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Abstract: Enhancer-promoter interactions (EPIs) play a significant role in the regulation of gene
transcription. However, enhancers may not necessarily interact with the closest promoters, but with
distant promoters via chromatin looping. Considering the spatial position relationship between
enhancers and their target promoters is important for predicting EPIs. Most existing methods only
consider sequence information regardless of spatial information. On the other hand, recent com-
putational methods lack generalization capability across different cell line datasets. In this paper,
we propose EPIsHilbert, which uses Hilbert curve encoding and two transfer learning approaches.
Hilbert curve encoding can preserve the spatial position information between enhancers and promot-
ers. Additionally, we use visualization techniques to explore important sequence fragments that have
a high impact on EPIs and the spatial relationships between them. Transfer learning can improve pre-
diction performance across cell lines. In order to further prove the effectiveness of transfer learning,
we analyze the sequence coincidence of different cell lines. Experimental results demonstrate that
EPIsHilbert is a state-of-the-art model that is superior to most of the existing methods both in specific
cell lines and cross cell lines.

Keywords: Hilbert curve; enhancer-promoter interactions; transfer learning

1. Introduction

Promoters and enhancers are two important cis-regulatory elements that control
gene transcription [1]. Enhancers [2,3] can increase the transcription of specific genes and
promoters [4,5], and determine the position of transcription start point and frequency.
Enhancer–promoter interactions (EPIs) are vital for the regulation of gene expression [6]
and reveal associations between some special genes and diseases [7–9]. For example, Smeno
et al. [10] found that there are EPIs existing in introns of FTO and Irx3 with increased risk
for obesity and type-2 diabetes.

In recent decades, many studies [11–16] have shown that the mechanism of EPIs is
complicated: one enhancer can act on one or more target promoters, while one target
promoter can be co-regulated by one or more enhancers. Although the experimental
approaches can identify EPIs accurately, such as FISH [17] and chromosome conforma-
tion capture (3C) [18], the result may contain a lot of irrelevant information. Moreover,
experimental approaches are also expensive and time consuming.

Therefore, with the development of various high-throughput technologies, compu-
tational methods have become usual alternatives for identifying EPIs. Whalen et al. [19]
proposed a model named TargetFinder, which used lots of sequence and genomic in-
formation obtained in biological experiments to predict EPIs. Talukder et al. [13] built
an Adaboost model using functional and genomic data to predict EPIs. However, these
traditional machine learning methods often require feature engineering, which leads to
redundant features, such as GTB [14], GBRT [15], and random forest [16]. The fact that
potential information may affect EPI predictions is excluded from consideration.
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In recent years, deep learning methods have been proposed to address the above limi-
tations, which build different neural network architectures to learn potential sequence infor-
mation. One-hot and its variant high-order encoding are usual encoding methods [20–23]
that pay more attention to extract sequence context information than the potential spatial
position information contained in a sequence. For example, Zhuang et al. [21] used one-hot
to encode enhancer and promoter sequences that only consider the information of single
nucleotides. In order to learn more relevant sequence information, many methods use
CNN (Convolutional Neural Networks) to extract potential sequence information, such as
EPIsCNN [21] and EPIVAN [6]. Singh et al. [20] proposed SPEID, a hybrid of CNN and
LSTM (Long short-term Memory) that better characterizes long-range interactions. How-
ever, LSTM may cause a long operation time. Min et al. [22] used a matching heuristic from
natural language inference to explore the interaction between enhancers and promoters.
Although these methods found different ways to obtain more information on EPIs, they
still ignored the spatial position relationship.

Overall, even though these researchers have made considerable progress, some limita-
tions still exist. First, almost all these methods do not take into consideration the spatial
position relationship. Therefore, these models cannot extract more information. Second,
few studies have focused on the analysis of features extracted by model from the spatial
perspective; they only use the quantitative value of AUC (area under the curve) and AUPR
(area under the precision–recall curve) to evaluate prediction accuracy. Third, most recent
methods lack generalization capability across different cell line datasets. They obtained
satisfactory prediction accuracy when train datasets were the same as test datasets, but
performed worse across cell lines. Although EPIHC [23] and SEPT [24] both use different
transfer learning approaches, their results are unsatisfactory.

