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Association between maternal 
exposure to phthalates and lower 
language ability in offspring derived 
from hair metabolome analysis
Beatrix Jones1, Ting-Li Han2,3, Thibaut Delplancke3, Elizabeth J. McKenzie   2,  
Jamie V. de Seymour2, Mei Chien Chua4,5,6, Kok Hian Tan5 & Philip N. Baker2,3,7

The fetus undergoes a crucial period of neurodevelopment in utero. The maternal hair metabolome 
provides an integrated record of the metabolic state of the mother prior to, and during pregnancy. 
We investigated whether variation in the maternal hair metabolome was associated with 
neurodevelopmental differences across infants. Maternal hair samples and infant neurocognitive 
assessments (using the Bayley III Scales of Infant Development at 24 months) were obtained for 373 
infant-mother dyads between 26–28 weeks’ gestation from the Growing Up in Singapore Towards 
Healthy Outcomes cohort. The hair metabolome was analysed using gas chromatography-mass 
spectrometry. Intensity measurements were obtained for 276 compounds. After controlling for 
maternal education, ethnicity, and infant sex, associations between metabolites and expressive 
language skills were detected, but not for receptive language, cognitive or motor skills. The results 
confirm previous research associating higher levels of phthalates with lower language ability. In 
addition, scores were positively associated with a cluster of compounds, including adipic acid and 
medium-chain fatty acids. The data support associations between the maternal hair metabolome and 
neurodevelopmental processes of the fetus. The association between phthalates and lower language 
ability highlights a modifiable risk factor that warrants further investigation.

Between 10–20% of individuals worldwide have a neurodevelopmental disability1. During pregnancy, the fetus 
undergoes a period of intense neurodevelopment, making this a key time frame for understanding variability in 
cognitive traits. Poor maternal nutrition is a known risk factor for neurodevelopmental delay in the infant2, as 
are environmental exposures3. The maternal metabolite profile, referred to as the metabolome, consists of the 
low molecular weight compounds (<1 KDa), and is dictated by the interplay between environment (including 
food intake and environmental exposures), the microbiome, and host cellular processes. In particular, studies 
have shown the maternal metabolome to be highly influenced by maternal BMI4 and smoking5, as well as being 
responsive to the metabolic changes that occur in the development of pregnancy complications such as fetal 
growth restriction6 and preeclampsia7. Targeted metabolomics studies have found links between the maternal 
plasma and urine metabolomes and infants’ cognitive development8,9. Recently, maternal metabolomic profiling 
has expanded from analysis of typical biofluids such as blood and urine, and tissues such as placenta, to maternal 
hair. The maternal hair metabolome has been explored as a biological specimen to identify potential biomarkers 
and underlying metabolic mechanisms associated with the development of adverse pregnancy outcomes10,11. The 
hair metabolome has advantages over other more transient specimens such as urine and blood as it potentially 
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offers a long term average of metabolite levels, and hair can be obtained non-invasively and stored easily. Pilot 
studies have suggested hair has a characteristic metabolite profile for type II diabetes12 and animal studies have 
shown nutrition affects the amino acid composition of animal hair13. However, no studies have been reported to 
investigate associations between the maternal hair metabolome and neurocognitive development of the offspring. 
Given the associations reported between the maternal urine and plasma metabolome and infants’ cognitive devel-
opment, and the utility of the hair metabolome for identifying metabolomic markers of pregnancy disorders, the 
aim of our study was to investigate whether there are associations between the maternal hair metabolome and 
variation in the infant’s neurocognitive development.

In this paper we focus on a subset of individuals from the GUSTO (Growing Up in Singapore Toward healthy 
Outcomes) cohort14. We have used gas-chromatography–mass spectrometry (GC-MS) to measure the metab-
olome of maternal hair collected at 26–28 weeks of pregnancy. We then assess whether there are associations 
between this metabolome and variation in infant neurocognitive development at age two years, evaluated using 
the five subscores of the Bayley III Scales of Infant Development (BSID-III)11,15: cognition, receptive language, 
expressive language, fine motor, and gross motor.

