Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(5-Bromopyridin-2-yl)acetamide

Hoong-Kun Fun, ${ }^{\text {a }} \ddagger$ Tara Shahani, ${ }^{\text {a }}$ Rajesha Kumar, ${ }^{\text {b }}$ Arun M. Isloor ${ }^{\text {b }}$ and Kammasandra N. Shivananda ${ }^{c}$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\mathbf{b}}$ Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and ${ }^{\mathbf{c}}$ Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel Correspondence e-mail: hkfun@usm.my

Received 25 June 2011; accepted 9 July 2011

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.031 ; w R$ factor $=0.081$; data-to-parameter ratio $=25.5$.

The asymmetric unit of the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{O}$, contains two molecules, in one of which the methyl H atoms are disorderd over two orientations in a 0.57 (3):0.43 (3) ratio. The dihedral angles between the pyridine rings and the acetamide groups are 7.27 (11) and $8.46(11)^{\circ}$. In the crystal, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generating bifurcated $R_{2}^{1}(5)$ ring motifs, which in turn lead to [110] chains.

Related literature

For background to the acetylation of amines, see: Greene \& Wuts (1999); Moore et al. (1940); Suyama \& Gerwick (2006). For a related structure, see: Loureiro et al. (2008). For further synthetic information, see: Augustine et al. (2011); Sollogoub et al. (2002).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{O}$
$\gamma=85.932(1)^{\circ}$
$M_{r}=215.06$
Triclinic, $P \overline{1}$
$a=4.0014$ (3) \AA
$b=8.7232$ (6) \AA
$c=23.0626(18) \AA$
$\alpha=82.127$ (1) ${ }^{\circ}$
$\beta=86.897$ (1) ${ }^{\circ}$
$V=794.60(10) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=5.11 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.77 \times 0.15 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.111, T_{\text {max }}=0.665$
13194 measured reflections 5134 independent reflections 3193 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
201 parameters
$w R\left(F^{2}\right)=0.081$
H -atom parameters constrained
$S=1.00$
5134 reflections
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2 $A-\mathrm{H} 1 N A \cdots \mathrm{O} 1 B^{\mathrm{i}}$	0.85	2.16	$3.001(2)$	169
N2 $B-\mathrm{H} 1 N B \cdots \mathrm{O} 1 A^{\mathrm{ii}}$	0.83	2.20	$2.985(2)$	159
C7 $A-\mathrm{H} 7 A A \cdots \mathrm{O} 1 B^{\mathrm{i}}$	1.10	2.54	$3.476(3)$	142
Symmetry codes: (i) $x-1, y, z ;$ (ii) $x, y-1, z$.				

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship. AMI thanks Professor Sandeep Sanchethi, Director, National Institute of Technology-Karnataka, India, for his encouragement, and also the Defence Research and Development Organization, Government of India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5933).

References

Augustine, J. K., Kumar, R., Bombrun, A. \& Mandal, A. B. (2011). Tetrahedron Lett. 52, 1074-1077.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Greene, T. W. \& Wuts, P. G. M. (1999). Protective Groups in Organic Chemistry, 3rd ed., ch. 7, pp. 552-555. New York: Wiley and Sons.
Loureiro, R. M. S., Johnstone, R. A. W. \& Labat, G. (2008). Acta Cryst. C64, o306-o308.
Moore, M. L., Miller, C. S. \& Miller, E. (1940). J. Am. Chem. Soc. 62, 20972099.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sollogoub, M., Fox, K. R., Powers, V. E. C. \& Brown, T. (2002). Tetrahedron Lett. 43, 3121-3123.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Suyama, T. L. \& Gerwick, W. H. (2006). Org. Lett. 8, 4541-4543.

[^0]
supplementary materials

N-(5-Bromopyridin-2-yl)acetamide

H.-K. Fun, T. Shahani, R. Kumar, A. M. Isloor and K. N. Shivananda

Comment

The acetylation of amines is an important method for protection (Greene \& Wuts, 1999) of this basic functionality that is an important part of many natural products and medicinally important compounds such as sulphanilamide (Moore et al., 1940). In addition, certain natural products and medicinal compounds contain the acetamide functionality as part of the native compound or drug. Examples include epiquinamide, a compound isolated from a poison frog (Suyama et al., 2006) and Tylenol a common analgesic compound. Prompted by these, we synthesized the title compound, (I), and determined its crystal structure.

