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Abstract 

Background:  Pseudomonas savastanoi is an important plant pathogen that infects and causes symptoms in a variety 
of economically important crops, causing considerable loss of yield and quality. Because there has been no research 
reported to date on bacterial canker of kiwifruit (Actinidia chinensis) plants caused by P. savastanoi and, in particular, 
no in-depth studies of the complete genome sequence or pathogenic mechanism, long-lasting and environmentally 
friendly control measures against this pathogen in kiwifruit are lacking. This study therefore has both theoretical value 
and practical significance.

Results:  We report the complete genome sequence of P. savastanoi strain MHT1, which was first reported as the 
pathogen causing bacterial canker in kiwifruit plants. The genome consists of a 6.00-Mb chromosome with 58.5% GC 
content and 5008 predicted genes. Comparative genome analysis of four sequenced genomes of representative P. 
savastanoi strains revealed that 230 genes are unique to the MHT1 strain and that these genes are enriched in antibi-
otic metabolic processes and metabolic pathways, which may be associated with the drug resistance and host range 
observed in this strain. MHT1 showed high syntenic relationships with different P. savastanoi strains. Furthermore, 
MHT1 has eight conserved effectors that are highly homologous to effectors from P. syringae, Pseudomonas amygdali, 
and Ralstonia solanacearum strains. The MHT1 genome contains six genomic islands and two prophage sequences. In 
addition, 380 genes were annotated as antibiotic resistance genes and another 734 as encoding carbohydrate-active 
enzymes.

Conclusion:  The whole-genome sequence of this kiwifruit bacterial canker pathogen extends our knowledge of 
the P. savastanoi genome, sets the stage for further studies of the interaction between kiwifruit and P. savastanoi, and 
provides an important theoretical foundation for the prevention and control of bacterial canker.
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Introduction
Bacterial canker of kiwifruit (Actinidia spp.) is a seri-
ous threat to the kiwifruit industry that causes substan-
tial crop losses worldwide [1]. After the first symptoms 
of canker disease (such as leaf spots) appear, the disease 

spreads quickly to the rest of the plant, which can be 
destroyed within 1 year [2]. The main methods of dis-
ease control and mitigation include chemical treatment, 
orchard management, and breeding of resistant varietie, 
however, there are currently no effective methods to 
directly kill the causal pathogen [2]. Previous studies have 
reported that P. syringae pv. actinidiae is one of the main 
pathogenic agents of Actinidia spp. pathogenic bacterial 
canker disease [1–6].
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P. syringae is an important phytopathogenic bacte-
rium and one of the most relevant models for research 
on microbe–host interactions [7]. P. savastanoi is part 
of the P. syringae complex, which encompasses more 
than 60 pathovars, and P. savastanoi is recognized as a 
later synonyms of P. amygdali [8]. It has been reported 
that P. savastanoi could causes various diseases are on 
different host plants. P. savastanoi pv. savastanoi is usu-
ally reported as the causal agent of olive (Olea europaea) 
knot disease, which manifests during rainy months with 
moderate temperatures (10–20 °C) [9]; P. savastanoi pv. 
fraxini causes cankers accompanied by excrescences in 
European ash (Fraxinus excelsior) [10]; P. savastanoi pv. 
nerii induces knots in oleander (Nerium oleander), olive 
and ash [9]; P. savastanoi pv. retacarpa induces knots in 
broom (Retama sphaerocarpa) [9]; Pseudomonas savas-
tanoi pv. mandevillae pv. nov., a clonal pathogen caus-
ing an emerging, devastating disease of the Ornamental 
plant Mandevilla spp. [11].

A growing number of P. savastanoi strains have been 
isolated and their genomes sequenced. Indeed, the 
National Center for Biotechnology Information (NCBI) 
database (https://​www.​ncbi.​nlm.​nih.​gov/​genome/) con-
tains nearly 130 reports of genome assembly and anno-
tation for P. savastanoi strains. This increasing amount 
of information highlights the biodiversity of P. savas-
tanoi strains and has also helped facilitate a growing 
understanding of the pathogen’s underlying pathogenic 
mechanisms, gene regulatory networks, and evolutionary 
processes [9, 12, 13]. However, no genome sequence of a 
P. savastanoi strain that causes bacterial canker in Acti-
nidia spp. plants is currently available, underscoring the 
need for a more comprehensive and detailed comparative 
genomics analysis of P. savastanoi.