Results
Socio-demographic characteristics.  The socio-demographic characteristics of the 373 individuals 
included in this study that were significantly associated with one of the raw assessment scores are shown in 
Table 1. Ethnicity, sex of the child, age of the child at the time of cognitive assessment (measured in days), mater-
nal education, gestational diabetes mellitus and smoking status were significantly associated with at least one 
cognitive outcome. Participant characteristics that were considered but were not found to be associated with any 
BSID-III raw scores were: maternal age, maternal BMI, gestational age at delivery (considered as a continuous 
variable, or as a dichotomous variable with categories before and after 37 weeks), and adjusted birth weight. Full 
results of all tests of association can be found in Supplementary Table 1. Many of the characteristics significantly 
associated with the cognitive scores were also associated with each other, so a more parsimonious model was con-
structed and used to control for socio-demographic characteristics in subsequent analyses. This model included 
ethnicity, sex of the child, age of the child at time of assessment, and maternal education. We note that explicitly 
controlling for the age of the child in days allows us to use the finer resolution raw score as a response.

Metabolome.  Our untargeted analysis provided intensity measurements for 276 metabolites; 182 of these 
have putative (library match >75%) or tentative (library match between 60–75%) identifications.

The single metabolite analyses showed associations between some metabolites and the expressive language 
scale, controlling for the socio-demographic variables. The expressive language responses showed an excess of 
metabolites with small p-values (5% of p-values are expected to be less than 0.05 when all null hypotheses are 
true; the observed value was 17%), and moderate q-values (see Table 2). Cook’s distance values were all less than 
0.5, indicating that these relationships were not driven by outliers. Twenty-nine metabolites achieved our q-value 
criteria (q < 0.15) for inclusion in multiple regression analyses. Two of these were then excluded based on the 
missing value criteria, leaving a group of 27 for further consideration. Table 3 shows the identified metabolites 
from this group, annotated with the direction of associations with expressive language score. Retention times for 
unidentified metabolites meeting the criteria are given in Supplementary Table 2.

Participant Characteristics Frequencies or Mean (sd)

P-values for associations with raw scores. For significant associations, 
Pearson’s correlation (continuous variables) or the category with the 
highest mean score is given.

Cognitive
Receptive 
Language

Expressive 
Language Fine Motor Gross Motor

Ethnicity
Chinese: 58%
Malay: 26%
Indian: 16%

0.31 0.02
Chinese 0.71 0.40 <0.01

Malay

Highest Level of Maternal 
education

University: 39%
GCE A level: 34%
Secondary: 22%
Primary: 5%

<0.01
University

<0.01
University

<0.01
University

<0.01
University 0.13

Sex of Child Male: 58% 0.20 0.01
Female

0.02
Female 0.15 0.23

Child’s age in days 733 (16) 0.01
r = 0.14 0.07 0.11 0.00

r = 0.20 0.99

Gestational Diabetes 
Mellitus (GDM) Yes: 20% 0.02

GDM 0.13 0.02
GDM

0.04
GDM 0.26

Smoking Smoker: 40% 0.03
Nonsmoker

<0.01
Nonsmoker 0.09 0.24 0.83

Table 1.  Participant charateristics significantly associated with at least one raw BSID-III score. Association 
p-values are based on Welch’s t-test for dichotomous variables, ANOVA for categorical or ordinal variables with 
more than two categories, and tests of correlation for continuous variables. Values less than 0.05 are shown in 
bold. For significant associations, Pearson’s correlation (continuous variables) or the category with the highest 
mean score is given.
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Multivariate predictor.  The selected multivariate multiple regression model for expressive language had 6 
predictors (sex of the child, maternal education, ethnicity, and three metabolites) and an R2 of 0.15. Coefficient 
estimates can be found in Supplementary Table 3. The metabolites selected (Adipic acid, Phthalic acid, and an 
unidentified metabolite with retention time 12.59) are shown in bold in Table 3 and Supplementary Table 3. The 
model selection process is expected to retain a low number of representatives from groups of interrelated metab-
olites; those with moderately high correlations (r ≥ 0.5) to the selected compounds are particularly important for 
interpretation and are italicized in the tables.

The receiver operating curve for predicting scaled expressive language score ≤5 had an area under the curve 
of 0.71. This represents a modest improvement over the prediction using only demographic variables (AUC 0.67).

Discussion
With intensities for 276 compounds, we have measured a more extensive hair metabolite profile than previous 
studies10–12. The hair profile contained compounds that we expected based on what is known about hair compo-
sition16 and what types of compounds are detectable, given the choice of derivatisation method and analytical 
instrumentation. These comprised amino acids, benzenoids, carboxylic acids, fatty acids, hydroxy acids, and keto 
acids.

