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Cervical cancer (CESC) is a gynecologic malignant tumor associated with high incidence
and mortality rates because of its distinctive management complexity. Herein, we
characterized the molecular features of CESC based on the metabolic gene
expression profile by establishing a novel classification system and a scoring system
termed as METAscore. Integrative analysis was performed on human CESC samples from
TCGA dataset. Unsupervised clustering of RNA sequencing data on 2,752 formerly
described metabolic genes identified three METAclusters. These METAclusters for
overall survival time, immune characteristics, metabolic features, transcriptome
features, and immunotherapeutic effectiveness existed distinct differences. Then we
analyzed 207 DEGs among the three METAclusters and as well identified three
geneclusters. Correspondingly, these three geneclusters also differently expressed
among the aforementioned features, supporting the reliability of the metabolism-
relevant molecular classification. Finally METAscore was constructed which emerged
as an independent prognostic biomarker, related to CESC transcriptome features,
metabolic features, immune characteristics, and linked to the sensitivity of
immunotherapy for individual patient. These findings depicted a new classification and
a scoring system in CESC based on the metabolic pattern, thereby furthering the
understanding of CESC genetic signatures and aiding in the prediction of the
effectiveness to anticancer immunotherapies.
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INTRODUCTION

Cervical cancer, which classified into two histological
subtypes, namely cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), is the 4th prevalent
malignant tumor worldwide (Miller et al., 2019). According
to GLOBOCAN statistics, in CESC, there are approximately
over 530,000 new cases and 260,000 deaths annually, and the
morbidity accounts for 73–93% of all types of female
gynecologic malignant morbidity. In China alone, over
130,000 cases are diagnosed annually (Song et al., 2017;
Bray et al., 2018; Jassim et al., 2018). Despite the new
diagnostic methods and clinical treatments for CESC
emerge currently, its prognosis still remains dismal.
Therefore, profound insights into the mechanisms
underlying CESC genetic diversity at molecular level are
needed for the development of precise diagnosis and
personalized therapies. Recently, genome-wide mRNA
expression patterns analyses have been proved valuable for
this purpose. Yet, the relationships between the molecules and
the clinicopathology of CESC have not been comprehensively
investigated.

Cancer is believed as a metabolic-disorder disease (Coller,
2014; Boroughs and DeBerardinis, 2015). Many cancer
mutations and cancer-related genes interfere with
metabolic processes including one-carbon metabolism,
erobic glycolysis and glutaminolysis which all support
tumor cell growth and proliferation (Fiehn et al., 2016).
With respect to CESC, it as well shows the correlation
between the intratumoral metabolism and gene mutation
heterogeneities (Kidd and Grigsby, 2008; Penaranda et al.,
2013; Li et al., 2017; Shu et al., 2020). It has been discovered
that glycolytic cervical tumor cells existed in a relative state
of oxidative stress due to the increased reactive oxygen
species levels, and was compensated by upregulating redox
metabolic pathways (Schwarz, 2019). Besides, the metabolic
changes including obesity, elevated blood pressure and
triglycerides presented in the metabolic syndrome (MetS)
have been confirmed the association with the incidence of
CESC (Kidd and Grigsby, 2008; Ulmer et al., 2012; Penaranda
et al., 2013). Furthermore, a retrospective study has verified
that MetS including impaired fasting glucose and
hypertriglyceridemia was related to higher recurrence risk
in early-stage CESC patients (Ahn et al., 2015).

More interestingly, mounting evidence has been publicized
that the plasticity of immune function occurred in distinct
metabolic signatures (Domblides et al., 2018). Some studies
have shed light on modulating immune function and
polarization through targeting some particular metabolic
patterns, consequently providing therapeutic potential for
various immune-mediated disorders including cancer. In
more depth, previous data has revealed that tumor
microenvironment affected T cell metabolism which
impacted T-cell response to tumors, offering a means of
ameliorating the T cell response through metabolic
manipulation which might improve the effectiveness of
cancer immunotherapy (Dugnani et al., 2017). Together,

these findings underscore the importance of analyzing the
genetic landscape of CESC from the metabolic prospective.
Accurate metabolic-relevant subpopulation identification and
characterization are essential for comprehending this disease
and allowing for maximum efficacy of immunotherapy.