The asymmetric unit of (I) consists of two independent molecules of N-(5-bromopyridin-2-yl)acetamide (A \& B) as shown in Fig. 1. In molecule A, the methyl hydrogen atoms are disordered over two sets of sites, with occupancy ratio of 0.57 (3):0.43 (3). The pyridine ($\mathrm{N} 1 \mathrm{~A} / \mathrm{C} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}) /(\mathrm{N} 1 \mathrm{~B} / \mathrm{C} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B})$ rings are essentially planar, with maximum deviations of $0.006(2) \AA$ for atom C 4 A and 0.004 (2) \AA for atom N 1 B , respectively. The dihedral angle between the pyridine ($\mathrm{N} 1 \mathrm{~A} /$ $\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}) /(\mathrm{N} 1 \mathrm{~B} / \mathrm{C} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B})$ rings and acetamide $(\mathrm{N} 2 \mathrm{~A} / \mathrm{O} 1 \mathrm{~A} / \mathrm{C} 5 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}) /(\mathrm{N} 2 \mathrm{~B} / \mathrm{O} 1 \mathrm{~B} / \mathrm{C} 5 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B})$ groups are $7.27(11)^{\circ}$ and $8.46(11)^{\circ}$ respectively. The bond lengths and angles are normal and comparable to those in a related structure (Loureiro et al., 2008).

In the crystal (Fig. 2), the molecules are linked by intermolecular $\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 1 \mathrm{NA} \cdots \mathrm{O} 1 \mathrm{~B}, \mathrm{~N} 2 \mathrm{~B}-\mathrm{H} 1 \mathrm{NB} \cdots \mathrm{O} 1 \mathrm{~A}$ and C7A—H7AA \cdots O1B hydrogen bonds (Table 1) generating a bifurcated $R^{1}{ }_{2}(5)$ ring motif, resulting in supramolecular [11 1 $0]$ chains.

Experimental

(1E)-1-(5-Bromopyridin-2-yl)- N-hydroxyethanimine ($2 \mathrm{~g}, 0.0093 \mathrm{~mol}$) was taken in N, N dimethyl formamide (20 ml) at $25-26^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Propylphosphonic anhydride ($0.6 \mathrm{~g}, 0.00093 \mathrm{~mol}, 50 \%$ solution in ethylacetate) was added at the same temperature (Augustine et al., 2011). The reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 5 hrs. The reaction mixture was cooled to $25-26^{\circ} \mathrm{C}$ and quenched onto ice-cold water. The precipitated white solid was filtered and dried under vacuum to get the desired product as a white solid which was then recrystallized from ethanol (Sollogoub et al., 2002) to yield colourless needles of (I). Yield 1.89 g (94.5\%) Mp. 447-449 K.

Refinement

All the H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.9300$ to $1.1046 \AA, \mathrm{~N}-\mathrm{H}=0.8514$ to $0.9600 \AA$] and were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {iso }}(\mathrm{C})$. One set of the methyl hydrogen atoms are disordered over two sets of sites, with occupancy ratio of 0.57 (3):0.43 (3).

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound, showing 20% probability displacement

Fig. 2. The crystal packing of the title compound, showing chains along the [110] direction. Only the major component is shown.

N-(5-Bromopyridin-2-yl)acetamide

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{O}$
$M_{r}=215.06$
Triclinic, $P \mathrm{~T}$
Hall symbol: -P 1
$a=4.0014$ (3) \AA
$b=8.7232$ (6) \AA
$c=23.0626(18) \AA$
$\alpha=82.127(1)^{\circ}$
$\beta=86.897(1)^{\circ}$
$\gamma=85.932(1)^{\circ}$
$V=794.60(10) \AA^{3}$
$Z=4$
$F(000)=424$
$D_{\mathrm{x}}=1.798 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3316 reflections
$\theta=2.8-30.5^{\circ}$
$\mu=5.11 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle, colourless
$0.77 \times 0.15 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.111, T_{\text {max }}=0.665$
13194 measured reflections

