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Measurement of laryngea
l elevation by automated
segmentation using Mask R-CNN
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Abstract
The methods of measuring laryngeal elevation during swallowing are time-consuming. We aimed to propose a quick-to-use neural
network (NN) model for measuring laryngeal elevation quantitatively using anatomical structures auto-segmented by Mask region-
based convolutional NN (R-CNN) in videofluoroscopic swallowing study. Twelve videofluoroscopic swallowing study video clips were
collected. One researcher drew the anatomical structure, including the thyroid cartilage and vocal fold complex (TVC) on respective
video frames. The dataset was split into 11 videos (4686 frames) for model development and one video (532 frames) for derived
model testing. The validity of the trained model was evaluated using the intersection over the union. The mean intersections over
union of the C1 spinous process and TVC were 0.73±0.07 [0–0.88] and 0.43±0.19 [0–0.79], respectively. The recall rates for the
auto-segmentation of the TVC and C1 spinous process by the Mask R-CNN were 86.8% and 99.8%, respectively. Actual
displacement of the larynx was calculated using the midpoint of the auto-segmented TVC and C1 spinous process and diagonal
lengths of the C3 and C4 vertebral bodies on magnetic resonance imaging, which measured 35.1mm. Mask R-CNN segmented the
TVCwith high accuracy. The proposedmethodmeasures laryngeal elevation using the midpoint of the TVC and C1 spinous process,
auto-segmented by Mask R-CNN. Mask R-CNN auto-segmented the TVC with considerably high accuracy. Therefore, we can
expect that the proposed method will quantitatively and quickly determine laryngeal elevation in clinical settings.

Abbreviations: CNN = convolutional neural networks, FN = false negative, FP = false positive, IoU = intersection over union, MRI
=magnetic resonance imaging, NN= neural network, R-CNN= region based convolutional neural network, TN= true negative, TP=
true positive, TVC = thyroid cartilage and vocal fold complex, VFSS = videofluoroscopic swallowing study.

Keywords: laryngeal elevation, Mask region proposal-based convolutional neural network, quantitative measurement,
videofluoroscopic swallowing study
1. Introduction

Laryngeal elevation is known to protect the airway through
glottic closure as well as provide an approximation of the
vestibule and arytenoid cartilage during the swallowing reflex.[1]
Editor: Maya Saranathan.

The study was approved by the institutional review board of Konkuk University
Medical Center.

Patient consent was waived because of the retrospective design of the study.

This work was supported by a Konkuk University Medical Center Research Grant
2018.

The authors have no conflicts of interest to disclose.

The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.
a Department of Rehabilitation Medicine, Konkuk University School of Medicine
and Konkuk University Medical Center, Seoul, Korea, b aetherAI corporation,
Taipei, Taiwan, cCenter for Neuroscience Research, Institute of Biomedical
Science & Technology, Konkuk University, Seoul, Korea.
∗
Correspondence: Jongmin Lee, Department of Rehabilitation Medicine, Konkuk

University School of Medicine and Konkuk University Medical Center, Seoul,
Republic of Korea (e-mail: leej@kuh.ac.kr).

Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.
This is an open access article distributed under the Creative Commons
Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

How to cite this article: Lee HH, Kwon BM, Yang CK, Yeh CY, Lee J.
Measurement of laryngeal elevation by automated segmentation using Mask R-
CNN. Medicine 2021;100:51(e28112).