To address the above limitations, we have designed a model named EPIsHilbert
using Hilbert curve encoding and transfer learning. Many researchers have shown that
enhancers interact with promoters through complex spatial positions, such as rotating or
folding around. Hilbert curve encoding avoids some loss of the spatial position relationship
between an enhancer and a promoter, so it can help improve a model’s performance. In
order to explore the sequence features that affect the EPIs and their spatial relationships,
we add a class activation map (CAM) visualization to display the frequency of sequence
features. The occurrence of some diseases is usually related to genetic elements that control
the gene regulation, so sequence features with a high frequency of occurrence can be
further used in genetic testing or disease diagnosis. For achieving satisfactory prediction
performance across cell lines, we proposed two transfer learning strategies to pre-train the
model with data from various cell lines. We further explored the reasons for the conclusions
of transfer learning according to the analysis of coincidence degree. Experiment results
demonstrated that EPIsHilbert not only improved the accuracy of the model prediction in
some target cell lines, but also obtained satisfying performance across cell lines.

2. Methods and Materials
2.1. Datasets

In this study, we used the same dataset from TargetFinder [19] and SPEID [20] as the
original EPIs dataset, consisting of six cell lines: GM12878, HUVEC, HeLa-S3, K562, NHEK,
and IMR90. The dataset of each cell line contains enhancer sequences, promoter sequences,
positive samples, and negative samples of EPIs. Enhancer and promoter sequences were
derived from the Encyclopedia of DNA elements and filtered by the Roadmap Epigenomics
Project [25]. Based on the Hi-C technology [26], EPIs could be detected.

All sequences were unified into a fixed length. The length of enhancer sequences
is 3000 base pairs (bp), while that of the promoter is 2000 bp. In each cell line, the ratio
of negative samples to positive samples is 20:1. Thus, for our dataset, a class imbalance
problem existed. We used two methods, over-sampling and under-sampling, to achieve a
balanced dataset. The details of the balanced dataset are shown in Table 1.
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Table 1. The details of the balanced dataset.

Dataset True EPIs Aug True EPIs False EPIs Sub-Sample False EPIs

K562 1977 39,540 39,500 1977
GM12878 2113 42,260 42,200 2113
HeLa-S3 1740 34,800 34,800 1740
HUVEC 1524 30,480 30,400 1524
NHEK 1291 25,820 25,600 1291
IMR90 1254 25,080 25,000 1254

2.2. EPIsHilbert

Here, we proposed a prediction model called EPIsHilbert, using Hilbert curve to
encode enhancer and promoter sequences, combining sequence analysis with deep learn-
ing and utilizing transfer learning strategies to pre-train the model. The overview of
EPIsHilbert contains three main steps: Hilbert curve encoding, network architecture, and
transfer learning pre-training.

2.2.1. Hilbert Curve Encoding

To address the limitation of ignoring spatial position relationships, we propose Hilbert
curve encoding [27], a classic space-filling curve to encode enhancer and promoter se-
quences. As shown in Figure 1, the enhancer interacts with the promoter through complex
spatial relationships, such as rotating or folding around. The Hilbert curve represents the
interaction between enhancer and promoter by mapping the spatial interaction locations. It
is clear that the Hilbert curve encoding reflects the actual interaction, though the enhancers
and target promoters are close in space but distant from each other in position.
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When using Hilbert curve encoding, as the vector space gradually transforms from low
to high-dimensional space, the specified points on the line gradually tend towards a more
exact point in the vector space. Therefore, Hilbert curve can convert a one-dimensional
sequence into a three-dimensional matrix-vector, as we can see in Figure 2, representing
enhancer–promoter long-range interaction and spatial position information. The process
of Hilbert curve encoding is as follows:

i. Unify the representation of DNA bases: ‘A’ is encoded as [1, 0, 0, 0], ‘T’ is encoded as
[0, 1, 0, 0], ‘C’ is encoded as [0, 0, 1, 0] and ‘G’ is encoded as [0, 0, 0, 1].

ii. Confirm the Hilbert curve dimension.
iii. The Hilbert representation of sequence: for each base in the sequence, we encode the

sequence in order of the Hilbert space to obtain a three-dimensional vector.
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2.2.2. Network Architecture

After Hilbert curve encoding, the obtained three-dimensional vector can be regarded
as an image with multiple channels. As such, we use a simple CNN network architecture
as our prediction model to extract sequence features. As shown in Figure 3, the network ar-
chitecture is composed of two convolutional layers, two pooling layers, and one connected
layer. We split all samples of each cell line into a training set, a validation set, and a test
set, with the ratio of 8:1:1. The parameters of the model were chosen with the learning rate
3 × 10−4 batch-size 100, and epochs 100. To prevent overfitting, we used early stopping to
control the number of epochs and dropouts.
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2.2.3. Transfer Learning

