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ABSTRACT Hemorrhage control has been identified as a priority focus area both for civilian and military
populations in the United States because exsanguination is the most common cause of preventable death
in hemorrhagic injury. Non-compressible torso hemorrhage (NCTH) has high mortality rate and there
are currently no broadly available therapies for NCTH outside of a surgical room environment. Novel
therapies, which include High Intensity Focused Ultrasound (HIFU) have emerged as promising methods for
hemorrhage control as they can non-invasively cauterize bleeding tissue deepwithin the bodywithout injuring
uninvolved regions. A major challenge in the application of HIFU with color Doppler US guidance is the
interpretation and optimization of the blood flow images in real-time to identify the hemorrhagic focus. Today,
this task requires an expert sonographer, limiting the utility of this therapy in non-clinical environments.
In this work, we investigated the feasibility of an automated hemorrhage detection method using a Generative
Adversarial Network (GAN) for anomaly detection that learns amanifold of normal blood flow variability and
subsequently identifies anomalous flow patterns that fall outside the learned manifold. As an initial feasibility
study, we collected ultrasound color Doppler images of femoral arteries in an animal model of vascular injury
(N= 11 pigs). Velocity information of the blood flowwere extracted from the color Doppler images that were
used for training and testing the anomaly detection network. Normotensive images from 8 pigs were used for
training, and testing was performed on normotensive, immediately after injury, 10 minutes post-injury and
30 minutes post-injury images from 3 other pigs. The residual images or the reconstructed error maps show
promise in detecting hemorrhages with an AUC of 0.90, 0.87, 0.62 immediately, 10 minutes post-injury and
30 minutes post-injury respectively with an overall AUC of 0.83.

INDEX TERMS Hemorrhage detection, color Doppler ultrasound, unsupervised anomaly detection, gener-
ative adversarial network, deep learning.

I. INTRODUCTION
Hemorrhage accounts for approximately 35% of the mortal-
ity from 5 million traumatic injury related deaths annually
worldwide, second only to central nervous system injury [1],
[2]. In 2015, the national trauma institute estimated that in
civilian populations, sever bleeding accounts for greater than
35% of pre-hospital deaths and nearly 40% of deaths within
the first 24 hours of injury. Hemorrhage management has

also been identified as a priority focus area for the United
States military [3] because hemorrhage is the most common
cause of preventable death in the battlefield [4]. Hemorrhagic
injuries represented 30% of the years of potential life lost
before age 65 and accounted for almost 10% of the national
expenditure on healthcare. Despite advances in medicine
and pre-hospital care, these numbers have not improved
significantly.
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There are three main categories of bleeds. Lacerations,
punctures, and amputations can result in arterial bleeding
which is characterized by spurting, or pulsatile, bright red
blood, resulting in quick blood loss and death, compared
to venous or capillary bleeding [5]. Patients with trauma
and severe hemorrhage require timely hemorrhage control
combined with resuscitation to replace lost blood volume and
mitigate the pathophysiologic consequences of hemorrhagic
shock.

The involuntary action for hemorrhage control is to com-
press the bleeding site by pressure dressings, tourniquets,
or by bare manual application of pressure. If the given pres-
sure is high enough, the bleeding will cease, thus termed
as compressible hemorrhage and often found in accessible
sites, such as the extremities. If there is a hemorrhagic focus
that is inaccessible to a tourniquet or pressure dressing, such
bleeding is termed as non-compressible hemorrhage. In this
case, it is more difficult to break the cycle of bleeding and
organ dysfunction [6].

Although known approaches to control non-compressible
torso hemorrhage (NCTH) include sponges, pressure devices,
and hemostatic agents [7], [8], [9], time-sensitive manage-
ment of these patients is critical and includes transferring
them to surgical facilities within hours of the injury [10].
More recently, high-intensity focused ultrasound (HIFU) has
emerged as a promising method for hemorrhage control.
HIFU can deliver energy to deep regions of tissue where
hemorrhage is occurring, allowing cauterization (burn a part
in an attempt to mitigate bleeding) at depth in parenchymal
tissues, or in difficult-to-access anatomical regions, while
causing no or minimal biological effects in the intervening
and surrounding tissues. The high rate of energy delivery to
the tissue causes cautery and coagulative necrosis (tissue or
cell death due to lack of blood flow) [11].