Received: 29 April 2021 / Received in final form: 20 October 2021 / Accepted:
16 November 2021

http://dx.doi.org/10.1097/MD.0000000000028112

1

In addition, bolus transfer from the pharynx to the esophagus
is facilitated by the stretched cricopharyngeal muscle, which
is provoked by laryngeal elevation.[2,3] With this mechanism,
laryngeal elevation is an essential movement for safe and efficient
swallowing. Laryngeal elevation has clinical importance because
a decrease in laryngeal elevation increases the risk of aspiration.
A reduced laryngeal elevation velocity is reportedly an indepen-
dent indicator of aspiration risk.[1]

Because laryngeal elevation is a very rapid reaction that takes
approximately 1 s, the degree of laryngeal elevation is difficult
to accurately determine during the swallowing process.[4]

Physical examination methods, such as visual confirmation or
palpation, are commonly used to evaluate laryngeal elevation in
clinical settings.[5] However, physical examination is relatively
subjective and highly dependent on the experience of the
examiners.[6] In addition, although laryngeal elevation is
included among the clinical tools that are intended to evaluate
swallowing through videofluoroscopic swallowing study
(VFSS), no specific method for evaluating laryngeal elevation
has been clearly presented.[7–9]

By using VFSS, several efforts have beenmade to quantitatively
measure laryngeal elevation more accurately by utilizing the
movement of the hyoid bone. Dodds et al reported hyoid
displacement by frame-by-frame visual inspection of VFSS
recordings in normal population.[10] Ishida et al also measured
hyoid movement using coordinates of the hyoid bone by frame-
by-frame inspection on VFSS.[11] Nam et al measured laryngeal
elevation by tracking the anterior margin of the thyroid cartilage
in VFSS images.[12] Lee et al quantitatively measured laryngeal
elevation using a hyoid bone semiauto-tracking system in VFSS

https://orcid.org/0000-0001-6666-6284
https://orcid.org/0000-0001-6666-6284
https://orcid.org/0000-0001-8718-0099
https://orcid.org/0000-0001-8718-0099
mailto:leej@kuh.ac.kr
http://dx.doi.org/10.1097/MD.0000000000028112


Lee et al. Medicine (2021) 100:51 Medicine
images.[13] Some studies have measured laryngeal elevation
utilizing the thyroid cartilage or larynx-to-hyoid approximation.
Kagaya et al measured laryngeal elevation through the movement
of the hyoid bone and thyroid cartilage.[14] Leonard et al measured
larynx-to-hyoid approximation bymeasuring the distance between
the hyoid bone and thyroid cartilage in each frame of VFSS.[15]

However, their methods are time-consuming or difficult to apply
in clinical settings since they need frame-by-frame visual inspection
on VFSS or equipment operating tracking system. Therefore,
among the aforementioned methods for objectively measuring
laryngeal elevation, none has achieved widespread usage.
Convolutional neural networks (CNNs) are versatile tools for

image classification and segmentation.[16] Mask R-CNN is a
variation of region proposal-based CNN (R-CNN), which
integrates a framework for region-of-interest localization within
the CNN architecture, leading to an end-to-end learning
framework with upgraded instance segmentation perfor-
mance.[17] Mask R-CNN is a fast and accurate tool for object
detection and segmentation in natural images.[17] It is also used to
localize and track objects in medical images or videos such as in
magnetic resonance imaging (MRI) and ultrasonography. Recent
studies have usedMask R-CNN for automatic needle localization
during ultrasound-guided prostate brachytherapy and automatic
needle tracking during MRI-guided intervention.[18,19] A study
used Mask R-CNN for automated thyroid nodule detection in
ultrasonography.[20]

Therefore, in this study, we aimed to propose a potentiality of a
neural network model for measuring laryngeal elevation
quantitatively using the anatomical structures segmented auto-
matically by Mask R-CNN using VFSS, which is quick to use.
2. Materials and methods

We collected 12 video clips using VFSS from 12 patients. The
clinical characteristics of the enrolled patients are illustrated in
Table 1. VFSS was performed in the following order: (1)
dysphagia diet 2 (1/2 pouch of thickener added with 100ml of
water), (2) dysphagia diet 3 (1/3 pouch of thickener added with
100ml of water), (3) dysphagia diet 4 (1/4 pouch of thickener
added with 100ml of water), and (4) free fluid. Each diet was
provided in two quantities (small volume of fluid, 3ml; large
volume of fluid, 7ml). Only when patients had taken a specific
type of fluid at a previous step that they moved to the next step.
All fluids were fed using a spoon. Video clips obtained using VFSS
have only lateral views. To improve the efficiency of the neural
Table 1

Clinical characteristics of enrolled patients (n=12).