Some studies show that using the data of one specific cell line provides a more
accurate prediction of EPIs on this cell line than on the other five cell lines. This indicates
that the ability to predict EPIs across cell lines is not good. Rao et al. [28] reported that
there are 55–75% DNA interactions sharing different cell lines, so there are common
features among them. Assuming that a common motif in various cell lines can facilitate
E–P interaction, transfer learning means that we incorporate more features as training
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sets. To further improve the prediction performance of the model across cell lines and
explore the correlation among the six cell lines, we propose two transfer learning methods.
Transfer learning [29] is the improvement of learning in a new task through the transfer of
knowledge from a related task that has already been learned. Additionally, using transfer
learning will increase the sample size, perhaps leading to more stable parameter estimates.

Using the Data from Other Cell Lines to Pre-Train a Model. We propose a method of
transfer learning by using data from other cell lines. For predicting a specific cell line, after
using data from all other cell lines to pre-train the CNN model, we use the cell line-specific
data to fully train the model. For any given specific cell line, the transfer learning process
is as follows:

i. Take the specific cell line as a new cell line, Dnew.
ii. Pre-train the CNN model with the training set, denoted as Dall−new, from other five

cell lines for 6–8 epochs.
iii. Train the model on training set Dnew for 10–15 epochs.
iv. Evaluate the model on Dnew

test .

Using the Data from All Cell Lines to Pre-Train a Model. The second transfer learn-
ing strategy we propose is in a strong form, which uses the data from all cell lines to
pre-train the model. After pre-training, the convolution layer and the pooling layer are
frozen. The subsequent training process no longer learns new features, and only adjusts
the model parameters for the target cell line. Note that the training, validation and test
sets were generated in the way described in Section 2.2.2. This transfer learning process is
as follows:

i. Pre-train the CNN model with the training set from all six cell lines or 6–8 epochs.
ii. Freeze the convolution layer and pooling layer of enhancer and promoter branches.
iii. Train the model on the training set from the specific cell line for 10–15 epochs.
iv. Evaluate the model on the test set.

2.3. Evaluation Metrics

EPI prediction is equivalent to a binary classification of sequence prediction where
three classification indicators are commonly used: precision, recall, and F1-score. Due
to the imbalanced datasets, the performance of our model is assessed by area under the
precision–recall curve (AUPR) and receiver operating characteristic curve (AUC). AUPR is
the area under the precision–recall curve, reflecting trends between precision and recall,
better if close to 1. Similarly, AUC is plotted with false positive rate as the horizontal axis
and sensitivity as the vertical axis. Thus, AUC reaches its best value at 1 and its worst at 0.

3. Results
3.1. The Prediction Performance of Cell Line-Specific Model

In this section, we demonstrate that the model trained on the specific cell line alone
is not applicable to other cell lines. The results of the model on each cell line in terms
of AUC and AUPR are shown in Tables 2 and 3, respectively. On the whole, the cell
line-specific model that uses the same cell line in training and test sets performs very well.
Practically speaking, the AUC and AUPR values are both over 0.9, even up to 0.983 and
0.988, separately. As seen from the non-diagonal results of tables, the cross-cell line ability
of the model is significantly bad. For example, when we use the model fitted for cell line
NHEK to predict EPIs for the other five cell lines, the AUPR values of the other five cell
lines range from 0.465 to 0.550, while that of NHEK is 0.988.
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Table 2. AUC (area under the curve) value of cell line-specific model in different cell lines.

Test\Train
Cell Line K562 GM12878 HeLa-S3 HUVEC NHEK IMR90

K562 0.950 0.521 0.475 0.475 0.528 0.508
GM12878 0.497 0.908 0.526 0.609 0.472 0.524
HeLa-S3 0.479 0.508 0.935 0.467 0.557 0.508
HUVEC 0.541 0.492 0.573 0.925 0.441 0.481
NHEK 0.414 0.523 0.540 0.519 0.983 0.599
IMR90 0.496 0.460 0.471 0.484 0.526 0.950

Table 3. AUPR (area under the precision–recall curve) value of cell line-specific model in different
cell lines.