Hence, in this study, CESC data downloaded from The
Cancer Genome Atlas (TCGA) was identified three
METAclusters based on 2,752 metabolic genes. Survival
prognosis, immune characteristics, transcriptome features,
metabolic features, and immune checkpoints expression in
CESC METAclusters differed generally. Then 207
differentially expressed genes (DEGs) among three
METAclusters were identified three geneclusters for internal
validation. Finally, METAscore, a metabolism-scoring system,
was determined as an independent prognostic biomarker, and
its potential to predict immunotherapeutic effects was probed.
In conclusion, a novel metabolism-related classification was
generated, while, evaluation the metabolism pattern of
individual patient would contribute to diagnose and guide
more effective immunotherapy strategies.

MATERIALS AND METHODS

Cervical Cancer Data Source and
Preprocessing
Our study for publicly available CESC gene-expression data
including 291 patients was yielded on TCGA, which
downloaded from the UCSC Xena browser (GDC hub: https://
gdc.xenahubs.net), and analyzed using the R software (version 3.
6.1) and R Bioconductor packages.

Clustering of Metabolism-Associated
Genes in CESC
The unsupervised clustering method of assessed metabolic
genes was employed to classify patients into multiple
clusters for further assessment by using the
ConsensusClusterPlus R package. Then the value for k,
where the cophenetic correlation coefficient magnitude
began to fall was selected as the optimal cluster number
(Hartigan and Wong, 1979). This analysis has been
confirmed the classification stability for repeating 1,000 times
(Monti et al., 2003).

Estimation of Immune Characteristics
The consensus ESTIMATE (Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression) algorithm
with ESTIMATE R package was employed to measure
ESTIMATE, immune and stromal scores, which reflected the
immune and stromal cell gene signatures enrichment (Yoshihara
et al., 2013).

Single-sample GSEA (ssGSEA) with GSVA R package was
used for estimating immune infiltration in different clusters, and
then an enrichment score indicated the extent to which genes
were coordinately up or down-regulated within a single sample
(Barbie et al., 2009).

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 6249512

Li et al. Metabolic Classification in Cervical Cancer

https://gdc.xenahubs.net
https://gdc.xenahubs.net
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Differentially Expressed Genes (DEGs)
Associated With METAclusters and
Generated Geneclusters for Validation
Next, DEGs among the CESC METAclusters were identified
using the R limma package. Only the genes with | logFC| > 1
(adjusted p < 0.01) were regarded as DEGs. Based on the above
differential genes, genes with significant prognostic value were
utilized for gene clustering by using the ConsensusClusterPlus R
package.

Metabolic-Based Prognostic Model
Construction
Principal component analysis (PCA) was done and PC1 was
selected as the signature score. After acquiring the prognostic
value of each gene biosignature score, the following formula was
used to describe the METAscore of every CESC patient:

METAscore � ∑PC1i −∑ PC1j (1)

which i is the signature score of clusters with positive Cox
coefficient, and j is the expression of genes with negative Cox
coefficients.

Functional and Pathway Enrichment
Analysis
Gene set variation analysis (GSVA) is a unsupervised and
nonparametric gene set enrichment approach that estimates
biosignature scores or pathways based on transcriptomic data
(Hänzelmann et al., 2013). We downloaded the gene sets from
MSigDB (Broad Institute) (Subramanian et al., 2005), and chose
gene ontology (GO) gene sets to quantify pathway activity.
Pathway analysis was processed based on METAclusters and
METAscore by using the GSVA R package in this study.