Patient no. Age Sex Diagnosis Ch

1 84 F Alzheimer’s disease
2 60 M Traumatic brain injury
3 45 M Brain tumor
4 82 F Lewy body dementia
5 71 M Ischemic stroke
6 76 M Brain tumor
7 45 M Brain tumor
8 65 M Hemorrhagic stroke
9 80 M Ischemic stroke
10 55 M Ischemic stroke
11 63 M Hemorrhagic stroke
12 56 F Neuromyelitis optica
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network learning process, we selected the frames that included
the swallowing reflex from all frames of the video clips for the
respective patients and compiled them. The specifications of the
video clips were as follows: 640�480 pixels, 30 fps, and MP4
format.
2.1. Data collection

One researcher drew the anatomical structure on the respective
video frames using Wacom Cintiq Pro 13 (Wacom Co., Ltd.,
Otone, Saitama, Japan), which was confirmed by a physician. A
closed curve was drawn, which involved the thyroid cartilage and
the vocal folds (TV complex, TVC) on one frame in every three
frames for efficient learning (Fig. 1). Another closed curve was
also drawn, which involved the C1 spinous process, which was
used as a reference for measuring laryngeal elevation. In addition,
a third closed curve was drawn, which involved the anterior
margin of the hyoid bone and airway column of the pharynx and
larynx, to improve the efficiency of the Mask R-CNN learning
process. Manual segmentation took 6months (December 3,
2018, to May 31, 2019). We manually segmented 5620 video
frames from 12 video clips of the patients.

2.2. Data preprocessing and Mask R-CNN architecture

We collaborated with a Taiwanese AI corporation (aetherAI,
Co., Ltd., Taipei, Taiwan) to build a framework of neural
networks and training networks. The images of each frame were
augmented through random rotation (�30° to 30°), random
scale (0.8–1.2), random shift (�10% to 10%), and flip, and we
added noise for more efficient learning and avoidance of
overfitting. Gaussian blur was used to reduce image noise. The
Mask R-CNN architecture includes a deep feature learning
network (i.e., ResNet) for feature extraction, a region proposals
network for proposal generation, an ROIAlign layer for resizing
of object proposals, a fully convolutional layer for mask
prediction, and a fully connected layer for proposal classifica-
tion and regression, as illustrated in Figure 2. In this study,
ResNet50 was used to extract features for the given image
frame. The loss function of Mask R-CNN is defined as the sum
of the loss of classification, localization, and segmentation mask
as follows: L ¼ Lcls þ Lbox þ Lmask where Lcls is the classifica-
tion loss, which indicates how close the predictions are to the
true class, and Lbox is the bounding box loss, which illustrates
how good the model is at localization. Classification loss Lcls
ronicity of disease Underlying diseases

6 yrs Hypothyroidism
5 yrs Sensorimotor peripheral polyneuropathy
1 yr Hypertension and asthma
1 yr Cerebral infarction, diabetes mellitus, and hypertension
1 mo Diabetes mellitus
1 mo Renal cell carcinoma
1 yr Hypertension
14 yrs –

8 yrs Vascular dementia
4 mos –

2 mos Hypertension, and osteopenia
1 mo –



Figure 1. Manually-segmented anatomical structures in two frames of the videofluoroscopic swallowing study videoclips obtained from a patient. TVC= thyroid
cartilage and vocal fold complex.
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and bounding box loss Lbox were defined as in the study
conducted by Girshick.[21] Lmask is calculated as follows:

Lmask ¼ � 1
m2

P
1�i;j�m yijLog ŷ

k
ij
þ ð1� yijÞLogð1� ŷijkÞ

h i

which was defined as in the study conducted by He et al.[17]

Losses of classification, localization, and segmentation were
equally weighted.