A major challenge in the application of HIFU is the accu-
rate targeting of therapeutic beam to the location of the bleed.
In a porcine study, Martin et al. [12] found Doppler ultra-
sound to be effective for localizing the blood vessel puncture
site. Several investigators [13] studying HIFU as an approach
for hemorrhage control have since used Doppler ultrasound
(US) imaging for guidance as it can provide the direction and
velocity of blood flow in arteries. In practice however, the
need for an expert sonographer to interpret images in realtime
during the delivery of HIFU can significantly limit the utility
of this therapy in non-clinical environments. This suggests the
need for amethod that automatically can interpret the focus of
hemorrhage or detect hemorrhage when Doppler US is used
by a non-expert sonographer.

Recent advances in machine and deep learning methods
for detection and localization tasks have shown promising
results in a variety of healthcare applications including hem-
orrhage detection. However, most of existing hemorrhage
detection approaches are either supervised [14], [15], [16],
semi-supervised [17] or weakly supervised [18]. Also, most
of the existing works are focused on brain intracranial hem-
orrhage (ICH) detection in head CT scans, and NCTH detec-

tion still remains largely unexplored. For supervised learn-
ing algorithms, the model learns from a large training set
comprised of data and labels from every class of objects the
model is subsequently expected to detect. Several supervised
learning methods have been proposed before for ICH detec-
tion. Some approaches included recurrent attention DenseNet
(RADnet) [14], double-branch CNN based hemorrhage fea-
ture extraction [16] and CNNwith Long Short-Termmemory
(LSTM) [15], which leveraged both spatial and temporal fea-
tures from CT slices. However, since the collection of anno-
tations (labels) is often time-consuming and thereby costly
as well as in many cases, obtaining a confident ground truth
becomes challenging, the usability of supervised learning
algorithms become limited.

For semi-supervised andweakly supervisedmethods, a rel-
atively small set of annotated data are provided for training
in addition to large amount of data without annotation.
By applying attention mechanisms, Wang et al. proposed a
semi-supervised multi-task attention-based U-Net for ICH
segmentation with small amount of labeled data [17]. Nem-
cek et al. applied weakly supervised learning approach with
only class label for ICH localization by detecting local
extrema in attention maps from the CNN classification net-
work [18]. However, obtaining hemorrhage data from a
bleeding subject has its own challenges as timely intervention
becomes a top priority in such cases. Therefore, unsupervised
learning algorithms become a feasible choice for automatic
hemorrhage detection. There are a few unsupervised methods
to detect blood pool in blunt abdominal trauma from Focused
Assessment with Sonography in Trauma (FAST) ultrasound.
The methods involve image pre-processing, and analysis of
local intensity features using K-Means clustering and lev-
elsets [19], [20], [21], [22].

Although these unsupervisedmethods detected blood pool,
these were not specifically designed to detect the location of
the hemorrhage captured by color Doppler ultrasound, which
showed that jet flow at the site of hemorrhage had a different
(red-blue check) pattern probably capturing turbulence com-
pared to the uniform blood flow in the entire artery [23], [24],
[25]. This difference in pattern fits the definition of outliers
(or anomalies) in the data, thus motivating the application of
unsupervised anomaly detection. Anomaly detection meth-
ods are generally employed in applications where the goal
is to identify instances that deviate from what is considered
‘normal’ and in instances where it is difficult to study the
signature of the anomalous class either due to lack of data on
account of the statistical rarity of the event needed to produce
the data and/or due to the highly heterogeneous nature of what
constitutes an anomaly.

In recent years, anomaly detection using medical image
data scans typically follow deviation basedmethods like Auto
Encoders (AEs) [26], [27], [28] or generative adversarial
networks (GANs) [29], [30], [31] based methods. AE and
GAN are two common deep learning network architectures
for unsupervised anomaly detection. Both AE and GAN use
convolutional kernels, however their applications in the sense
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FIGURE 1. Color doppler ultrasound, extracted ROI on vessel of interest,
and pre-processed velocity image as input to the hemorrhage detection
network.

of deviation based anomaly detection are fundamentally dif-
ferent, while both are trained using normal/healthy samples.
In AE, the encoder typically encodes a sample image into a
lower dimensional latent space. The decoder uses this latent
space representation to reconstruct the sample such that a
deviation between the sample and the reconstruction can be
calculated [32]. In GAN, although training a generator and a
discriminator in an adversarial setup enables learning a man-
ifold of the normal samples by the generator, an additional
iterative process is required to detect anomalies by mapping
the unseen anomaly image to the latent space, such that the
difference between the input and the reconstructed image
highlights the anomalies [29].

