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R
ituximab is a monoclonal
antibody targeting CD20-

positive cells, that is, B cells, with
both antibody-dependent cellular
cytotoxicity and complement-
dependent cytotoxicity. It is thus
commonly used to treat antibody-
mediated autoimmune diseases
such as membranous nephropathy
(MN).1 However, this off-label use
raises the question of inadequate
dosing regimens. Indeed, an
increased clearance of rituximab is
expected in patients with protein-
uria, leading to lower drug levels,
which can be more immunogenic,
with neutralizing antidrug anti-
bodies also reducing the drug levels
and its efficacy. Rituximab under-
dosing and irreversible chronic
glomerular injuries are associated
with rituximab-refractory MN,
with nonquantifiable rituximab
levels after 3 months of treatment
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as a risk factor for treatment failure
(i.e., levels below 2 mg/l in papers
studying this relationship).2 How-
ever, therapeutic drug monitoring
(TDM) of rituximab might be diffi-
cult to set up in some centers, lead-
ing some researchers to try to
identify patients at risk of refrac-
tory disease early.

Destere et al.3 developed a
machine-learning algorithm based
on polynomial support vector ma-
chine in a cohort of 73 patients
with primary MN to predict
whether a given patient would be
at low, moderate, or high risk of
rituximab underdosing 3 months
after the first infusion. This pre-
diction was based on easily
collected patients’ baseline and 15-
day characteristics (age, gender,
body surface area, anti-PLA2R1
antibody titer, serum albumin at
baseline and day 15, and serum
creatinine at baseline and day 15).
Surprisingly, proteinuria at base-
line or day 15 did not improve the
accuracy of the model, although it
is a major cause of rituximab
underdosing. The algorithm per-
formed well in the validation set,
1

with an accuracy of 75% (well-
classified patients), a sensitivity of
78.7%, and a specificity of 81%.
The authors showed that their
model performed better than a
random model. The methodology
used in this article for the analysis
is strong, and the results were
well-evaluated. The implications of
this algorithm were then evaluated
on a relatively small number of
patients, and the results were
promising. Indeed, the algorithm
could be used to identify patients
at high risk of rituximab under-
dosing, which could improve
treatment outcomes for patients
with primary MN.

By extension, applications of
artificial intelligence (AI) in
routine TDM and model-informed
precision dosing have a promising
future, but the path forward is
challenging. Some of the chal-
lenges and opportunities have
been recently reviewed.4

In a standard statistical or
mechanistic approach, the type of
model is chosen based on physio-
logical or biological mechanisms,
and the data are used in addition to
the model to predict some results.
Machine learning (ML) algorithms,
even though they are based on
statistical and mathematical princi-
ples, follow a different paradigm:
there is no explicitly defined
model, and a large number of pa-
rameters (or hyperparameters, cor-
responding to parameters that
cannot be estimated from the data)
must be estimated. The algorithm is
built by feeding data and results
into an algorithm that will build a
model to minimize the error be-
tween observations and predictions
using a loss function. No prior
knowledge of the underlying bio-
logical mechanism is required,
leading to the term “data-driven.”
It is very important to have
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Figure 1. Although machine learning can be used as an novel alternative to pharmacometric
modeling and model-informed precision dosing (a), it can also be used conjointly with
“traditional” modeling approaches for (hopefully) better performances for precision dosing
and precision medicine (b). The figure was made using BioRender (app.biorender.com).
PK-PD, pharmacokinetic-pharmacodynamic.
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representative data to develop such
algorithms and to use a robust
approach, such as the one used by
the authors in the present paper.

Some examples of AI applica-
tions in drug individualization in
renal transplantation, especially
for immunosuppressant drugs,
have shown improved estimation
of drug exposure with fewer sam-
ples required.5 In addition, recent
examples of hybrid algorithms
combining mechanistic models and
data-driven models have shown
improved prediction of drug
exposure6 or drug toxicity7

compared to ML or mechanistic
models used alone. Finally, some
recent work by a leading group in
the field has shown that it is
possible to incorporate expert
knowledge through mechanistic
ordinary differential equation
2

models into complex deep learning
neural networks,8 allowing for the
development of more plausible and
explainable algorithms. This last
point is particularly important,
because an algorithm without a
way to use it is nothing more than
another publication. Therefore, it
is essential to develop tools to use
the algorithm, such as the shiny
app developed by the authors for
demonstration (https://lecteurs.
shinyapps.io/Rituximab/). This
also allows us to “get out of the
black box,” as ML algorithms are
often called.

Although AI and ML hold
promise as novel patients profiling
tools, it might be detrimental to
focus AI research on using them as
surrogates to TDM, which is itself
a surrogate to predict a clinical
outcome. TDM of biologics is still
lacking in nephrology because
proteinuria adds another layer of
complexity to the dose-
concentration-response relation-
ship. Furthermore, the manage-
ment of primary MN relying on
TDM may also depend on antidrug
antibody detection,2 which varies
significantly depending on assays,
especially since some assays only
detect free antidrug antibody and
are “drug-sensitive,” leading to
false negative results if drug levels
are quantifiable.9 Therefore, using
a combination of both ML and
TDM data could be more prom-
ising to predict the patients’ fate
more accurately than employing a
single isolated approach (Figure 1).

In conclusion, the introduction
of AI to drug exposure and effect
prediction is rapidly expanding;
however, it should be evaluated
prospectively and carefully in
clinical trials using the dedicated
CONSORT AI guidelines. This is
what the authors propose as future
work in their manuscript.
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