Refinement
Refinement on F^{2}

Primary atom site location: structure-invariant direct methods

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.081$
$S=1.00$

5134 reflections
201 parameters
0 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring
sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.036 P)^{2}+0.0264 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.006$
$\Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.25$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$	Occ. ($<1)$
Br1A	$0.84865(6)$	$0.73249(2)$	$0.465121(9)$	$0.05565(9)$	
O1A	$0.4679(4)$	$0.97838(16)$	$0.73640(6)$	$0.0613(5)$	
N1A	$0.4235(5)$	$0.63040(18)$	$0.63081(7)$	$0.0492(4)$	
N2A	$0.3137(4)$	$0.75247(17)$	$0.71180(6)$	$0.0433(4)$	
H1NA	0.2221	0.6674	0.7226	0.052^{*}	
C1A	$0.5431(6)$	$0.6264(2)$	$0.57599(9)$	$0.0509(5)$	
H1AA	0.5303	0.5356	0.5595	0.061^{*}	
C2A	$0.6845(5)$	$0.7499(2)$	$0.54257(8)$	$0.0433(4)$	
C3A	$0.7046(6)$	$0.8840(2)$	$0.56632(9)$	$0.0517(5)$	
H3AA	0.7967	0.9695	0.5444	0.062^{*}	
C4A	$0.5868(6)$	$0.8907(2)$	$0.62322(9)$	$0.0515(5)$	
H4AA	0.6018	0.9801	0.6405	0.062^{*}	
C5A	$0.4449(5)$	$0.7612(2)$	$0.65427(8)$	$0.0397(4)$	
C6A	$0.3318(5)$	$0.8566(2)$	$0.74991(8)$	$0.0427(4)$	
C7A	$0.1744(6)$	$0.8125(3)$	$0.80974(9)$	$0.0568(6)$	$0.57(3)$
H7AA	0.0849	0.6942	0.8167	0.085^{*}	$0.57(3)$
H7AB	-0.0154	0.9051	0.8188	0.085^{*}	$0.57(3)$
H7AC	0.3210	0.8117	0.8427	0.085^{*}	$0.43(3)$
H7AD	0.2003	0.8929	0.8334	0.085^{*}	$0.43(3)$
H7AE	0.2826	0.7172	0.8275	0.085^{*}	$0.43(3)$
H7AF	-0.0598	0.7992	0.8067	0.085^{*}	
Br1B	$0.14559(6)$	$0.24850(3)$	$1.034407(9)$	$0.05895(9)$	$0.0586(4)$

N1B	$0.4457(5)$	$0.13387(19)$	$0.87208(7)$	$0.0566(5)$
N2B	$0.6803(4)$	$0.25146(17)$	$0.78696(6)$	$0.0464(4)$
H1NB	0.6598	0.1634	0.7785	0.056^{*}
C1B	$0.3245(7)$	$0.1341(2)$	$0.92681(10)$	$0.0594(6)$
H1BA	0.2365	0.0441	0.9461	0.071^{*}
C2B	$0.3226(5)$	$0.2599(2)$	$0.95615(8)$	$0.0443(5)$
C3B	$0.4515(6)$	$0.3934(2)$	$0.92795(9)$	$0.0513(5)$
H3BA	0.4549	0.4804	0.9471	0.062^{*}
C4B	$0.5752(6)$	$0.3965(2)$	$0.87127(9)$	$0.0506(5)$
H4BA	0.6621	0.4857	0.8511	0.061^{*}
C5B	$0.5681(5)$	$0.2635(2)$	$0.84446(8)$	$0.0403(4)$
C6B	$0.8508(5)$	$0.3553(2)$	$0.74883(8)$	$0.0430(4)$
C7B	$0.9337(6)$	$0.3063(2)$	$0.68947(8)$	$0.0535(5)$
H7BA	1.0711	0.3804	0.6667	0.080^{*}
H7BB	0.7302	0.3009	0.6698	0.080^{*}
H7BC	1.0528	0.2062	0.6939	0.080^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1A	$0.06525(17)$	$0.05384(14)$	$0.05063(13)$	$-0.01839(11)$	$0.01455(10)$	$-0.01617(9)$
O1A	$0.0935(13)$	$0.0446(8)$	$0.0504(8)$	$-0.0284(8)$	$0.0052(8)$	$-0.0140(6)$
N1A	$0.0661(12)$	$0.0349(8)$	$0.0487(9)$	$-0.0178(8)$	$0.0068(8)$	$-0.0091(7)$
N2A	$0.0546(11)$	$0.0322(8)$	$0.0439(9)$	$-0.0118(7)$	$0.0042(8)$	$-0.0063(6)$
C1A	$0.0665(15)$	$0.0360(9)$	$0.0532(11)$	$-0.0158(10)$	$0.0074(10)$	$-0.0145(8)$
C2A	$0.0470(12)$	$0.0400(10)$	$0.0445(10)$	$-0.0104(9)$	$0.0036(9)$	$-0.0099(8)$
C3A	$0.0658(15)$	$0.0391(10)$	$0.0520(11)$	$-0.0220(10)$	$0.0111(10)$	$-0.0080(8)$
C4A	$0.0726(16)$	$0.0332(9)$	$0.0519(11)$	$-0.0193(10)$	$0.0085(10)$	$-0.0128(8)$
C5A	$0.0407(11)$	$0.0332(9)$	$0.0463(10)$	$-0.0064(8)$	$-0.0009(8)$	$-0.0074(7)$
C6A	$0.0502(12)$	$0.0378(9)$	$0.0413(9)$	$-0.0058(9)$	$-0.0029(8)$	$-0.0076(7)$
C7A	$0.0728(16)$	$0.0567(12)$	$0.0427(11)$	$-0.0150(12)$	$0.0061(10)$	$-0.0107(9)$
Br1B	$0.06627(17)$	$0.06192(15)$	$0.05093(13)$	$-0.02114(12)$	$0.01604(11)$	$-0.01425(10)$
O1B	$0.0785(11)$	$0.0464(8)$	$0.0529(8)$	$-0.0275(8)$	$0.0091(7)$	$-0.0069(6)$
N1B	$0.0841(14)$	$0.0414(9)$	$0.0473(9)$	$-0.0249(9)$	$0.0121(9)$	$-0.0120(7)$
N2B	$0.0627(12)$	$0.0340(8)$	$0.0443(9)$	$-0.0145(8)$	$0.0051(8)$	$-0.0087(6)$
C1B	$0.0811(17)$	$0.0427(11)$	$0.0564(12)$	$-0.0266(11)$	$0.0164(12)$	$-0.0103(9)$
C2B	$0.0432(12)$	$0.0468(10)$	$0.0444(10)$	$-0.0127(9)$	$0.0056(8)$	$-0.0088(8)$
C3B	$0.0667(15)$	$0.0384(10)$	$0.0517(11)$	$-0.0149(10)$	$0.0071(10)$	$-0.0141(8)$
C4B	$0.0701(15)$	$0.0328(9)$	$0.0500(11)$	$-0.0175(9)$	$0.0070(10)$	$-0.0063(8)$
C5B	$0.0452(12)$	$0.0333(9)$	$0.0438(10)$	$-0.0093(8)$	$-0.0007(8)$	$-0.0073(7)$
C6B	$0.0466(12)$	$0.0375(9)$	$0.0448(10)$	$-0.0068(9)$	$-0.0016(8)$	$-0.0031(8)$
C7B	$0.0610(15)$	$0.0532(12)$	$0.0471(11)$	$-0.0127(11)$	$0.0065(10)$	$-0.0081(9)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Br} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$1.8914(18)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$1.223(2)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$1.331(3)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$1.338(2)$