Estimation of the Benefit of METAscroe for
Immunotherapy
The TIDE (tumor immune dysfunction and exclusion) algorithm
was applied to predict the potential response to immune
checkpoint blockade (ICB) therapy of METAscore. For the
melanoma dataset (GSE78220, N � 28), expression patterns
(FPKM normalized) and phenotypes were transformed into
transcripts per kilobase million (TPM), converting the FPKM
data to values more comparable between samples to calculate
METAscore (Wagner et al., 2012).

Statistical Analysis
The normality of the variables was verified using the Shapiro-
Wilk normality test (Ghasemi and Zahediasl, 2012). For
comparisons between two groups, statistical significance was
estimated using the unpaired Student t-tests and Wilcoxon
tests for normally distributed variables and non-normally
distributed variables, respectively. For comparisons between
more than two groups, Kruskal-Wallis tests and one-way
analysis of variance (ANOVA) were employed as

nonparametric and parametric techniques, respectively (Hazra
and Gogtay, 2016). Pearson and distance correlation analyses
were conducted for correlation coefficients. Two-sided Fisher
exact assessments were conducted to examine contingency tables.
Based on dichotomized METAscore, patients were grouped into
high and low METAscore groups and R package sva was
employed to diminish the computational batch effect. These
data were all visualized using the ggplot2 package in R.
Benjamini–Hochberg method was used in the differential gene
analysis to identify significant genes by converting the p values
into FDRs (Benjamini and Hochberg, 1995). OncoPrint was
applied to depict the mutation landscape of the TCGA dataset
using maftools package in R (Gu et al., 2016). Cluster survival
curves were generated using the Kaplan-Meier evaluation, and
the log-rank test was employed to determine the differences
statistical significance. Hazard ratios were computed using the
univariate and multivariate Cox proportional hazards regression
models. Independent prognostic factors were determined using
the R survival package. Survival curves were generated using the
survminer package. Heatmaps were generated using pheatmap
function (https://github.com/raivokolde/pheatmap). All
statistical and computational analyses were conducted using R
programming (https://www.r-project.org/). These tests were two-
sided and p value less than 0.05 signified statistical significance.

RESULTS

Three Metabolism-Relevant Clusters in
CESC Differ in Immune Characteristics
A flow diagram for the steps of this study was presented in
Supplementary Figure S1. The 2,752 metabolic genes, encoding
all human small molecule transporters and metabolic enzymes
obtained from literature screening, were subjected tometabolism-
related cluster classification by unsupervised clustering in the 291
CESC samples from TCGA. After assessing, a total of 315
candidate genes were sorted out, and clustering of the TCGA
CESC samples was performed based on these genes using the
ConsensusClusterPlus package in R. The optimal k number was
determined as, compared with k � 2 or 4, the consensus matrix
heatmap presented distinct and sharp boundaries when k � 3,
supporting the robust and stable sample clustering. Thus, three
distinct METAclusters were determined that 90 cases in
METAcluster 1, 168 cases in METAcluster 2 and 33 cases in
METAcluster 3 (Figure 1A; Supplementary Figures S2A–D).
Survival analysis revealed the significant difference in patient
overall survival (OS) time among these METAclusters, hinting
the prognostic value in CESC (Figure 1B).

ESTIMATE is a tool using gene expression data to predict
tumor purity and the presence of tumor immune/stromal cell
infiltration. The ESTIMATE algorithm mainly generates three
score-patterns to quantify the overall infiltration: 1) an
ESTIMATE score that signifies tumor purity, 2) an immune
score that infers the invasion of immune cells, and 3) a stromal
score that denotes the presence of stromal cells. Significant
differences in ESTIMATE and immune score, but not stromal
score, were presented among the three METAclusters
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FIGURE 1 | Identification of threeMETAclusters in the TCGAdata of CESC. (A)Unsupervised clustering of CESC patients based on 315 identifiedmetabolic genes:
METAcluster 1 (n � 90), METAcluster 2 (n � 168) and METAcluster 3 (n � 33). (B) Kaplan–Meier curves for survival time of the three METAclusters in CESC. Log-rank test
presented an overall p < 0.001. (C) A Violin plot showing ESTIMATE score, immune score and stromal score of the three METAclusters. (D) A Boxplot showing the
abundance of immune cell populations among the three METAclusters. In each cluster, the top and bottom of the boxes represent the 75th and 25th percentiles
(interquartile range), respectively, and thick line in the boxes represents median value. The statistical differences among the three METAclusters were determined using
the Kruskal-Wallis test. The statistical p value was represented by asterisks (ns represents no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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(Figure 1C). We next evaluated immune infiltration to
describe their immune landscape. An abundance of
28 immune-correlated cell populations was computed using
the ssGSEA. In accordance, result showed an obvious
differential expression in immune cells (B cells, CD4+