In this work, we sequenced the genome of P. savas-
tanoi strain MHT1, which was isolated from an infected 
golden kiwifruit (Actinidia chinensis) plant. Further, by 
comparative evolutionary and genomics analyses with 
other sequenced P. savastanoi strains, we investigated 
host-specific candidate genes, conserved type III secre-
tion system effector proteins, and their evolutionary 
relationships.

Results
Isolation of pathogenic bacteria and pathogenicity tests
Bacterial canker disease was observed in the kiwifruit 
cultivars ‘HongYang’ and ‘WuZhi’ at the Xiache kiwi-
fruit plant base (115°04′N, 24°64′E) in Heping County, 
Heyuan City, Guangdong Province, China. Symptoms 
such as cankers, cracks, and lesions with halos appeared 
on the leaves and trunks during early spring (Fig. 1A and 
B) under climatic conditions consisting of low tempera-
tures, strong winds, and heavy rainfall. During year of 

2019–2021, samples of disease leaves were collected the 
at three different time points. From the different samples, 
we isolated one same bacterium forming white colonies 
on plates (Fig. 1C), which was identified as pseudomon-
ads by phylogenetic analysis by 16S rDNA and SyrB gene 
[14] (Figure S1). By The isolated strain reproduced typi-
cal symptoms on the leaves and tender buds of HongYang 
and WuZhi kiwifruit plants when infiltrated into the 
leaves (Fig. 1D and E) or spraying onto the abaxial sides 
of the leaves (Fig. 1F and G). We named this pathogenic 
strain MHT1, which is an acronym for the Chinese pro-
nunciation of kiwifruit (Mi Hou Tao).

Genome sequencing, assembly, and functional annotation
To obtain more information about this pathogen and 
to explore the interaction mechanisms of the MHT1 
strain with kiwifruit, we sequenced the MHT1 genome 
using the PacBio Sequel platform (Genedenovo Bio-
technology Co., Ltd., Guangzhou, China). We obtained 
1.12 Gb of reads representing an 187-fold coverage of 
the entire genome by SMRT sequencing (Genedenovo 
Biotechnology Co., Ltd., Guangzhou, China). After 
removing ambiguous and low-quality reads and adapt-
ers, we assembled the clean data into a single molecule 
of approximately 6.00 Mb (Fig.  2A) with the program 
MECAT [15]. The circular chromosome harbored 5008 
predicted genes and exhibited a GC content of 58.5% 
(Table 1). We used several complementary strategies to 
predict the number of different RNAs, clustered regu-
larly interspaced short palindromic repeats (CRISPR), 
genomic islands (GIs), prophage sequences, inter-
spersed repeats, tandem repeats, and transposons along 
the chromosome (Table  1. The distribution statistics of 
the MHT1 gene complement against the Non-Redun-
dant Protein Database (NR) (NCBI) showed that strain 
MHT1 shares 1949 and 1186 genes with P. syringae and 
P. savastanoi, respectively (Figure  S2 and Table  S1). 
According to the observed average nucleotide identity 
(ANI) (Figure S3), we refer to this strain as Pseudomonas 
savastanoi.

Genetic relationship between MHT1 and other 
Pseudomonas savastanoi strains
We performed a phylogenetic analysis between MHT1 
and four representative sequenced strains of P. savas-
tanoi that have not been reported to cause bacterial can-
ker on kiwifruit (assemblies ASM1220v1, ASM16401v3, 
ASM1485547v1, and ASM1714087v1)(Table  S2) based 
on their whole genomes using the REALPHY platform 
[16] (Fig.  2B). We also compared these five P. savas-
tanoi strains and investigated their strain-specific 
and shared genes (Fig.  2C). We determined that 230 
genes are unique to MHT1. We identified the extent of 

https://www.ncbi.nlm.nih.gov/genome/490
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synteny between MHT1 and the four representative 
strains using the C-Sibelia program [17] (Fig.  3). Col-
linear blocks in the MHT1 genome accounted for 87.8% 
(versus ASM1485547v1), 87.2% (versus ASM1220v1), 

84.7% (versus ASM1714087v1), and 82.8% (versus 
ASM16401v3) of the total genome (Table 2).