C7A-H7AF	0.9600
Br1B-C2B	$1.8951(18)$
O1B-C6B	$1.218(2)$
N1B-C1B	$1.328(3)$

sup-4

supplementary materials

N2A-C6A	1.356 (2)
N2A-C5A	1.395 (2)
N2A-H1NA	0.8514
C1A-C2A	1.374 (3)
C1A-H1AA	0.9300
C2A-C3A	1.367 (3)
C3A-C4A	1.378 (3)
C3A-H3AA	0.9300
C4A-C5A	1.391 (3)
C4A-H4AA	0.9300
C6A-C7A	1.498 (3)
C7A-H7AA	1.1046
C7A-H7AB	1.1020
C7A-H7AC	0.9834
C7A-H7AD	0.9601
C7A-H7AE	0.9601
C1A-N1A-C5A	117.99 (17)
C6A-N2A-C5A	127.87 (16)
C6A-N2A-H1NA	120.4
C5A-N2A-H1NA	111.7
N1A-C1A-C2A	123.21 (18)
N1A-C1A-H1AA	118.4
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AA}$	118.4
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	118.88 (18)
C3A-C2A-Br1A	121.10 (14)
C1A-C2A-Br1A	120.01 (14)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	119.17 (18)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AA}$	120.4
C4A-C3A-H3AA	120.4
C3A-C4A-C5A	118.69 (17)
C3A-C4A-H4AA	120.7
C5A-C4A-H4AA	120.7
N1A-C5A-C4A	122.06 (18)
N1A-C5A-N2A	113.20 (16)
C4A-C5A-N2A	124.74 (16)
O1A-C6A-N2A	122.27 (17)
O1A-C6A-C7A	122.17 (17)
N2A-C6A-C7A	115.57 (17)
C6A-C7A-H7AA	113.6
C6A-C7A-H7AB	108.3
H7AA - C7A-H7AB	115.1
C6A-C7A-H7AC	115.8
H7AA - C7A-H7AC	102.8
H7AB-C7A-H7AC	100.6
C6A-C7A-H7AD	109.4
H7AA - C7A-H7AD	136.6
H7AB-C7A-H7AD	53.5
H7AC-C7A-H7AD	51.1
C6A-C7A-H7AE	109.4

