Mercury lamp UV–vis, 20 mL benzene, 20 mL H2O,
1 mmol H2O2, 70 ◦C 68.3 75.8 51.8 [93]

ZFO@C
(30 mg)

Xenon lamp (λ > 420 nm), 0.1 mL benzene, 3 mL CH3CN, 3 mL H2O,
0.5 mL H2O2, RT 16 99.4 15.5 [95]

Fe@NC
(30 mg) 0.25 mL benzene, 3 mL H2O, 3 mL CH3CN, 2 mL H2O2, 60 ◦C, 12 h 16 95 14.5 [96]

2.6. Other Photocatalysts

Besides the aforementioned heterogeneous photocatalysts, other types of materials
have also been developed to improve the catalytic performance of benzene hydroxytion [97–99]
(as summarized in Table 6). Layered double hydroxide (LDH), as a class of 2D inorganic
layered matrix, was incorporated with specific photoactive Zn2+/Ti4+ to prepare Zn2Ti-
layered double hydroxide (ZnTi-LDH) [98], and a phenol selectivity of 87.18% was achieved.
By employing the strategies of band structure tailoring and defect engineering, the VB
position of ZnTi-LDH was appropriate to match the oxidation potential of benzene, and the
sufficient oxygen vacancies (VO) were beneficial for improving electron-hole separation
efficiency as well as the formation of superoxide radical anion (O2−), thus resulting in
excellent catalytic performance. As transition metal complexes, especially iron complexes,
have been regarded as the high-performance catalysts for various oxidation reactions, a
cyano-bridged polynuclear metal complex containing Fe(II) and Ru(II) incorporated in
SAl-MCM-41 ([Fe(H2O)3]2[Ru(CN)6]@sAl-MCM-41) [99] and Fe(II) phthalocyanine [97]
were reported as the heterogeneous photocatalysts for the selective oxidation of benzene to
phenol, in which the catalytic performance was rival to that of noble metal catalysts.

Table 6. Catalytic performance of other photocatalysts for benzene hydroxylation.

Photocatalyst Reaction Conditions Con./% Sel./% Yield/% Ref.

FePc
(30 mg)

mercury lamp, 1 mL benzene, 3 mL H2O2,
5 mL CH3CN, RT, 6 h 15 99 15.2 [97]

ZnTi-LDH
(20 mg)

Xe lamp (λ > 420) nm, 0.2 mmol benzene, 1 atm air,
20 mL H2O, 3 h, 48 ◦C 5.7 87.18 5.0 [98]

[Fe(H2O)3]2[Ru(CN)]6
(5 mg)

Λ > 390 nm, 2.5 mL CH3CN, 0.40 mL benzene,
0.40 mL H2O2, 50 ◦C 61.28 [99]

3. Conclusions

Photocatalytic oxidation of benzene has shown a promising future, with several
distinct advantages for phenol synthesis. It is well-documented that the efficacy of a
photocatalyst is greatly dependent on its intrinsic characteristics, which can be selectively
adjusted through appropriate modifications, and a slight change of physicochemical prop-
erties could arouse a significant decrease in photocatalytic activity. Thereby, the design and
fabrication of a highly selective and efficient photocatalyst is crucial for selective benzene
oxidation. This review documented the tremendous progress that has been achieved in the
development of various heterogeneous photocatalysts, including semiconductors, POMs,
g-C3N4, MOFs, carbon materials, etc., which exhibited significant benzene conversion
and phenol selectivity. However, some challenges related to photocatalysts remain to be
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addressed. First, the performances of heterogeneous photocatalysts were usually restricted
by a lower catalytic activity associated with their homogeneous counterparts. Addition-
ally, some of the applied synthetic approaches are very complicated and difficult to be
scalable. Besides, the unavoidable leaching of the active components in the metal doped
heterogeneous photocatalysts should also be taken into consideration. It is, thus, highly
desirable to explore simple, stable, efficient, and, particularly, cost-effective heterogeneous
catalysts for industrial applications. In this regard, it is imperative to explore novel and
facile methods for catalyst modification that aim to improve the benzene-adsorption ca-
pacity and photocatalytic activity. Finally, new insights into the catalytic mechanism will
also be necessary, and it will provide inspirations to the design and fabrication of more
distinctive and excellent visible-light-responsive photocatalysts for benzene hydroxylation,
which is expected to have many potential applications in industrial phenol production.
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