T cells, CD8+ T cells, immature dendritic cells, macrophage,
mast cell, MDSC, neutrophils, monocyte, and T helper cell)
among the METAclusters. These data distinctly indicated
these three METAclusters maintained different immune-
relevant signatures (Figure 1D).

With the remarkable difference in immune characteristic
identified, to further typify the transcriptomic and metabolic
behavior differences among these metabolic patterns, we
applied the GSVA enrichment analysis. Pathway analysis
revealed that key carcinogenic activation pathways in CESC
including WNT, HIPPO, NOTCH, NF-κB, and TGFβ
(Maliekal et al., 2008; Ramos-Solano et al., 2015; Zhu et al.,
2016; Bahrami et al., 2017; Tilborghs et al., 2017; Rodrigues et al.,
2019; Wang et al., 2020) (Figure 2A), and metabolic pathways
(Figure 2B) were differentially activated among these

FIGURE 2 | Transcriptome, metabolic and immune characteristics of the three METAclusters. (A) Pathway enrichment analysis showing the differential activated
transcriptome pathways in each METAcluster. (B) Pathway enrichment analysis showing the differential activated metabolic pathways in each METAcluster. Heatmaps
were plotted to visualize the biological processes. (C–F) Immune checkpoints expression (normalized count) in each METAcluster. The statistical p value was
represented by asterisks (ns represents no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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FIGURE 3 | Identification of CESC geneclusters based on DEGs of METAclusters. (A) Unsupervised clustering of CESC patients on 207 identified DGEs:
genecluster 1 (n � 77), genecluster 2 (n � 176), and genecluster 3 (n � 38). (B) Kaplan–Meier curves for survival time of the three geneclusters in CESC. Log-rank test
presented an overall p < 0.001. (C) A Violin plot showing ESTIMATE score, immune score and stromal score of the three geneclusters. (D) A Boxplot showing the
abundance of immune cell populations in the three geneclusters. The statistical differences among the three geneclusters were determined using the Kruskal-Wallis
test. The statistical p value was represented by asterisks (ns represents no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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METAclusters which emphasized the genetic significance of the
metabolism-based classification.

Then subsequent analysis investigated the expression of key
immune checkpoints which have been selected based on current
clinical trials drug inhibitors in other specific cancer types. As
shown, this analysis revealed discriminable expression in ligand, cell
adhesion, co-inhibitor, co-stimulator, antigen present, receptor and
other checkpoints (Figures 2C–F, Supplementary Figures S2E–G).
Considering these immune checkpoints were in charge of regulating
the immune activation through modulating the T-cell in the immune
respond process, we inferred that in CESC, respective METAcluster
possessed different immune checkpoint blockade efficacy presumably.

Validation Performance of the
Metabolism-Based Classification
To affirm metabolism-phenotype distinction of each METAcluster,
unsupervised cluster analysis of 207 most representative DEGs
among three METAclusters obtained using the limma package
(Smyth, 2004) was completed to separate CESC patients into
genomic subtypes (Figure 3A). The optimal cluster number
supported the existence of three distinct and robust geneclusters
in CESC patients (Supplementary Figure S3). Among these three
geneclusters, the prominent difference in OS was strikingly

consistent with the result of METAclusters (Figure 3B). Also, the
expression of ESTIMATE and immune scores (Figure 3C), immune
infiltration (Figure 3D), as well as the key immune checkpoints
expression (Figure 4) were all highly in accordance with the
differences among the METAclusters, genomically verifying three
distinct metabolism-associated patterns in CESC.