We performed Gene Ontology (GO) [18] enrich-
ment analysis to evaluate the possible function of these 

Fig. 1  Isolation and pathogenicity tests of Pseudomonas savastanoi strain MHT1. A and B. Representative leaf and stem of Actinidia chinensis 
plants with bacterial canker symptoms sampled from the Xiache kiwifruit plant base (115°04′N, 24°64′E), Heping County, Heyuan City, Guangdong 
Province, China. Morphology of Pseudomonas savastanoi MHT1 colonies. A single colony of the MH1 strain was streaked and cultivated on LB 
medium at 28 °C for 24 h. D and E. Symptoms on the leaves and tender buds of A. chinensis plants (HongYang kiwifruit in C; WuZhi kiwifruit in D) 
generated by P. savastanoi MHT1 strains 8 days post-inoculation. A. chinensis leaves were infiltrated with bacterial suspensions (108 CFU/mL in 1 mM 
MgCl2) and photographed 8 days later. CFU, colony-forming units. Negative control, leaves infiltrated with 10 mM MgCl2. F and G. Symptoms on the 
leaves of A. chinensis plants (HongYang kiwifruit) generated by P. savastanoi MHT1 strains 6 days post-infection. Abaxial side leaves of A. chinensis 
were sprayed with bacterial suspensions (108 CFU/mL in 1 mM MgCl2) and photographed 6 days later
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MHT1-specific genes: We observed enrichment for the 
GO terms ‘antibiotic metabolic process’ and ‘drug met-
abolic process’ (Fig.  4A). Subsequently, we performed 
a Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[19] pathway analysis with the same MHT1-specific 
genes. The top enriched KEGG pathways were associ-
ated with ‘pentose and glucuronate interconversions’, 

‘metabolic pathways’, ‘amino sugar and nucleotide 
sugar metabolism’, ‘nonribosomal peptide structures’, 
‘cysteine and methionine metabolism’, and ‘degradation 
of aromatic compounds’ (Fig. 4B). These results showed 
that although MHT1 has high similarity with these four 
P. savastanoi strains, it still has many unique genes that 
are enriched in several physiological pathways.

Fig. 2  General genomic features of Pseudomonas savastanoi MHT1 strain. Circos plot of the MHT1 chromosome. The MHT1 chromosome contig 
has a full length of 5,999,881 bp and a GC content of 58.5% and harbors 5008 predicted genes. Innermost circle, GC skew curve (purple and orange 
indicating a GC skew lower or higher than zero, respectively); second circle out, GC content (blue and orange indicate GC content lower or higher 
than the average GC content across the genome, respectively); third circle, non-coding RNAs, with tRNAs in black and rRNA in red; fourth and fifth 
circles, annotated genes on the positive and negative strands, respectively, with colors representing the different classifications of COG functions; 
sixth (outermost) circle, size of the chromosome. B. Phylogenetic tree based on the whole genomes of five representative P. savastanoi strains and 
the MHT1 strain. C. Venn diagram showing the extent of overlap between gene families between MHT1 and the four representative P. savastanoi 
strains
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Prediction and analysis of conserved type III effectors 
in Pseudomonas savastanoi strain MHT1
Like many other gram-negative plant pathogenic bac-
teria, P. savastanoi may delivers many different type III 
effector proteins (T3Es) into host plants for its patho-
genesis via a type III secretion system (T3SS) [13]. 
Given that different pathovars of P. savastanoi can 
infect several plant hosts, each strain may carry an 
array of conserved effector proteins that largely deter-
mines their host range [13]. To explore the character-
istics of the MHT1 conserved effector protein arsenal, 
we searched for potential type III effectors encoded 
by the MHT1 genome using the T3E database and the 
program EffectiveT3 [20, 21]. We thus identified 26 
proteins related to the T3SS and T3Es in the MHT1 
genome (Table  S3). We next looked for these T3Es in 
other P. syringae, P. amygdali, and Ralstonia solan-
acearum strains whose genomes have been sequenced 
and that can infect plant hosts [20]. We obtained eight 
conserved T3Es in MHT1 with strong similarity to the 
HopM1, AvrE1, and HopA1 effectors of P. syringae 
strains; the HopAH1and HopI1 effectors of P. amyg-
dali strains; and the RipQ, RipW, and RipBG effectors 
of R. solanacearum strains (Table  3) [22–27]. We also 
predicted the subcellular localization of these poten-
tial effectors using Plant-mPLoc (http://​www.​csbio.​sjtu.​
edu.​cn/​bioinf/​plant-​multi/) and Protein Homology/
analogY Recognition Engine V 2.0 (http://​www.​sbg.​
bio.​ic.​ac.​uk/​phyre2/​html/​page.​cgi?​id=​index) (Table  3). 
These results suggest that the existence of several 