Test\Train
Cell Line K562 GM12878 HeLa-S3 HUVEC NHEK IMR90

K562 0.966 0.511 0.494 0.471 0.515 0.495
GM12878 0.493 0.926 0.517 0.600 0.490 0.506
HeLa-S3 0.472 0.509 0.943 0.487 0.539 0.506
HUVEC 0.505 0.505 0.555 0.935 0.465 0.506
NHEK 0.481 0.520 0.544 0.514 0.988 0.611
IMR90 0.499 0.467 0.492 0.508 0.550 0.961

We can draw two conclusions based on the above results. One, the model without
transfer learning lacks a generalization capability across different cell line datasets. On the
other hand, the model trained on one specific cell line has a good predictive ability in that
cell line.

3.2. Advantages of Transfer Learning
3.2.1. Using the Data from Other Cell Lines to Pre-Train a Model

The model transferred to a new cell line in this section is called EPIsHilbert-transOne.
Table 4 shows the AUPR value of EPIsHilbert-transOne on each cell line. At the same
time, we add EPIsHilbert for comparison. The performance of the cross-cell line prediction
is significantly improved. For instance, when we used the cell line-specific model fitted
for cell line NHEK to predict EPIs for the other five cell lines, the method yielded AUC
values of 0.441–0.557, much smaller than 0.887–0.931 obtained from EPIsHilbert-transOne.
After using transfer learning, the F1 value increased by at least 0.66, and the AUC and
AUPR values also increased by more than 0.40. For cell line-specific predictions, there is
a significant improvement for HUVEC, K562, GM12878, and Hela-S3, while EPIsHilbert-
transOne performs slightly worse than EPIsHilbert on NHEK and IMR90.

Table 4. AUPR value in EPIsHilbert-transOne.

Test\Train
Cell Line K562 GM12878 HeLa-S3 HUVEC NHEK IMR90

K562 0.981 0.870 0.868 0.860 0.889 0.893
GM12878 0.861 0.946 0.847 0.794 0.931 0.854
HeLa-S3 0.879 0.864 0.970 0.839 0.921 0.864
HUVEC 0.877 0.901 0.877 0.949 0.887 0.920
NHEK 0.908 0.861 0.913 0.856 0.982 0.753
IMR90 0.956 0.900 0.926 0.897 0.909 0.944

Hence, our proposed EPIsHilbert-transOne clearly outperforms EPIsHilbert across cell
lines and also improves the performance on four cell lines for cell line-specific predictions.
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3.2.2. Using the Data from All Cell Lines to Pre-Train a Model

For the convenience of discussion, our model in this section is denoted as EPIsHilbert-
transTwo. The experimental result of EPIsHilbert-transTwo on each cell line in terms
of AUPR is shown in Table 5. It is observed that EPIsHilbert-transTwo improves the
performance of the model across cell lines. After using transfer learning, the F1 value is
increased at least 0.69, the AUC and AUPR values are also increased more than 0.46. As
seen in Figure 4, comparing EPIsHilbert-transTwo with EPIsHilbert, we can find that, for
cell line-specific predictions, there is a significant improvement in HUVEC, GM12878, and
Hela-S3, while EPIsHilbert-transTwo performs slightly worse than EPIsHilbert on NHEK,
IMR90, and K562.

Table 5. AUPR value in EPIsHilbert-transTwo.

Test\Train
Cell Line K562 GM12878 HeLa-S3 HUVEC NHEK IMR90

K562 0.946 0.942 0.968 0.921 0.948 0.891
GM12878 0.942 0.970 0.938 0.927 0.931 0.910
HeLa-S3 0.922 0.936 0.963 0.920 0.957 0.939
HUVEC 0.942 0.929 0.944 0.953 0.953 0.894
NHEK 0.947 0.941 0.943 0.895 0.966 0.886
IMR90 0.959 0.941 0.929 0.934 0.863 0.957
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3.2.3. The Analysis of Epis Overlap Ratio for Different Cell Lines

After using the strategy of transfer learning, the prediction ability of the model across
cell lines was improved, which indicated there may have been common sequence fragments
among all cell lines. To demonstrate this hypothesis, we explore the sequence overlap ratio
of EPIs between different cell lines. The overlap ratio refers to the sequence similarity of
EPIs in different cell lines, and the calculation process is as follows:
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i. Set the number of coincident samples numi(i ∈ [1, 5]) and select each enhancer–
promoter pair Et·Pt (t ∈ [1, m]). The m represents EPIs positive samples size in the
target cell line.

ii. Take the other five cell lines as a dataset, dataseti. Search each enhancer–promoter pair
Eij·Pij (j ∈ [1, n]) in EPIs positive samples of dataseti. The n represents EPIs positive
samples size in dataseti.

iii. For each Et·Pt , search all Eij·Pij and calculate their overlap ratio. If the overlap ratio
≥ ω0, then the number of n plus one. ω0 is the threshold of overlap ratio.

iv. Calculate the remaining four cell lines in a loop to obtain the number of overlapping
EPIs between the target cell line and the other five cell lines.

v. Modify the target cell line and repeat the above steps five times to complete the
overlap number statistics.