METAscore Generation and Characteristics
Given the individual complexity and heterogeneity of metabolic
modification, we used the PCA algorithm to construct the
METAscore to quantify metabolic patterns in CESC patients.
Two aggregate score groups (high- and low- METAscore groups)
were generated by the sum of relevant scores, and GSVA analysis
uncovered that the METAscore was related to the immune
signaling pathways, cancer pathways (Figure 5A), and key
metabolic pathways (Figure 5B).

Then we evaluated the potential of the METAscore to
predict CESC survival. Univariate and multivariate Cox
regression model analysis, which considered including
patient age, stage, grade, pregnancy count, radiation therapy
and targeted therapy, confirmed that the METAscore was
an independent and reliable prognostic biomarker (Figures
5C,D). Besides, the prognostic significance of the METAscore
was measured in four independent gynecological cancers

FIGURE 4 | Immune checkpoints expression (normalized count) in each genecluster. The statistical differences were determined using the Kruskal–Wallis test and
the statistical p value was represented by asterisks (ns represents no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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including CESC, breast cancer (BRCA), ovarian cancer
(OV) and endometrial cancer (UCEC) (Figure 5E). Notable
OS differences emerged between the high- and low-
METAscore groups in BRCA, OV and CESC which were all
recognized as hot tumors with distinct T-cell invasion
(Figures 5F–I).

Accordingly, the next evaluation was concerned in immune
checkpoints expression between two METAscore groups. Robust
correlation between METAscore and different response of immune
checkpoints including receptor, ligand, cell adhesion, co-inhibitor,
antigen present and other checkpoints was demonstrated, indicating
the guiding role in immunotherapy of METAscore (Figure 6).

FIGURE 5 | Construction of METAscore and functional annotation. (A) Pathway enrichment analysis showing the differential activated transcriptome pathways
related to METAscore. (B) Pathway enrichment analysis showing the differential activatedmetabolic pathways related toMETAscore. Heatmapswere plotted to visualize
the biological processes. (C–D) Hazard ratios (HR) of METAscore in multivariate (C) and univariate (D) cox regression models combined with CESC patient clinical
characteristics. (E)Hazard ratios (HR) of METAscore estimating the prognostic value in different gynecologic cancers. The horizontal line length represents the 95%
confidence interval for each cancer type. The vertical line represents HR � 1. (F-I) Kaplan–Meier curves for survival of the high- and low- METAscore groups in CESC ((F),
p < 0.001, log-rank test), BRCA ((G), p � 0.01169, log-rank test), OV ((H), p � 0.03811, log-rank test). and UCEC ((I), p � 0.10541, log-rank test).
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Correlation Between METAscore and CESC
Genomic Signatures
To determine the difference in somatic mutation frequencies
between the high- and low- METAscore groups, we analyzed the
TCGA genomic files. The consequence revealed that the high-
and low- METAscore groups exhibited distinct mutation
characteristics and the genes with a high mutation frequency
in TTN, MUC4, PIK3CA, and MUC16 which all correlated with
EMT (Chen et al., 2018) and critical cancer pathways including
PI3K/AKT (Razia et al., 2019) and JAK2/STAT3 (Shen et al.,
2020) (Figures 7A,B) in CESC. Somatic mutations in the
PIK3CA denoted a late event during cervical carcinogenesis,
and have been detected in multiple cervical carcinoma
subgroups (Verlaat et al., 2015). Besides, MUC4 and PIK3CA
were frequently mutated in the HPV16-KRT, a HPV16 subtype
typified by increased expression of keratinization genes,
biological oxidation and Wnt pathway signaling (Lu et al.,
2019). Similarly, regarding altered somatic copy number
variation (CNV), remarkable differences in driver gene
amplification and deletion were emerged between the
METAscore groups (Supplementary Figure S4). These
analyses revealed a high genomic heterogeneity and altered

gene expression landscape during the METAscore groups,
supporting the association between the METAscore and
genomic alterations.