conserved effector proteins may be important to the 
pathogenicity of MHT1.

Genomic islands and prophage elements
Genomic islands (GIs) are fragments of DNA derived 
from horizontal gene transfer between different bacterial 
genomes [28]. We screened the genome of MHT1 for GIs 
using Island viewer software [29]. We identified six GIs 
in the genome (Fig.  5) with the IslandPath-DIMOB pro-
gram [29]. Over the entire chromosome, the lengths of GIs 
ranged from 12,298 to 64,840 bp, with an average size of 
26,497 bp and covering a total length of 105,988 bp. These 
GIs contained 107 genes (Table S4), which mainly encoded 
FAD-binding oxidoreductases, short-chain dehydroge-
nase/reductase (SDR) family oxidoreductases, NAD(P)-
dependent alcohol dehydrogenases, ATP-dependent 
helicase HrpB, glutathione S-transferases, transcriptional 
regulators, and ATP binding cassette (ABC) transporter 
permeases.

Identification of prophages is important for the study of 
the genome of the MHT1 strain and its genetic potential 
[30]. In this study, we established that the MHT1 genome 
harbors two prophage regions (Table S5) with a total size 
of 55,399 bp using the program Phage_Finder [31]. The 
lengths of prophage regions 1 and 2 were 25,508 bp (from 
bp 5,334,617 to 5,360,124, with a GC content of 59.4%) 
and 29,891 bp (from bp 5,702,675 to 5,732,565, with a GC 
content of 58.1%), respectively. Sixty-five protein-coding 
genes were predicted in these two prophage sequences, 
encoding lysozymes, phage tail proteins, lipoproteins, 
glycoside hydrolases, and terminases (Table S6).

Carbohydrate‑active enzymes, antibiotic resistance, 
and substitution rate (Ka/Ks) analysis
Carbohydrate-active enzymes (CAZymes) are proteins 
that break down carbohydrates into smaller molecules 
by forming, hydrolyzing, and modifying glycosidic bonds 
[32]. In this study, we identified 734 genes annotated as 
CAZyme gene family members in the MHT1 genome 
(Figure S4). Among them, glycoside hydrolases and gly-
cosyl transferases were the two most abundant protein 
families, followed by carbohydrate-binding modules, car-
bohydrate esterases, enzymes with auxiliary activities, 
and polysaccharide lyases.

We further analyzed antibiotic resistance genes (ARGs) 
in the MHT1 genome via the Comprehensive Antibiotic 
Resistance Database (CARD) [33]. We identified 380 
ARGs (Table S7); these genes were potentially involved in 
resistance to fluoroquinolone, polyamine, macrolide, fos-
fomycin, aminoglycoside, pyrazinamide, cephalosporin, 

Table 1  General feature of the Pseudomonas savastanoi strain 
MHT1 genome

Features Total

Size (bp) 5,999,881

G + C content (%) 58.47

Coding genes 5008

tRNA 63

23S_rRNA 5

16S_rRNA 5

5S_rRNA 6

sRNA 19

CRISPR number 6

Genomic islands 4

Prophage 2

Interspersed repeats 82

Tandem repeats 204

Transposon 2

http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
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isoniazid, isoniazid, elfamycin, ethionamide, lincosamide, 
glycopeptide, and rifamycin.