Given the challenges of acquiring data for arterial hem-
orrhages, in this work, we explore the anomaly detection
approach using GAN [29], where a deep neural network
learns the normal blood flow velocity distribution of an
artery from color Doppler ultrasound images of healthy sub-
jects. The trained network then seeks to perfectly reconstruct
images that lie within the learned manifold of normal vari-
ability. In the event of a hemorrhage, the network will only be
able to reconstruct regions of the image that are normal and
thereby the residual image can provide pixel-level detection
of hemorrhages.

II. METHOD
A. DATA
For data collection, a porcine animal model of hemorrhage
developed at University of Maryland, School of Medicine
(IUCAC protocol number: 0220014, date: 2/21/20) was cho-
sen for this study. N = 11 pigs were imaged using a GE

Healthcare Vivid I, linear array probe and color Doppler US.
Following normotensive baseline images (T0), hypotension
was induced by injuring the femoral artery with an oversized
endovascular balloon, creating a region of ‘‘active extrava-
sation’’ (a discharge or escape of blood, from a vessel into
the tissues), thus provoking hemorrhage. The vessel was
re-imaged immediately (T1), 10 minutes (T2) and 30 minutes
post injury (T3) for some animals. All data were stored in GE
DICOM format.

B. COLOR DOPPLER US PRE-PROCESSING
Color Doppler images on the ultrasound console are dis-
played as RGB color overlays on B-mode grayscale images
over a small region-of-interest on the anatomy, indicating
direction of blood-flow (arteries vs. veins) depending on
the flow towards or away from the ultrasound transducer.
It is possible to extract the color flow information from the
vendor-specific raw DICOM images.

Color flow images were pre-processed using a GE internal
pipeline based on [33], [34], and [35]. Derived estimates
of blood flow velocity (CFvel) and power (CFpower ) were
computed from the complex color Doppler data embedded
within the DICOM tags. The color Doppler data was stored as
quadrature components Rxx and Rxy and power spectrum (P)
of the signal. Auto-correlation estimates R(0, 0) and R(0, 1)
at zero and unit lags respectively were computed from the
quadrature components and the power spectrum using the
equations below:

P = 10 log(R(0, 0)) (1)

R(0, 1) = (Rxx + iRxy)× R(0, 0) (2)

Pixel-wise velocity (CFvel) and power (CFpower ) estimates
were derived from these auto-correlation components and
Nyquist’s frequency (fNyquist ) of the signal (obtained from the
DICOM tag) as follows:

CFvel = θ (R(0, 1))/π × fNyquist (3)

where, θ is the phase angle of the complex R(0, 1) autocorre-
lation estimate, and

CFpower = R(0, 0) (4)

The power maps were further thresholded using an Otsu
threshold filter and the binary map was used to mask
out velocity values in non-arterial and background tissues
within the velocity maps. Figure 1 shows the input color
Doppler and corresponding pre-processed velocity images.
The pre-processed images are shown using a RGB color
map for visualization purposes only, the velocity data were
actually encoded in 16 bits.

Centering around the largest component in the velocity
map, the images were padded with zero values to maintain
a 1:1 aspect ratio and then resized to 64 × 64 pixels. Pixel
intensity values were normalized between -1 to 1.
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FIGURE 2. Deep convolutional generative adversarial (DCGAN) network for color doppler ultrasound based hemorrhage detection.

FIGURE 3. Distribution of color-flow velocities for normal baseline of
both training and test data, and hemorrhage time-points of test data.
’Red’ bars represent the medians and ‘green’ triangles show the means of
distributions.