The raw expressive language scores from BSID-III have more and stronger associations with maternal hair 
metabolites than would be expected by chance, after adjusting for ethnicity, maternal education, exact infant 
age and sex. We note that we are examining ordinary variation in these scores, rather than disordered neurode-
velopment; only the expected 2.5% (nine individuals) have their scaled expressive language scores <4 (i.e. more 
than two standard deviations below the mean using the BSID-III reference). The relationships observed provide 
intriguing links between the maternal hair metabolome and infants’ neurocognitive development, and merit fur-
ther investigation. While a large number of associations (29) met the q-value criteria, we have restricted our focus 
to metabolites that either appeared in the multivariate predictor as representatives of the relevant processes. To 
aid in interpretation, we also consider compounds correlated with the metabolites in the multivariate predictor 
with |r| at least 0.50.

In the multivariate model, adipic acid represents a group of metabolites that are positively associated with 
expressive language score, meaning that higher levels of adipic acid and its associated group were associated with 
higher expressive language scores on the BSD-III. Excretion of adipic acid is associated with ketosis17,18 which can 
occur either when few carbohydrates are consumed, or when carbohydrate metabolism is impaired. Adipic acid is 
also included in controlled-release pharmaceuticals, antacids, and processed foods; it may be excreted when these 
are consumed19. In our sample, adipic acid is correlated at the 0.50 level with three compounds that also meet our 
q-value threshold: decanoic acid, nonanoic acid, and n-methyl-2-bornylamine. Decanoic acid is a major compo-
nent of the medium chain triglyceride ketogenic anti-seizure diet; both decanoic and nonanoic acid have been 
shown to be effective for seizure control20. An investigation in ex-vivo rats has shown that the mechanism of seizure 
control for decanoic acid is inhibition of excitatory neurotransmission via AMPA glutamate receptor inhibition21.  

Scale: Cognitive
Receptive 
language

Expressive 
language

Fine 
Motor

Gross 
Motor

% pval < 0.05 8% 7% 17% 3% 9%

Min p-value 0.008 0.010 0.003 0.003 0.004

Min q-value 0.28 0.48 0.15 0.59 0.37

Table 2.  Results of single metabolite analyses.

Positively Associated with Expressive Language Score Negatively Associated with Expressive Language Score

Metabolite
Univariate
p-value Metabolite

Univariate
p-value

*Alanine Derivative 0.003 p-tert-Butylbenzoic acid (PTBBA) 0.009

*2-Bornanamine, N-methyl, peak 1 0.012 Dipicolinic acid 0.016

Adipic Acid 0.014 Homoalanine 0.019

Stearic acid 0.016 *Orthoacetic acid 0.022

Nonanoic acid 0.017 Phthalic Acid 0.022

Salicylic acid 0.022 Methionine 0.024

*2-Bornanamine, N-methyl, peak 2 0.023 Alpha-ketobutyric acid 0.026

*Nudifloric Acid 0.023

Decanoic Acid 0.026

Table 3.  Identified metabolites achieving q < 0.15 for the relationship with expressive language, and meeting 
the missing value criteria. Asterisks denote tentative identifications (library match between 60% and 75%). 
P-values are from the single metabolite analyses controlling for demographic factors. Bolded compounds were 
selected in the multivariate model; other compounds correlated to these selected compounds with |r| > 0.5 are 
italicized.
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AMPA receptors have been implicated in neuronal injury resulting from excitotoxicity22, particularly in the early 
postnatal period23. The association of AMPA inhibitors, nonanoic and decanoic acid, with higher expressive 
language scores poses an interesting question about whether these fatty acids have a role supporting optimal 
neurodevelopment.