To estimate the evolutionary dynamics of P. savas-
tanoi, we employed the MUMmer 3 package [34] 
to determine orthologous genes between the five 
strains and calculated the ratio between nonsynony-
mous mutation rate (Ka) and synonymous mutation 
rate (Ks) for each gene by the free ratio model [35]. 
Only four genes showed Ka/Ks values of > 0.5 (indica-
tive of positive selection); these genes encoded a 
DUF2244 domain-containing protein, an ATPase, a 

Fig. 3  Synteny map of the genomes of MHT1 and four representative P. savastanoi strains: ASM1220v1, ASM1714087v1, ASM1485547v1, and 
ASM16401v3

Table 2  Comparison of collinearity between MHT1 and other 
strains of Pseudomonas savastanoi 

Strain Collinear with 
SY1 (%)

ASM1485547v1 87.82

ASM1220v1 87.24

ASM1714087v1 84.70

ASM16401v3 82.82
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(2Fe-2S)-binding protein, and a BON (bacterial OsmY 
and nodulation) domain-containing protein (Table S8).

Discussion
Although at least 126 whole genomes of P. savastanoi 
strains have been sequenced, assembled, annotated, and 
uploaded to the NCBI database, none represent a strain 
that was isolated from an infected kiwifruit plant. P. 
savastanoi strains have been reported to mainly infect 
woody plants [9–13]. In this study, we demonstrated that 
kiwifruit, another woody plant, is also a natural host for 
this pathogen. We isolated P. savastanoi strain MHT1 
from the leaves of kiwifruit plants that exhibited bacte-
rial canker symptoms, from the Xiache kiwifruit plant 
base (115°04′N, 24°64′E), Heping County, Heyuan City 
in Guangdong Province, China. This disease has recently 
emerged at this location, often showing outbreaks in the 
spring under rainy and low-temperature weather condi-
tions. So far, from the aspect of disease epidemiology, we 
still don’t know what is the pathogen transmission vector. 
However, given changes in local cultivation conditions 
due to climate change, we do not rule out the possibil-
ity that strain MHT1 may an opportunistic pathogenic 
pathogen of kiwifruit plant.

We sequenced and analyzed the genome of this new 
strain, providing an essential research basis for study-
ing the characteristics of P. savastanoi strains in kiwi-
fruit by allowing an examination of the molecular 
mechanisms behind the interaction between P. savas-
tanoi strain and kiwifruit, with the goal to develop 
targeted biological control methods. We also selected 
four additional virulent P. savastanoi strains for study. 

Phylogenetic analysis of MHT1 and these four strains 
indicated that MHT1 belongs to P. savastanoi and 
exhibits high homology with the genomes of the other 
four strains. However, the MHT1 strain also differed 
from the other representative strains by many genes. 
Notably, two GO terms, ‘antibiotic metabolic process’ 
and ‘drug metabolic process’, were enriched among 
genes unique to the MHT1 strain, indicating that it may 
have strong drug resistance potential. This observation 
suggests that screening specific bactericidals will be a 
prerequisite to the effective prevention and control of 
the diseases caused by MHT1 in production practice. 
In agreement with this, we identified up to 380 ARGs 
(Table S7) in the MHT1 genome, further supporting the 
speculation that the MHT1 strain may exhibit strong 
resistance to various antibiotics and other chemicals.

In addition, by KEGG pathway enrichment, we deter-
mined that the genes unique to the MHT1 strain are 
mainly involved in the pathways ‘pentose and glucu-
ronate interconversions’, ‘metabolic pathways’, ‘amino 
sugar and nucleotide sugar metabolism’, ‘nonribosomal 
peptide structures’, ‘cysteine and methionine metabo-
lism’, and ‘degradation of aromatic compounds’, which 
may function during infections of kiwifruit and survival 
in certain environments, such as low temperature and 
high humidity. It remains to be determined whether 
the MHT1 strain, like other P. savastanoi strains, has a 
strong ability to infect other woody hosts or whether it 
can only infect plants in the kiwifruit production areas 
where it was initially isolated. We noticed the presence 
of 734 genes in the MHT1 genome that were annotated 
as CAZyme family genes (Figure  S4), among which 

Fig. 4  Top 20 enriched GO and KEGG pathways for MHT1-specific genes compared to the ASM1220v1, ASM1714087v1, ASM1485547v1, and 
ASM16401v3 strains. A, Enriched GO categories. B, Enriched KEGG pathways
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glycoside hydrolases and glycosyl transferases were the 
two most abundant families. Whether this feature helps 
MHT1 adapt to the host plant and environment will 
require further research to elucidate.