2.3. Training Mask R-CNN

The dataset was split into 11 videos (4686 frames) for model
development and one video (532 frames) for testing the derived
model. An 11-fold cross-validation was employed for tuning the
hyperparameters of Mask R-CNN. The learning rate was 0.001
and the number of steps per epoch was 800. Parameter
regularization was also utilized through L2-regularization of
0.0001. Details of Mask R-CNN hyperparameters are presented
in Table 2. Early stopping was used to avoid overfitting of a
derived model.

2.4. Validation of the model

We checked the validity of the trained model by using the
intersection over union (IoU), which indicated an overlapped
lesion of the ground truth (manually segmented region) and
automatically segmented region over a union of them.
Figure 2. Mask R-CNN architecture. FPN= feature pyramid network, R-CNN= reg
proposal network, VFSS=videofluoroscopic swallowing study.
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IoU ¼ areaðSm ∩ SaÞ
areaðSm∪SaÞ (Sm, manually segmented region; Sa, auto-

matically segmented region by Mask R-CNN).

The overall segmentation performance was evaluated by recall.

Recall ¼ TP
TPþ FN

¼ true object detection
all ground truth boxes

There were no absolute criteria for IoU for checking the
accuracy of segmentation, but it is generally set to 0.5. However,
as the purpose of this study was to measure laryngeal elevation,
not segmentation itself, we used 0.3 IoU as the cut-off criterion
for IoU. A true positive corresponded to the correct detection of
the TVCwith IoU≥0.3, whereas a false negative corresponded to
the detection of the TVC with IoU<0.3. We used two GPUs
(Nvidia GeForce GTX-1080Ti; Nvidia Corp, Santa Clara, CA) to
train the model. TensorFlow 1.14.0 and Keras 2.2.4 packages in
Python 3.7.3 were used to implement Mask R-CNN (Fig. 2).

3. Results

Themean IoU values of the C1 spinous process and the TVCwere
0.73±0.07 [range, 0–0.88] and 0.43±0.19 [range, 0–0.79],
respectively. Examples of the auto-segmentation of the C1
spinous process and TVC are demonstrated in Figure 3. Our
ion based convolutional neural network, ROI= region of interest, RPN= region
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Table 2

Hyperparameters of Mask R-CNN.

Hyperparameter Values

Backbone network architecture ResNet50
Backbone stride [4, 8, 16, 32, 64]
Bounding box refinement standard deviation for final detection [0.1, 0.1, 0.2, 0.2]
Maximum number of final detections 4
Minimum probability value to accept a detected instance 0.6
Non-maximum suppression threshold for detection 0.5
Size of the fully connected layers in the classification graph 1024
Gradient norm clipping 5.0
Learning momentum 0.9
Learning rate 0.001
Mask pool size 14
Mask shape [28, 28]
Maximum number of ground truth instances 2
Pool size 7
Post number of ROI inference 512
Post number of ROI training 512
ROI positive ratio 0.33
RPN anchor ratio [0.5, 1, 2]
RPN anchor scale [8, 16, 32, 64, 128]
RPN anchor stride 1
RPN bounding box refinement standard deviation [0.1, 0.1, 0.2, 0.2]
RPN NMS threshold 0.7
RPN train anchors per image 16
Steps per epoch 800
Top-down pyramid size 256
Train batch normalization layers False
Train ROIs per image 20
Use mini mask True
Use RPN ROIs True
Validation steps 100
Weight decay 0.0001