ω0 is set to 100% and 80%, respectively. The results are shown in Tables 6 and 7.
When ω0 is 100%, it can be seen that the overlapping number of EPIs from NHEK and
IMR90 completely with each cell line is small, while the other four cell lines have more
overlapping EPIs. When ω0 is reduced to 80%, the number of EPIs from NHEK and IMR90
does not increase much. However, the other four cell lines show a hefty increase, with the
largest increase of more than 40 pairs of similar EPIs.

Table 6. The analyses of EPIs overlap ratio for different cell lines (100%).

Total EPIs NHEK IMR90 HUVEC K562 GM12878 HeLa-S3

Total
EPIs — 1291 1254 1524 1977 2113 1740

NHEK 1291 — 42 51 33 19 63
IMR90 1254 42 — 41 11 25 15

HUVEC 1524 51 41 — 33 28 62
K562 1977 33 11 33 — 28 43

GM12878 2113 19 25 28 28 — 26
HeLa-S3 1740 63 15 62 43 26 —

Table 7. The analyses of EPIs overlap ratio for different cell lines (80%).

Total EPIs NHEK IMR90 HUVEC K562 GM12878 HeLa-S3

Total
EPIs — 1291 1254 1524 1977 2113 1740

NHEK 1291 — 42 63 52 22 85
IMR90 1254 42 — 48 15 32 18

HUVEC 1524 63 48 — 39 56 107
K562 1977 52 15 39 — 50 67

GM12878 2113 22 32 56 50 — 43
HeLa-S3 1740 85 18 107 67 43 —

Therefore, we can infer that, when ω0 continues to decrease, the four cell lines, except
NHEK and IMR90, will increase even more. NHEK and IMR90 have more particular
features. On the whole, EPIs in different cell lines have some common sequence features.
Thus, we prove the effectiveness of transfer learning.

3.3. Model Comparison

To consolidate the importance of our study, we compared the performance of our
proposed models with the other two typical baseline predictors. The two typical baseline
predictors are SPEID [20] and EPIsCNN [6]. SPEID, a hybrid of CNN and LSTM, only uses
sequence data for prediction, while EPIsCNN uses a simple CNN structure that is the same
as SPEID. As shown in Table 8, the experimental result shows that the three methods we
proposed models all outperform SPEID and EPIsCNN.
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Table 8. The comparison of AUPR value in different methods.

Test\Train Cell Line K562 GM12878 HeLa-S3 HUVEC NHEK IMR90

SPEID [20] 0.809 0.782 0.829 0.778 0.845 0.764
EPIsCNN [6] 0.823 0.791 0.845 0.798 0.863 0.784
EPIsHilbert 0.966 0.926 0.943 0.935 0.988 0.961

EPIsHilbert-transOne 0.981 0.946 0.970 0.949 0.982 0.944
EPIsHilbert-transTwo 0.946 0.970 0.963 0.953 0.966 0.957

These three models we proposed are suitable for different cell lines. To be specific,
EPIsHilbert achieves slightly better performance on NHEK and IMR90, while EPIsHilbert-
transOne performs better on K562 and Hela-S3. Moreover, on HUVEC and GM12878 cell
lines, we obtain the best prediction result from the EPIsHilbert-transTwo model.

Based on the above results, we can infer that NHEK and IMR90 cell lines have more
unique features because the results are not ideal. However, the two models using transfer
learning perform better on K562, HeLa-S3, HUVEC, and GM12878 cell lines. It suggested
that many features that influence EPIs in these four cell lines are also shared in all six
cell lines.

3.4. Visulation of Sequences Features and Their Relationship

In our work, the proposed class activation map (CAM) [30] visualized the three-
dimensional vectors with a heat map that presents the spatial distribution of features,
and color depth indicates the influence of features on the interactions of enhancers and
promoters.