In this study, we investigated conserved type III effec-
tors in P. savastanoi MHT1 strains and found that MHT1 
presents three effectors that are highly homologous to 
the RipQ, RipW, and RipBG effectors of R. solanacearum 

strains. This implies that there may be effectors with simi-
lar functions in different gram-negative plant pathogenic 
bacteria and that these effectors may play important roles 
in the infection of the host, explaining their retention over 
the course of evolution. The effectors may also have been 
obtained by horizontal gene transfer, which could provide 
a molecular basis for MHT1 to acquire stronger patho-
genicity or the ability infect more host plants.

Fig. 5  Circular and horizontal plots of genomic islands (GIs) identified along the MHT1 chromosome. Color bars represent the predicted GIs 
identified by SIGI-HMM (orange), IslandPick (green), and IslandPath-DIMOB (blue) as well as integrated results (red) from innermost to outermost 
circles
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Conclusions
Here, we reported on the complete genome sequence of 
the P. savastanoi strain MHT1, isolated from infected 
kiwifruit plants showing bacterial canker symptoms. 
Comparative genomic analysis with P. savastanoi strains 
indicated that the MHT1 genome harbors 230 unique 
genes enriched in antibiotic metabolism pathways. In 
addition, 380 and 734 genes in the genome of the MHT1 
strain were annotated as antibiotic resistance genes or as 
encoding carbohydrate-active enzymes, respectively. Fur-
thermore, MHT1 has eight conserved effectors that are 
highly similar to other effectors from P. syringae, P. amyg-
dali, and R. solanacearum strains. Collectively, these 
results provide a solid foundation for further studying the 
host specificity of MHT1 and for screening effective anti-
biotics for the prevention and control of bacterial canker 
caused by this pathogen.

Materials and methods
Preparation of strains
Pseudomonas savastanoi strain MHT1 was isolated from 
the leaves of one Actinidia chinensis plant that exhib-
ited bacterial canker symptoms, on the Xiache kiwifruit 
plant base (115°04′N, 24°64′E), Heping County, Heyuan 
City, Guangdong Province of China. Species identifica-
tion was performed by morphological and molecular 
analyses. Single colonies were selected after 1 day of cul-
ture in LB medium (10 g NaCl,10 g peptone,10 g agar, and 
5 g yeast extract, dissolved in 1 L water, pH 7.0) at 28 °C. 
The selected clones were grown in LB liquid medium for 
18 h at 28 °C, followed by centrifugation at 4500 r/min for 
5 min to collect cells. Phylogenetic trees were constructed 
by using software MEGA7.0, according to (NJ) neighbor 
joining method, the bootstrap replications are 1000.

Pathogenicity tests
MHT1 cells were cultured in LB medium at 28 °C for 24 h, 
harvested by centrifugation, and adjusted to 108 CFU/
mL in 10 mM MgCl2. The suspension was infiltrated into 
the leaves of Actinidia chinensis plants (HongYang kiwi-
fruit and WuZhi kiwifruit) with a needleless syringe. 
The negative control consisted of infiltration with 1 mM 
MgCl2 without bacteria. For the leaf spraying infection 
test, the suspension was sprayed onto the abaxial sides 
of the leaves of Actinidia chinensis plants (HongYang 
kiwifruit). After infection, plants were grown under 
100 μmol·m− 2·s− 1 light irradiance with a 12-h-light/12-
h-dark (20 °C/18 °C) cycle in 95% relative humidity. 
Photographs were taken 8 days post-inoculation. The 
pathogenic bacteria were isolated and identified from 
the diseased tissues of HongYang kiwifruit and WuZhi 
kiwifruit.

DNA extraction, genome sequencing, and assembly
Genomic DNA from P. savastanoi strain MHT1 was 
extracted with the TIANamp Bacteria DNA Kit (TIAN-
GEN BIOTECH, Beijing, China) and quality-tested on a 
Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, 
USA). DNA concentration was measured on a Nanodrop 
(Thermo Fisher Scientific, Wilmington, USA).