C. GENERATIVE ADVERSARIAL NETWORKS
GAN is based on a game-theoretic approach, where the net-
work tries to learn to generate data from a training distribution
through a two-player game, where two adversaries or sub-
networks, a generator G(.) and a discriminator D(.) are in
a constant battle. During the adversarial training process,
the generator learns to synthesize realistic images similar
to those in the training set while the discriminator learns
to distinguish between real and generated images. With a
wide adoption of Convolutional Neural Nets (CNN), GAN is
a popular deep learning network architecture for generative
modeling, where the network learns to estimate the latent
space data distribution associated with the training set and

then outputs samples generated from that distribution [36].
While GAN has proven to be a powerful technique for data
generation, in practice, GAN is unstable to train because
two sub-networks are trained from a single backpropagation
with combination of generator and discriminator loss. This
results in networks that generate unrealistic output images.
Deep Convolutional GANs (DCGAN) [37] add architectural
constraints to both the generator and discriminator networks
in order to reduce training instability and to generate more
relevant output images.

D. GENERATIVE ADVERSARIAL NETWORKS FOR
ANOMALY DETECTION
In the context of anomaly detection, GANs are only trained
with normal images. By training a GAN with normal images,
the generator learns a manifold of normal images and knows
how to reconstruct normal images, and the discriminator
learns to distinguish between real and reconstructed samples.
The GAN network for anomaly detection is not trained with
any anomalous examples [38]. At testing, when an image
with anomaly is presented to this trained generator, the image
will still be reconstructed based on the manifold of normal
data. However, this will create a residual between the recon-
structed and input anomalous query image, which represents
the anomaly. Since no supervision is given to the GAN frame-
work regarding how to identify abnormalities, the training
process is unsupervised.

In this work, we leverage AnoGAN [29] for hemorrhage
detection, which is a GAN network for anomaly detection
based on DCGAN architecture. In our experiments, hem-
orrhage is anomalous blood-flow. The inputs to AnoGAN
training is normal blood-flow image and a uniformly sam-
pled, random latent vector. The outputs are reconstructed
normal image and a manifold of normal images learned by
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the generator, while the discriminator evaluates how good
the reconstructed image is compared to the input image.
At testing, the input to the network is a hemorrhage image
and the output is a reconstructed hemorrhage image based on
the learned manifold by the generator, plus the residual image
that represents the anomaly i.e., the difference between input
hemorrhage image and the reconstructed image.

Figure 2 provides a schematic of the deep learning network
architecture, which is similar to our previous work [39], and is
composed of two sub-networks: generator and discriminator.
The generator in this architecture consists of four sequential
deconvolution blocks that upsample and map low dimen-
sional latent vector z to high dimensional images x. Each of
first three blocks contains fractionally strided deconvolution,
batch normalization and ReLU (Rectified Linear Units) acti-
vations, and the last block is composed of fractionally strided
deconvolution and Tanh (hyperbolic tangent) activation func-
tion. The generator takes the 1D latent input noise vector
z with size of 100, and it performs the non-linear mapping
via G(z) and learns the distribution pG over the real image x
onto a 2D manifold with the dimensions of the real image.
The discriminator D(.) consists of four standard convolution
blocks with LeakyReLU activations, which downsample the
generated images into a flattened layer and then linearize into
a scalar output. Subsequently, the sigmoid activation function
classifies the generated G(z) as a ‘real’ or ‘fake’ image.
In the training, the discriminator D is trained to maximize

the probability of classifying the real training images as ‘real’
and generated images as ‘fake’ label. The generator G is
simultaneously trained to fool discriminator by minimizing
V (G) = log(1 − D(G(z))). During the adversarial training
process, the generator improves in generating realistic images
and the discriminator progresses in correctly identifying real
and generated images [29]. The training of the network is
achieved by maximizing the function V (G,D) as a min-max
game, and the objective function can be written as,

min
G

max
D

V (G,D)=Ex
[
log
(
D(x)

)]
+Ez

[
log
(
1−D

(
G(z)

))]
(5)

After the generator has completed training, an iterative
method is used for anomalies detection, as described in algo-
rithm 1. To map new images x to latent space vector z,
a randomly sampled latent vector z from the latent space Z
is mapped to G(z) via the trained generator, which outputs
a generated image. The position of z is updated to find the
most similar image G(zθ ), and this update is performed over
θ = 1, 2, . . . ϕ backpropagation steps. The loss function for
backpropagation inmapping the new image to the latent space
is defined by 2 components, the residual loss LR and the
discrimination loss LD for zθ .