N1B-C5B	1.331 (2)
N2B-C6B	1.365 (2)
N2B-C5B	1.392 (2)
N2B-H1NB	0.8288
C1B-C2B	1.365 (3)
C1B-H1BA	0.9300
C2B-C3B	1.373 (3)
C3B-C4B	1.370 (3)
C3B-H3BA	0.9300
C4B-C5B	1.390 (3)
C4B-H4BA	0.9300
C6B-C7B	1.503 (3)
C7B-H7BA	0.9600
C7B-H7BB	0.9600
C7B-H7BC	0.9600
H7AD-C7A-H7AE	109.5
C6A-C7A-H7AF	109.7
H7AA-C7A-H7AF	60.9
H7AB-C7A-H7AF	59.5
H7AC-C7A-H7AF	134.3
H7AD-C7A-H7AF	109.5
H7AE-C7A-H7AF	109.5
C1B-N1B-C5B	118.10 (17)
C6B-N2B-C5B	128.33 (16)
C6B-N2B-H1NB	119.6
C5B-N2B-H1NB	111.5
N1B-C1B-C2B	123.26 (19)
N1B-C1B-H1BA	118.4
C2B-C1B-H1BA	118.4
C1B-C2B-C3B	118.78 (18)
C1B-C2B-Br1B	120.11 (15)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{Br} 1 \mathrm{~B}$	121.12 (15)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	119.06 (18)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{BA}$	120.5
C2B-C3B-H3BA	120.5
C3B-C4B-C5B	118.65 (18)
C3B-C4B-H4BA	120.7
C5B-C4B-H4BA	120.7
N1B-C5B-C4B	122.15 (18)
N1B-C5B-N2B	113.26 (16)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	124.59 (17)
O1B-C6B-N2B	122.50 (17)
O1B-C6B-C7B	122.78 (17)
N2B-C6B-C7B	114.71 (16)
C6B-C7B-H7BA	109.5
C6B-C7B-H7BB	109.5
H7BA-C7B-H7BB	109.5
C6B-C7B-H7BC	109.5

supplementary materials

H7AA-C7A-H7AE	50.3	H7BA-C7B-H7BC	109.5
H7AB-C7A-H7AE	142.2	H7BB-C7B-H7BC	109.5
H7AC-C7A-H7AE	59.4		
C5A-N1A-C1A-C2A	$-0.4(4)$	$0.0(4)$	N1B-C1B-C2B-C3B
N1A-C1A-C2A-C3A	$179.81(18)$	N1B-C1B-C2B-Br1B	$-0.7(4)$
N1A-C1A-C2A-Br1A	$0.8(4)$	C1B-C2B-C3B-C4B	$-17(4)$
C1A-C2A-C3A-C4A	$-178.97(18)$	Br1B-C2B-C3B-C4B	$0.5(4)$
Br1A-C2A-C3A-C4A	$-1.2(4)$	C2B-C3B-C4B-C5B	$-179.66(18)$
C2A-C3A-C4A-C5A	$0.0(3)$	C1B-N1B-C5B-C4B	$-0.5(4)$
C1A-N1A-C5A-C4A	$-179.75(19)$	C1B-N1B-C5B-N2B	$-.7(4)$
C1A-N1A-C5A-N2A	$0.8(3)$	C3B-C4B-C5B-N1B	$-178.4(2)$
C3A-C4A-C5A-N1A	$-179.5(2)$	C3B-C4B-C5B-N2B	$-0.1(4)$
C3A-C4A-C5A-N2A	$171.58(19)$	C6B-N2B-C5B-N1B	$179.0(2)$
C6A-N2A-C5A-N1A	$-8.2(3)$	C5B-N2B-C6B-O1B	$-172.3(2)$
C6A-N2A-C5A-C4A	C5B-N2B-C6B-C7B	$8.6(4)$	
C5A-N2A-C6A-O1A	$-178.2(2)$		$0.9(3)$
C5A-N2A-C6A-C7A		$-179.8(2)$	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	$D-\mathrm{H}$	H \cdots A	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
N2A-H1NA \cdots O1B ${ }^{\text {i }}$	0.85	2.16	3.001 (2)	169
N2B-H1NB $\cdots{ }^{\text {O }} \mathrm{A}^{\text {ii }}$	0.83	2.20	2.985 (2)	159
C7A-H7AA $\cdots{ }^{\text {O }}{ }^{\text {i }}$	1.10	2.54	3.476 (3)	142

Fig. 1

supplementary materials

Fig. 2

[^0]: \ddagger Thomson Reuters ResearcherID: A-3561-2009.