Our analysis shows a negative relationship between language scores and phthalic acid levels, meaning that 
higher levels of phthalic acid were associated with lower language scores on the BSD-III – the opposite direc-
tion to the relationship observed between adipic acid and expressive language scores. Many studies have found 
associations between phthalic acid and a variety of cognitive disorders24. Phthalic acid is an endocrine disruptor, 
with sex-differentiated neurocognitive effects. Two independent studies found adverse effects on motor reflexes 
in male infants25,26. However, another study of infants aged 2–3 showed that girls’ mental development index 
was negatively associated with phthalate exposure while boys’ psychomotor development index was positively 
associated with phthalate exposure9. Other studies have shown that elevated phthalates in maternal urine are 
negatively associated with motor development for two and three year old girls5, and are positively associated with 
behavioral problems in eight year olds21. Phthalates are thought to affect steroidogenesis in the sex organs9,27,28, 
and while they definitely affect rodent brain development in utero29, little is known about their effect in utero in 
humans, although widespread disruptions in hippocampal functional and structural plasticity are postulated30,31. 
Interestingly, a Polish study found that prenatal phthalate exposure was inversely associated with child psycho-
motor development, but postnatal exposure did not32, and an American study found attention deficit in children 
whose mothers had high prenatal levels of urinary phthalates33.

Phthalates are common compounds added to plastics to make them flexible. Phthalic acid in biosamples orig-
inates from exposure to plastics, via food packaging, particularly of hot foods and beverages, dermal exposure to 
cosmetics, and inhalation34. Acute exposure can occur from prolonged contact with flexible medical tubing and 
catheters due to hospitalization; these exposures have been associated with long-term attention deficit35. Elevated 
phthalate levels in dust from a child’s home have also previously been associated with lower verbal ability and 
developmental delay36. Phthalic acid was not correlated at the 0.50 level with any other known metabolites that 
met the q-value threshold.

The final compound in the multivariate model was an unknown with retention time 12.59 minutes. It is chem-
ically similar to N-acetyl-1-methoxyethanimine (library match 56%). It did not have correlation 0.50 or larger 
with any known metabolites that met the q-value threshold.

While the non-invasive nature of hair sampling motivated the use of hair for this project, a shortcoming of our 
analysis was the use of full-length strands of hair. This means the metabolome measured was actually an average 
over the initial 26–28 weeks of pregnancy, as well as a variable period pre-pregnancy, depending on hair length. 
Future studies of the hair metabolome should consider performing segmental analysis, to allow the study of dif-
ferent time periods (e.g. pre-conception, first trimester, second trimester).

Another limitation was the cognitive assessment method. While BSID-III is widely used, it was developed in 
the United States and other researchers have found it necessary to establish new norms for different populations37. 
To check sensitivity to English language exposure, we considered a subset of our data (n = 257) where the children 
were given a score rating their exposure to English. This score was not associated with the expressive language 
score (p = 0.31), leading us to believe that the BSID-III was successfully administered in the Singaporean context. 
In addition, because we modelled the continuous scores rather than defining “low” or “high” categories, and 
adjusted for ethnicity in our models, we feel we have minimized the impact of cultural effects on our results.

It should also be taken into account that these findings are based on a cognitive assessment at a single time 
point. A conclusive finding of association between the maternal hair metabolome and the infants’ neurocognitive 
development would require tracking infants’ cognitive assessment over time. The findings from this study suggest 
such longitudinal tracking would be worthwhile.

In summary, the expressive language scores in the Bayley’s assessment of infant development for infants at 24 
months of age are associated with levels of several metabolites in the maternal hair metabolome. These associa-
tions were not seen for the receptive language, cognitive or motor scores. As in previous studies, higher maternal 
phthalate exposure was associated with poorer outcomes. This finding highlights an early modifiable risk factor 
for compromised infant neurodevelopment that warrants further investigation.

Methods
Ethical Statement.  The GUSTO study was approved by the National Health Care Group Domain Specific 
Review Board (reference D/09/021) and the SingHealth Centralized Institutional Review Board (reference 
2009/280/D). Research was conducted according to the Declaration of Helsinki and all participants gave their 
written informed consent at recruitment.

Study Participants.  The study was conducted on a subset of women from the GUSTO cohort - a large 
mother-child cohort that was first established in Singapore in June 2009. Women were recruited in their first tri-
mester of pregnancy from KK Women’s and Children’s Hospital (KKH) and National University Hospital (NUH). 
Recruitment was completed in September 2010 (n = 1,247). The cohort comprised three main ethnicities in the 
Singapore population (Chinese, Indian, and Malay). Of the 1,247 participants recruited in the GUSTO cohort, 
373 mother-infant dyads had a neurodevelopmental assessment of the infant at two years of age, and a high qual-
ity maternal hair metabolome measurement.