LR(zθ ) =
∑
|x− G(zθ )| (6)

LD(zθ ) = σ (D(G(zθ )), α) (7)

Residual loss measures the visual dissimilarity between the
new image x and the generated Gzθ , while the discrimination

loss is defined as the sigmoid cross entropy (σ ) of generating
real images with logits D(G(zθ )) and targets α = 1. Finally,
the total loss to update the latent vector position of zθ to zϕ is
defined by:

L(zθ ) = (1− γ )LR(zθ )+ γLD(zθ ) (8)

Algorithm 1 Iterative Anomalies Detection
Require: Input query image x
Require: Total iteration number ϕ
Require: Trained generator network G(z)
Require: Trained discriminator network D(x)
1: randomly sample z from latent space distribution Z
2: for θ = 1, θ++, while θ <= ϕ do
3: generated image: xθ ← G(z)
4: residual loss: LRθ

← LR(x, xθ )
5: discrimination loss: LDθ

← LD(x, xθ )
6: total loss: Lθ ← (1− γ )LRθ

+ γLDθ

7: update z based on total loss Lθ
8: end for
9: anomaly score: A← (1− γ )LRϕ

+ γLDϕ

10: residual: R← |xϕ − x|
11: return R, A

where γ is an empirically determined parameter between
0 and 1. Only the coefficients of the latent vector zθ are
updated at this stage, while the trained generator and discrim-
inator coefficients remain fixed.

Anomaly score, A(x) = L(zϕ), is computed as the loss
described in (8) at the final ϕth backpropagation step. If the
input query image x has anomalies i.e., different from the
distribution of the trained images, a large anomaly score will
be generated between 0 and 1.

III. EXPERIMENTS AND RESULTS
A total of 11 pigs were used for our experiments. The nor-
motensive images (n = 3402) from 8 pigs were used to train
the AnoGAN. This is an extended dataset compared to 5 pigs
used in training and evaluation in our previous work [39].
The network was trained for 25 epochs using Adam optimizer
with a learning rate of 0.0002. For testing, images from
3 pigs were used that were not used in training. The baseline
normotensive images (n = 712) at T0 were available for all
3 pigs. Hemorrhage images (query) at T1 (n = 454) and
T2 (n = 305) were available for 1 pig, and T3 (n = 370)
hemorrhage images were available for another pig. It is to
be noted that timepoint T3 was not evaluated in [39]. Figure 3
shows the flow velocity distribution derived from non-zero
pixels in the velocity component of color Doppler images for
training data with normal flow (T TR0 ), and time-points of test
data from baseline (normal flow) and after hemorrhage i.e. T0
to T3.

During testing, 2000 backpropagation steps were used to
map each input image to the latent space. γ , the weighting
factor of residual and discriminator losses was empirically
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TABLE 1. Performance statistics [sensitivity, specificity and area under
curve (AUC)] for hemorrhage time-points T1, T2, T3.

FIGURE 4. Receiver operating characteristic (ROC) curve for hemorrhage
detection at T1, T2, T3 and combination of all.

set to 0.1. A set of residual images were generated defined
as the difference of the input query image and reconstructed
query image based on the latent normotensive distribution.
The residual images were thresholded at a value determined
from the histogram of all residual images. This generated
residual binary images (white pixels for hemorrhage loca-
tion with black background). The residual images were also
thresholded at different values to generate ROC curves that
measures the performance of anomaly detection for hemor-
rhages when compared to baseline without hemorrhage.

Performance statistics of the hemorrhage detection are
summarized in Table 1, and the corresponding ROC curves
are shown in Figure 4. The sensitivity of our method in
detecting hemorrhages at time-points T1, T2, T3 were 93.6%,
84.5% and 31% respectively, while the specificity of the
method was 74.4%. The AUC for time-points T1, T2, T3 were
0.9, 0.87 and 0.61 respectively, with a mean AUC of 0.83.