NMS=non-maximum suppression, R-CNN= region based convolutional neural network, ROI= region
of interest, RPN= region proposal network.
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results revealed that the IoU of the TVC auto-segmentation
decreases when the TVC reaches the highest position, as
illustrated in Figure 4B (IoU at the lower point vs. IoU at the
peak point, 0.44±0.19 vs. 0.38±0.19; P= .010). The IoU of the
C1 spinous process and the TVC at each frame are presented in
Figure 4A and B, respectively. The recall for the auto-segmentation
of the TVC and C1 spinous process byMask R-CNNwere 86.8%
and 99.8% (Table 3), respectively. The trained model missed the
C1 spinous process only in one frameover 532 frames and theTVC
in 70 frames over 532 frames, whichmeans that the IoUwas<0.3.
The y-axis coordinates of the midpoint of the TVC were

plotted relative to the midpoint of the C1 spinous process, and
the frames with the longest trajectory were selected (presented as
red-dotted line in Fig. 5A). We also confirmed that all the IoU of
the TVC occurring in the selected trajectory was >0.3. To
calculate the laryngeal elevation, we used the coordinates of the
auto-segmented midpoints of the C1 spinous process and TVC
in two frames, in which the larynx stayed at the lowest point and
reached the highest point. The coordinates in VFSS are in pixels;
therefore, we used the conversion factor to convert pixel units
to millimeters. The conversion factor for the pixels in the
horizontal and vertical axes was obtained using the actual
distance of C3 and C4 vertebral body diagonal lengths in the
MRI of patients whose VFSS was the test dataset. The formula
used to calculate the laryngeal elevation is presented in
Figure 5B. Using this formula, the value of laryngeal elevation
4

using the auto-segmented TVC for one swallowing event in
the test VFSS dataset was calculated as 35.1mm, which was
similar to that calculated using the manually segmented TVC
(37.2mm).

4. Discussion

The TVC in the video clip obtained using VFSS was auto-
segmented using Mask R-CNN with a considerable accuracy.
However, when the TVC was at the highest point during
laryngeal elevation, the IoU value of the TVC fold decreased,
while that of the C1 spinous process did not. This might be
attributed to the fact that the contour of the TVC becomes
indistinguishable from the upper structure of the larynx at the
peak point because the laryngeal vestibule is closed, and the
margin of the TVC is less demarcated than the C1 spinous process
in fluoroscopy images. In addition, the IoU level of auto-
segmentation in this study was lower than that of auto-
segmentation using MRI or ultrasonography in previous
studies.[19,20] This is inevitable because the spatial resolution
of fluoroscopy images is lower than that of MR or ultrasound
images, which results in the lower contrast of the object in VFSS.
In addition, we used the VFSS videoclips with 640�480 pixels in
this study and, therefore, the boundaries of the structures in the
VFSS frame were unclear. To overcome this limitation, we need
more training datasets of VFSS with a higher resolution.
Although previous studies have not considered the movement

of the vocal folds to assess laryngeal elevation, in this study, we
used the movement of the thyroid cartilage and vocal folds as
indicators of laryngeal elevation. Terk et al considered the larynx-
to-hyoid approximation as an indicator of laryngeal elevation
and demonstrated that tracheostomy did not cause significant
changes in the dynamics of laryngeal elevation.[22] Kagaya et al
measured laryngeal elevation through the movement of the hyoid
bone and thyroid cartilage,[14] and Huang et al measured
laryngeal elevation through the movement of the hyoid bone and
thyroid cartilage and hyoid-larynx approximation on ultraso-
nography.[3] During laryngeal elevation, the hyoid bone moves
upward and anterior, and the larynx approaches the hyoid
bone.[23] During the movement of those structures, the vocal
folds and arytenoid cartilage attached to the vocal folds are also
elevated. Logemann et al stated that the degree of displacement of
the arytenoid cartilage was greater than that of the thyroid
cartilage during laryngeal elevation.[24] Therefore, the actual
laryngeal movement can be accurately evaluated by considering
not only the prominence of the thyroid cartilage, which is the
anterior margin of the larynx, but also the movement of the vocal
fold and arytenoid cartilage, which are the posterior structures. In
this study, we used the movement of the thyroid cartilage and
vocal folds as indicators of laryngeal elevation since we were not
able to draw the contour of the arytenoid as a distinct structure.
However, we consider that this method is a good approximation
for measuring the degree of laryngeal elevation because the
arytenoid cartilage is attached to the vocal folds. This
approximation has some weak points. These structures can
individually move different distances in diverse trajectories in
three dimensions, particularly when pathology is present. Using
the mid-point of the TVC is an option, but it would not present
alteration in the laryngeal tilt wherein the midpoint of the
structures is relatively still, but the thyroid cartilage rotated
significantly forward and anteriorly with the arytenoids also
elevating while the vocal fold is less elevated overall.