Cognitive assessment.  The Bayley III Scales of Infant Development (BSID-III)9 were administered by trained 
assessors, fluent in the primary language of the child. We considered separately the five component scores: Cognitive, 
Receptive Language, Expressive Language, Fine Motor Skills and Gross Motor Skills. 365 children had all five scores, 
and 373 had at least one. Raw scores were used, with explicit modelling of the effect of the child’s age in days.
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Sample Preparation.  Hair samples were collected at 26–28 weeks of gestation. Hair was cut from the occip-
ital area, 0.5 cm from the scalp with scissors. Samples were stored at room temperature until analysis. The hair 
samples were processed as part of a larger group of 971 samples. The order of hair samples was randomised, with 
the design across experimental days balanced with respect to gestational diabetes, small for gestational age, and 
preterm birth. Cognitive score was not considered when randomising the samples.

Hair samples were washed in Milli-Q water and methanol (Merck, analytical grade) twice. Hair strands were 
cut into short sections and weighed, and 0.5 mg–5.5 mg of hair (~2–3 strands) was spiked with 20 µL of an inter-
nal standard mixture containing 10 mM of alanine-2,2,3,3-d4; 2 mM of hydroxyphenylalanine-3,3-d2; 10 mM of 
citric-2,2,4,4-d4 acid; 10 mM of phenyl-d5-alanine (Sigma-Aldrich). Samples below 0.5 mg in weight were not 
included for analysis. Hair samples were hydrolysed by incubation in 1 mL of 1 M potassium hydroxide at 54 °C 
for 18 h. After hydrolysis, the hair extracts were neutralised to pH 7 by dropwise addition of sulphuric acid. To 
remove salts and other residues, 1 mL of methanol (100%v/v) was added to the neutralised samples and centri-
fuged at 2000 g for 5 min to separate the supernatant from insoluble hair debris. The supernatants containing 
hair extracts were evaporated to dryness using a rotary evaporator (Savant SPS121P Speedvac, Thermo) at 37 °C 
for 16 h. Samples were derivatised using methyl chloroformate (MCF)38. Briefly, samples were re-suspended in 
200 μL 1 M sodium hydroxide and transferred to a silanised glass tube. Methanol (167 µL) and pyridine (34 µL) 
were added. The derivatisation was initiated by adding 20 µL MCF followed by vortexing for 30 s, then a further 
20 µL MCF was added, followed by 30 s of vortexing. To extract the derivisate, 400 µL chloroform was added, vor-
texed for 10 s and then 400 µL of 50 mM sodium bicarbonate was added and vortexed for an additional 10 s. The 
aqueous layer was discarded and the extract was dehydrated with anhydrous sodium sulphate before transferring 
to vials for GC-MS analysis.

The instrument used was an Agilent 7890B gas chromatograph coupled to an 5977 A single quadrupole mass 
spectrometer; settings are given in Table 4. Mass spectrometer calibration was carried out prior to analysis; 
the septum and liner were changed every ~200 injections. For each analytical batch of 18 samples, one solvent 
blank was run to measure instrument carryover, one alkane mix to measure instrument response, one refer-
ence standard mix to measure derivatisation efficiency, and one negative control to measure lab contamination. 
Five quality control samples (an aliquot pooled from every sample) were run throughout each batch to measure 
reproducibility.

GC-MS Data Extraction.  The reference metabolite methyl chloroformate derivative mass spectral library 
developed by S. Villas-Boas (185 compounds) and the National Institute of Standards and Technology (NIST) 
2014 EI library (242,477 compounds) were both used for compound identification. Using the NIST subset 
library method developed by E J McKenzie for the Automated Mass-spectral Deconvolution and Identification 
System (AMDIS), a subset of the NIST library was constructed using results from Chemstation Probability Based 
Matching integrator for a representative selection of quality control and sample data files. The Chemstation inte-
gration parameters were set to be sensitive to very low abundance compounds, and search-match parameters 
were expansive, with 10-15 compounds per feature included, in order to produce a comprehensive subset library 
of ~6000 compounds. This approach was used to circumvent limitations imposed by AMDIS on mass spectral 
library size.

The raw files from the GC-MS were converted into CDF/AIA format and then deconvoluted using AMDIS. 
An R-script39 was used to integrate peak intensities. The R-script returns a value for the retention time bin defined 
by AMDIS for a particular ion across all samples, and is thus more sensitive than AMDIS, and has fewer missing 
values, but slightly more false positives. Both retention time and mass spectrum were used to match compounds 
against the Villas-Boas reference metabolite library. Mass spectrum alone was used to match against the NIST14 
subset library. Matches below 60% are labelled as “unknown”. Matches between 60% and 75% are labelled as “ten-
tative”, those >75% are putative identifications.