The anomaly score distributions for different time-points
T0, T1, T2, T3 are shown in Figure 5. The mean anomaly
score defined in (8) between the T0, T1, T2 and T3
images were 0.035±0.017, 0.044±0.011, 0.054±0.011 and
0.040±0.007 respectively. The anomaly score distribution of
all hemorrhage time-points were significantly different from
the baseline(T0) at 95%CI, Bonferroni-corrected for multiple
comparisons at p < 0.0001.
Figure 6 shows the query images, reconstructed query

images, the residual images, and the binarized residual
images. Ideally for T0 normotensive images, the residual
binary should be a blank image (true negative-TN) and for

FIGURE 5. Anomaly score distribution for baseline T0, and hemorrhages
at T1, T2 and T3 respectively. The distribution of hemorrhage anomaly
scores were statistically significantly different from normal at p < 0.0001.

a query hemorrhage image the residual binary should show
the hemorrhage focus in white pixels (true positive-TP).

IV. DISCUSSION
To the best of our knowledge, this is the first study to
attempt detecting hemorrhagic focus automatically in ultra-
sound color Doppler images for immediate attention and
possible cauterization of the artery to prevent blood loss. Pre-
vious studies [19], [20] have attempted automatic detection
of blood pool from ultrasound images for emergency diag-
nosis in the event of blunt traumatic injury using a machine
learning framework. There have been several studies [40],
[41] attempting to detect and localize cranial hemorrhages
using deep learning from CT images after traumatic injury.
Moreover, previous studies using deep learning or machine
learning-based method for hemorrhage detection used super-
vised techniques, while our method involves unsupervised
identification of hemorrhage.

The results in Figure 4 demonstrate the generative capa-
bility of the AnoGAN based anomaly detection network to
detect hemorrhages of the femoral artery for both immedi-
ately after injury T1 and 10 minutes post injury T2. Figure 5
further corroborates appropriateness of the proposed anomaly
scoring approach for hemorrhage indications. A reduced sen-
sitivity of the method was however noticed for T3 i.e. 30 min-
utes post-injury in Figure 4. This can be partly explained
by Figure 3 where, despite outliers in flow velocity distri-
butions at T3, the overall distribution matches the range of
training data normal flow velocities (T TR0 ). This explains the
failure of the hemorrhage detection method at T3 that relies
on the concept of anomaly, i.e. what deviated from normal.
Similarly, the low specificity of the method can explained
by the distribution difference of normal blood flow velocities
between training data (T TR0 ) and test data (T0) as these were
from different animals.
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FIGURE 6. Reconstructed and residuals of the query images. First column
is the query image, second column is the reconstructed image, third
column is the residual image, and the last column is the binarized
residual image. T0, T1, T2, T3 are the normotensive, immediately after
hemorrhage, 10 minutes and 30 minutes post hemorrhagic conditions. TP,
TN, FP and FN are the true-positive, true-negative, false-positive and
false-negative respectively.

Webelieve ourmethod specifically captured the turbulence
of blood flow at near time-points post-injury (T1 and T2) as
the oxygenated blood spurted out through the site of arterial
injury with increased systolic and diastolic velocities causing
flow turbulence. It can be explained as the converging blood
at injury causing contradictive angles between the flow and
Doppler beam that cause the non-uniform pattern at site of
arterial injury [25]. The red-blue check patterns observed in
Figure 6 further corroborate the findings of [23], [24] related
to blood flow turbulence at arterial injury site. At time-point
T3, we noticed a reduced turbulence (lacking representative
red-blue check pattern) at arterial injury site.

Several clinical factors may have had effects on the arterial
behavior and thus flow at different timepoints. Immediate
effects of vasospasm (narrowing of brain blood vessels to
block blood flow) as a wire and balloon traveling through the
artery was used to induce bleeding may have been present at
T1 and T2. Similarly, driven by sympathetic response, a phys-
iological compensation by increasing the heart rate and mean
arterial pressure may have happened immediately at T1 and
T2 and have offseted after minutes at T3. The blood volume
may have decreased rapidly due to bleeding immediately after
the injury but there is a compensation to replace the lost vol-
ume as the interstitial and intercellular volume are moved into
the intravascular space, which happens after few minutes of
bleeding. A similar study performed by Madurska et al., [42]
to study the effects of hemorrhage on hemodynamic indices
showed that the greatest fall in mean hemodynamic indices
were noted in the first 15 min of hemorrhage, which is
approximately T2 of our study. As these clinical parameters
balance-off over time post-hemorrhage, we may see a new
normal in hemodynamic indices at T3, which is still not the
baseline T0. These findings further suggest the need for an
automatic hemorrhage detection method that can capture tur-
bulence in early stages of hemorrhage to prevent the subject
from a hemorrhagic shock or death.