Figure 3. Auto-segmentation of the C1 spinous process and the TVC. (A) An example with a high IoU value. (B) An example with a low IoU value red line, auto-
segmentation by Mask R-CNN; green line, ground truth (manually segmented structure); arrowheads, TVC; arrows, C1 spinous process. IoU= intersection over
union, R-CNN= region based convolutional neural network, TVC= thyroid cartilage and vocal fold complex.
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Through the results of this study, we have established the basis
for the quantitative assessment of laryngeal elevation by auto-
segmentation of the TVC. It has a potentiality as quick-to-use
method for quantitative assessment of laryngeal elevation, which
is essential for measuring corresponding laryngeal elevation from
large-scale data. We expect that the degree of laryngeal elevation
can be confirmed rapidly from a large amount of data by using
this neural network model. Further, we can set up reference
values for laryngeal elevation with better accuracy after training a
Figure 4. Scatter plot of the IoU by frame. (A) IoU for the auto-segmented C1 spin
orange lines, frames when the TVC reaches the peak points. IoU= intersection o
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neural network model using large-scale data. In addition, we can
performmotion analysis of laryngeal elevation through our auto-
segmentation system, in which we track laryngeal elevation and
measure the velocity of laryngeal elevation.
In this study, we obtained the absolute length of laryngeal

elevation through the auto-segmentation of the TVC using MRI
and mathematical formulas, which may result in the augmenta-
tion of measurement error in some cases. In future studies, we
need tomeasure the absolute length using either the distance from
ous process. (B) IoU for the auto-segmented TVC black-dotted line, IoU=0.3;
ver union, TVC= thyroid cartilage and vocal fold complex.

http://www.md-journal.com


Table 3

Test results of automatic segmentation results.

Ground truth Automatic segmentation of the TVC Automatic segmentation of the spinous process

Manually segmented TVC 86.8% (462/532) –

Manually segmented spinous process – 99.8% (531/532)

TVC= thyroid cartilage and vocal fold complex.

Figure 5. Process of measuring laryngeal elevation. (A) y-axis coordinates of the TVC midpoint relative to the C1 spinous process midpoint in pixel. (B) Formula for
measuring laryngeal elevation red-dotted line, interval of frames with the longest trajectory of the relative y-axis coordinates of the TVC midpoint. TVC= thyroid
cartilage and vocal fold complex.
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the tragus to the angle of the mandible or the size of the coin
attached during VFSS. In addition, because the three-dimensional
motion is seen in two dimensions in VFSS, we could measure
laryngeal elevation only in two dimensions. However, this does
not compromise the accuracy of laryngeal elevationmeasurement
because most of the movements due to laryngeal elevation
proceed in a two-dimensional plane.
In future studies, we will train the developed model with more

labeled data to improve the accuracy of the model and perform
correlation study with clinical scales, such as the American
Speech-Language-Hearing Association’s National Outcomes
Measurement System and the penetration-aspiration scale.
In conclusion, we demonstrated that the Mask R-CNN auto-

segmented the TVC with considerably high accuracy. We also
calculated laryngeal elevation using the midpoint of the TVC and
C1 spinous process auto-segmented using Mask R-CNN. Thus,
we expect to measure laryngeal elevation quantitatively and
quickly in clinical settings.
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