Carrier Gas Instrument grade helium (99.999%)

Sample injection Automated injection 1 µL

Injector liner Deactivated glass split/splitless 4 mm ID straight single taper inlet liner packed with 
deactivated glass wool

Injector temperature 290 °C

Injector flow Splitless, purge flow 25 mL/min, 1 min after injection

Column flow 1 mL/min, constant flow, column head pressure 9 psi

Column Type Fused silica, 30 m × 250 μm id × 0.15 μm with 5 m guard column. Stationary phase of 86% 
dimethylpolysiloxane and 14% cyanoprophylphenyl

Thermal program, transfer line and source 
temperatures, solvent delay

45 °C for 2 min, increased by 9 °C/min−1 to 180 °C, held 5 min, then increased by 40 °C/min−1 
to 220 °C, held for 5 min, then increased by 40 °C/min−1 to 240 °C, held for 11.5 min, increased 
by 40 °C/min−1 to 280 °C and held for 2 min. The interface temperature was 250 °C and the 
quadrupole temperature was 230 °C.

Ionization mode Positive, 70 eV

Acquisition mode Operated in scan mode; started after 5.5 min with mass range between 38–550 amu with scan 
time of 0.1 s.

Detection Threshold 50 ion counts

Table 4.  GCMS instrument parameters.
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The values used were the maximum height at the apex of the most intense ion for the compound peak. Data 
were checked against negative controls to identify and remove analytical contaminants. Peaks that were not inte-
grated well using the automated method were integrated individually using the R package Metab40.

Normalisation.  Normalisation was performed using the 971 hair samples from study participants and 285 
quality control samples. For each metabolite, the internal standard with the highest correlation r to that metab-
olite, in quality control samples, was used for normalisation, if r exceeded 0.85. Otherwise, internal standard 
normalisation was omitted. Samples were then normalised by biomass. Batch variation was addressed by median 
centering of the samples, specifically by multiplying the sample measurements for a particular day and metabo-
lite by M/m, where m was the daily median and M the overall median for that metabolite. For a small number of 
days and metabolites, this created missing values if the median was a non-detection. These days were excluded 
for the study of that metabolite, and these metabolites were excluded from multi-metabolite analyses. For each 
metabolite, non-detections were replaced with 0.9 times the smallest non-zero value for that metabolite. Finally, 
values were log transformed.

Statistical Analysis.  Associations between the five raw BSID-III scores and the characteristics in Table 2 
were examined with correlation for continuous characteristics, Welch’s t-test for dichotomous variables, and 
ANOVA for ordinal and categorical characteristics with more than two levels. From the characteristics with a 
significant (p < 0.05) association for any of the five scores, a model was constructed to control for demographic 
factors in the single-metabolite regression analyses. This model included exact infant age, to allow for use of the 
raw scores, and enough demographic factors that adding further demographic variables did not significantly 
improve the fit of the model.

For each neurodevelopmental scale, a regression model was fitted, with the score as the response, and the cho-
sen participant characteristics, along with a single log metabolite intensity, as the predictors. The p-values for the 
metabolic predictors were tabulated in each case, and q-values (estimates of false discovery rate) were computed 
using the method of Storey and Tibshirani41,42, separately for each neurocognitive score type.

Where there was an excess of significantly associated metabolites, we assessed the ability of the metabolites 
with q < 0.15 to predict the BSID-III score using multivariate regression. We restricted our candidate predictors 
to the metabolites with complete information meeting the q-value criteria, and to participant characteristics in 
the selected demographic model for the neurodevelopmental scales. Only observations that were complete in all 
of these variables (365) were used for model selection. Backwards stepwise selection with AIC was used to pro-
duce a model, followed by stepwise pruning of predictors with the largest multivariate regression p-values until 
all p-values were less than 0.05. Using this model, receiver operator curves were produced for prediction of scaled 
expressive language score ≤5.

To understand the relationships between the metabolite candidate predictors for the multiple regression, a 
correlation matrix was computed. Where correlation with a metabolite included in the selected model exceeded 
0.5, these metabolites were considered as a group for purposes of interpretation.
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