The interpretation of the AnoGAN residual for identifying
hemorrhage focus in each color Doppler US frame is slightly
different in our work compared to methods in [38] and [29].
While anomaly constituted regions within normal areas of
images in previous studies, in our study each image is either
hemorrhage or normal. As our method has a lower specificity
(74%) compared to sensitivity of hemorrhage detection, the
interpretation of hemorrhage or no-hemorrhage can be made
over a sequence of images or color Doppler movie frames.
If the appearance of residuals over the movie frames is high
i.e., almost every frame has residual regions, the interpre-
tation would be hemorrhage or no-hemorrhage otherwise.
This would enable automated interpretation of hemorrhage
in color Doppler US.

A major disadvantage of the AnoGAN network used in
our method is that it requires training of an encoder to map
the query image into latent space at the time of testing,
which is a computationally intensive optimization process
that does not allow quick adoption of the method for real-
time interventions. As part of our future work we plan to
leverage the f-AnoGAN [30] network architecture for faster
inference of color flow images. However, in future, if a few
labeled images of hemorrhage are available, we may adopt a
semi-supervised learning approach where residual attention
modules or attention maps may be used for detection of
hemorrhage similar to [17] and [18].

In our work, we used only images of femoral artery as part
of our feasibility study, which is usually easy to image under
ultrasound. As a next step, we plan to train the network with
images from complex anatomy such as abdominal vessels,
i.e. the network will be trained with the normal blood flow
of several vessels from different locations to learn the flow
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distribution. As our method has shown promise in capturing
turbulent blood flow, with the query hemorrhage image as
input, we believe our network with f-AnoGAN [30] that uses
Wasserstein GAN [43], [44] as the underlying architecture
(measuring Wasserstein distance between the generated and
the real images) will still be able to differentiate turbulence
from normal blood flow given the large distribution of normal
flow velocities across different arteries. As an alternative,
we can also use a multi-generator GAN [45] approach where,
disconnected manifolds are learned instead of one smooth
manifold while minimizing the mutual information across
different generators as the generator loss.

The results presented in our work are important to be
considered in clinical context. Patients with life threatening
bleeding progress through stages of physiological compensa-
tion, and if left untreated leads to eventual decompensation
(functional deterioration of a structure or system) and death.
The greatest opportunity for successful intervention lies in
the early stages of shock, often when its initial presentation
is occult. If an insult can be identified and treated prior
to decompensation, then patients are much more likely to
survive [42], [46]. Unfortunately, clinical signs are most
obvious in the terminal stages of shock. The strength of
the presented algorithm lies in its accuracy of early detec-
tion, providing clinicians with a tool to exploit a window
of early detection. However, a successful translation of this
tool in trauma care not only requires extensive clinical vali-
dation through trials, the accurate placement of the ultrasound
probe closer to the site of injury, particularly for internal
hemorrhages, which probably requires another intermediate
method to localize approximate site of injury based on pulse
wave reflections [47]; the availability of laptop-based ultra-
sounds equipped with graphics processing unit with the hem-
orrhage detection algorithm embedded for fast localization
of hemorrhage are some of the aspects that need further
development.

V. CONCLUSION
We investigated an unsupervised GAN-based anomaly detec-
tion network to detect blood flow anomalies associated with
hemorrhage on ultrasound color Doppler images. The net-
work was trained on femoral artery images collected from a
limited set of pigs in normotensive conditions, and it accu-
rately reconstructed normal arterial blood flow and provided
low anomaly or residual scores on an independent set of nor-
motensive data. When presented with color Doppler images
at the site of hemorrhage, the network provided statistically
significant high anomaly scores for all the time-points com-
pared to the baseline normal. The method shows promise in
localizing anomalies at pixel level and in presenting the focus
with high sensitivity before the subject goes to hemorrhagic
shock. These results suggest that the presented approach may
play a key role in enabling HIFU or other image-informed
intervention for hemorrhage management at the point of care,
in the absence of an expert sonographer.
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