Genome sequencing was performed on a PacBio long-
read sequencer (Pacific Biosciences, Menlo Park, CA, 
USA). SMRTbell libraries were obtained using g-TUBE 
(Covaris, Woburn, Massachusetts, USA) and end repair. 
According to the manufacturer’s protocols of the Blue 
Pippin system (Pacific Biosciences), fragments with sizes 
larger than 10 kb were selected. The quality and average 
size of the fragments of the library were estimated using a 
Qubit 2.0 fluorometer (Life Technologies, Carlsbad, CA, 
USA) and Bioanalyzer 2100 (Agilent Technologies, Santa 
Clara, CA, USA). The PacBio Sequel system (Pacific Bio-
sciences, Menlo Park, CA, USA) was used to perform 
SMRT sequencing. The resulting continuous long reads 
were used for de novo assembly with the Falcon program 
(version 0.3.0) [36].

Functional genome annotation
To predict the open reading frames (ORFs), the NCBI 
prokaryotic genome annotation pipeline and Prokka 
(version 1.11) were used [37, 38]. CRISPRfinder (version 
4.2.17) was used to estimate CRISPR elements [39]. Ribo-
somal RNAs (rRNAs), small RNAs (sRNAs), and trans-
fer RNAs (tRNAs) were predicted using the programs 
rRNAmmer (version 1.2), cmscan (version 1.1.2), and 
tRNAscan (version 1.3.1), respectively [40–42]. Tandem 
repeat elements were predicted with the program TRF 
(version 4.09) [43], interspersed repeat elements were 
predicted with RepeatMasker (version 4.0.5) [44], and 
transposons were predicted with TransposonPSI (version 
1.0.0) (http://​trans​poson​psi.​sourc​eforge.​net/) [45]. Based 
on sequence similarity, the predicted genes in strain 
MHT1 were annotated by BLASTN (E-value <1e− 5), 
combined with analysis with Gene Ontology (GO), Clus-
ter of Orthologous Groups of proteins (COG), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), Swiss-
port, and NCBI Non-Redundant Protein (NR) databases. 
Annotation of protein families was conducted based on 
Pfam_Scan (version 1.6) and the Pfam database (version 
32.0) [46]. Prophages and GIs (gene islands) were pre-
dicted using the program Phage_Finder (version 2.0) [28] 
and Island Viewer (version 4.0) (http://​www.​patho​genom​
ics.​sfu.​ca/​islan​dview​er/​upload/) [31], respectively. Type 
III effectors in the MHT1 strain were predicted with the 
T3E database [20]. The phylogenetic tree was obtained by 
the REALPHY program (https://​realp​hy.​unibas.​ch/​realp​

http://transposonpsi.sourceforge.net/
http://www.pathogenomics.sfu.ca/islandviewer/upload/
http://www.pathogenomics.sfu.ca/islandviewer/upload/
https://realphy.unibas.ch/realphy/
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hy/) using the whole genome of the MHT1 and other 
sequenced genomes of P. savastanoi strains as input. The 
Comprehensive Antibiotic Resistance Database (CARD) 
[33] and the Carbohydrate-Active enZYmes (CAZy) 
[47] database were used for advanced annotations. The 
default parameters were used in all analyses.

Identification of orthologous genes
The alignment of the MHT1 genome and four other rep-
resentative P. savastanoi strains was performed in an 
all-against-all comparison with the MUMmer 3 package 
(version 3.3.3) (http://​mummer.​sourc​eforge.​net/) with 
default parameters [48]. Orthologous gene clusters in 
the genomes were estimated with default parameters and 
with a combination of the programs OrthoMCL (version 
2.0) and DIAMOND (parameters of E-value <1e− 5, query 
cover > 30%) [49, 50]. The core orthologs and putative 
proteins in MHT1 were aligned by BLASTP. The score 
of significant matched proteins of each pair was assigned 
using a 1 × 10− 7 cut-off value [51].

Substitution rate estimation
The KaKs_Calculator Toolbox software (using the free 
ratio model with default parameters) (version 2.0) [52] 
was used to calculate the nonsynonymous mutation rate 
(Ka) and synonymous mutation rate (Ks). The Ka/Ks val-
ues that were higher than 0.5 [53] were considered genes 
under positive selection within the P. savastanoi strains.
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