METAscore Predicts Immunotherapeutic
Benefits
Immune checkpoint blockade (ICB) therapy is a revolutionary
immune-based treatment in cancers including CESC. Inhibition
of the immune checkpoints using monoclonal antibodies that
block the T-cell molecules PD-1, PD-L1, as well as CTLA4 has
emerged as a novel anti-cancer treatment with extraordinary survival
advantages (Curran et al., 2010). Considering the correlation
between the METAscore and immune characteristics, we
elaborated the predictive potential of the METAscore to estimate
ICB therapeutic value by using the melanoma GSE78220 cohort.
TIDE algorithm is a method of modeling two primary mechanisms
of tumor immune infiltration: the stimulation of T-cell dysfunction
companying with high cytotoxic T-lymphocytes (CTL) infiltration,
and the prevention of T-cell infiltration with low CTL levels, which
estimates potential response to immunotherapy (Wang et al.,
2020b). We conducted TIDE algorithm and obtained that

FIGURE 6 | Immune checkpoints expression (normalized count) between high- and low- METAscore groups of CESC patients. The statistical differences were
determined using the Kruskal–Wallis test and the statistical p value was represented by asterisks (ns represents no significance; *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001).
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patients in high- METAscore group tended to respond to
immunotherapy, prompting CESC patients with high-
METAscore might more likely benefit from immunotherapy
(Figures 7C,D). Combined with prediction of survival outcomes
in CESC (Figure 7E), we assured the guiding value ofMETAscore in
immunotherapy.

DISCUSSION

Although new CESC classification systems hinged on gene expression
and imaging have been anticipated currently, it has not reached a
molecular taxonomic consensus yet. Emerging evidence supported

that the metabolism dysfunction acted a pivotal part in CESC
proliferation and metastasis. Our study innovatively proposed a
metabolism-relevant classification which classified the CESC
patients into three METAclusters, as exhibited distinct differences
in patient survival outcomes,metabolic signatures, immune signatures,
genomic signatures and immunotherapy efficiency. Then,
METAscore, a scoring system designed to evaluate the CESC
patient comprehensive metabolic-pattern and related to genetic
alteration, was an independent prognostic biomarker for estimating
survival result and an immunotherapy predictive indicator for
guiding more precise therapy in CESC. What should be of concern
is our study revealed the comprehensive landscape of interactions
between the metabolic signature and immune phenotypes in CESC.

FIGURE 7 |METAscore predicts immunotherapeutic benefit. (A–B) The oncoPrint established by CESC patients with high-METAscore (A) and low- METAscore
(B). (C) TIDE prediction between high- and low- METAscore group. (D) Rate of clinical response (complete response [CR]/partial response [PR] and stable disease [SD]/
progressive disease [PD]) to anti–PD-L1 immunotherapy in high- or low- METAscore groups in the GSE78220 cohort. (E) Kaplan–Meier curves for survival of patients
with high- (n � 21) and low- (n � 6) METAscore in the GSE78220 cohort. Log-rank test presented an overall p < 0.001.
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The CESC microenvironment consist of immune-suppressive cells,
as well as high expression of immune checkpoint biomolecules.
Immune evasion by tumor cells, T-cell exhaustion and tumor-
specific T-cell dysfunction are all the results of the contact between
PD-1 and PD-L1 on tumor cells and tumor-infiltrating lymphocytes
(Wherry and Kurachi, 2015). Researchers supported that immune
dysfunction had a great repercussion in CESC progression and patient
clinical outcome (Carvalho et al., 2016; de Vos van Steenwijk et al.,
2013). As a fresh area in oncology, immunometabolism is a burgeoning
branch dealing that interfaces immune function with metabolic
modulation. The dynamism of the immune system augments the
tumor microenvironment complexity, as various immune populations
and metabolic pathways often interfere mutually (Wang et al., 2019).
Combined with previous published findings (Dugnani et al., 2017;
Domblides et al., 2018), our data adds the evidence of the complex
interplay between the metabolism and immune function in CESC.