For example, the CAM of one enhancer–promoter pair in IMR90 is shown in Figure 5.
The features that play an important role in EPIs are mainly concentrated in the upper half
of Figure 5. The deeper the red, the greater the impact. Likewise, features in the lower-left
corner almost do not influence EPIs. For each input enhancer–promoter pair, CAM can not
only help us observe the distribution of the features of the EPIs from the space perspective,
but also show the degree to which these features influence EPIs through the color-depth
in the heat map. What is more, it also demonstrates that the enhancer approaches the
promoter in complex spatial structures intuitively.
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On the basis of CAM, we combine the heat map with the actual coding sequence to
complete statistics on the frequency of features. We analyzed the heat map of enhancer
and promoter sequences in 1254 EPIs positive samples of IMR90 cell lines to obtain the
representations of features sequence. The statistics of enhancer and promoter feature
occurrence frequency in IMR90 are shown in Tables 9 and 10, respectively. GGG, AAA, CGT,
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CAT, and ATT are the features of enhancers with greater influence on EPIs. The features
of promoters including CCC, TCC, TTC, TTT, and CTT have a greater impact on EPIs. It
is obvious that there are high frequencies of only 3–4 nucleotide-long features, perhaps
longer motifs may not have biological significance. As we all know, DNA transcription is
based on three nucleotides. Thus, we can judge the motif that has a specific function as
being 3–4 nucleotides long. However, our subsequent study will also extend the length to
consider association-specific motifs and deeper analysis about diseases.

Table 9. The statistics of enhancer feature occurrence frequency in IMR90.

Feature Frequency Feature Frequency Feature Frequency

GGG 924 TAT 637 GGGG 260
AAA 907 AAT 638 AAAA 227
CGT 740 GCG 625 CCGT 154
CAT 714 CCA 623 ATAT 152
ATT 677 AGC 606 AAAT 148
CGG 659 GTT 592 CCCA 139
ATA 657 TAA 589 TAAA 139

Table 10. The statistics of promoter feature occurrence frequency in IMR90.

Feature Frequency Feature Frequency Feature Frequency

CCC 967 AAA 612 CCCC 293
TCC 734 CGC 594 TCTT 212
TTC 694 ATT 542 TCCC 199
TTT 688 CTC 529 CCGC 185
CTT 626 TAT 527 TTCT 175
TCT 624 CAT 515 CTTC 168
CCG 624 ATC 510 TTAT 158

In this section, we counted the frequency of feature occurrences. The prevalence of
some diseases is usually related to genetic elements that control gene regulation. Thus, in
the field of disease diagnosis, features with a high frequency of occurrence can be used in
genetic testing or to study the causes of diseases as an assisting technique.

4. Conclusions

In this article, we proposed a model named EPIsHilbert using only sequence data to
predict EPIs. Being different from existing methods, EPIsHilbert is innovative at using the
Hilbert curve to encode enhancer and promoter sequences and better preserves the spatial
structure of the sequence. Thus, we can utilize sequences information and then obtain
more details from them. Experimental results on six cell lines indicated that EPIsHilbert
performs better than any existing method with an 0.908~0.983 of AUROC and 0.926~0.988
of AUPR.

In order to improve the ability of crossing cell lines, we used two transfer learning
strategies to pre-train a CNN model by taking advantage of the data from various cell
lines. Applied to the same CNN model, each method is more accurate for cross-cell
line prediction than current practice, even if it may lose the specificity of each cell line.
We further conducted a similarity analysis of the interactions between enhancers and
promoters among cell lines. The result shows that NHEK and IMR90 cell lines contain
more specific features, while the other four cell lines have more common features, so the
prediction accuracy could be further improved by using transfer learning to pre-train
the model.

We also created a class activation map to explore the features that affect EPIs and the
spatial relationships of these features. On this basis, this paper combines a heat map with
actual coding sequences to complete statistics regarding the frequency of features. The
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features with a high frequency of occurrence have a greater impact on the interactions
between enhancers and promoters, and they can be further used in a genetic test for disease
diagnosis and treatment.

Given the excellent performance of EPIsHilbert, we will continue to improve our
approach. We may further explore other deep learning architecture for prediction, such
as GCN. Then, we suggest that using EPIs data from more datasets may result in a better
performance. Since we only use sequence data, integrating sequence data with epi-genomic
data is an expected way to improve performance. Moreover, we expect EPIsHilbert can
play an important role in all kinds of sequence prediction tasks.
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