Recently, cancer immunotherapy has gained widespread
attention. The mounting successes of immune-based
treatments for solid tumors have spurred numerous cancer
clinical trials testing strategies to elicit tumor-specific immune
responses, either alone, in combination with ICB, or with
traditional cancer therapies. Among, the PD-1/PD-L1 pathway
has received significant consideration because of its function on
eliciting T-cell immune checkpoint responses which results in
immune surveillance evasion of tumor cells and resistance to
chemotherapy. Hence, the application of anti-PD-1/PD-L1
antibodies as checkpoint inhibitors has rapidly became a
prospective anti-cancer strategy. Analysis of the efficacy and
safety of the PD-1 immune checkpoint inhibitors has offered
promising results in the past few years (Davis and Patel, 2019;
Wang and Li, 2019). Intriguingly, the immune checkpoints have
emerging positions inmodulating the metabolic activity of T cells.
Moreover, recent investigations on cancer metabolism have
disclosed that the dysregulated metabolic activity of tumour-
infiltrating immune cells and tumour cells contribute to the
impaired antitumour immune responses in the TME (Li et al.,
2019). Our observation that distinct expression of immune
checkpoint genes in three METAclusters, raised that CESC
patients in different subclusters maintained varying degrees of
immunotherapy treatment significance, which hinted the
association between the CESC metabolic signatures and
guiding significance for cancer immunotherapy.

Yet, as one of the most promising breakthroughs, ICB
immunotherapy is only beneficial in a small proportion of cancer
patients, ostensibly owing to insufficient immunosuppressive tumour
microenvironment (TME) reprogramming and consequently limited
reinvigoration of anti-tumor immunity. Multiple studies have shown
that PD-1, as well as PD-L1 expression and mutation load, are not
efficient to mirror ICB aids (Roh et al., 2017; Fuchs et al., 2018).
Development of novel biomarkers for checkpoint immunotherapy
responses is imperative for improving the therapeutic outcomes (Hugo
et al., 2016; Nishino et al., 2017; Panda et al., 2018). Felicitously, the
METAscore performed as a predictive biomarker for CESC prognosis
in this study.

Moreover, the genetic mutations in cancerous tissues are often
disrupted accompanied by metabolic harmony. Previous
preclinical (Burr et al., 2017) and clinical (George et al., 2017)

reports have exposed the influence of the genetic heterogeneity on
ICB responses, presumably as overall mutation load drove T-cell
responses (Diaz and Le, 2015; McGranahan et al., 2016). Our data
suggested that METAscore was correlated with the genomic
mutational load and CNV, promoting that METAscore could
delegate the dynamic of immunometabolism from the genetic
aspect.

Therefrom, we confirmed immunotherapy treatment effective
and survival outcome discrepancy between the two METAscore
groups, which was a compelling clue that METAscore could
evaluate the sensitivity to antitumor immunotherapy. Incumbent
data on the scoring system and the prognostic scores of CESC
mainly concentrated on the perspectives of immunogenomics
and genetic alteration (Cai et al., 2020; Li et al., 2019; Wang et al.,
2021; Zhang et al., 2021) . Comparatively, the METAscore
developed in our study was a promising breakthrough on the
immunometabolism, offering novel insights into CESC immune
diversity from the metabolic landscape and highlighting that
METAscore could predict sensitivity to immunotherapy.
Taking the METAscore into consideration in the choice of
comprehensive anticancer treatment might improve patient
survival result. However, to maximize immunotherapeutic
benefits, more clinical and tumor microenvironmental factors
should be integrated into the estimation model. Next step we will
explore the anchors between metabolic circuits and antitumour
immunity, and the possible methods to target these pathways in
the aspect of immunotherapy.
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