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Secondary metabolites are bioactive substances with diverse chemical structures. Depending on the ecological environment within
which they are living, higher plants use different combinations of secondarymetabolites for adaptation (e.g., defense against attacks
by herbivores or pathogenic microbes). This suggests that the similarity in metabolite content is applicable to assess phylogenic
similarity of higher plants. However, such a chemical taxonomic approach has limitations of incomplete metabolomics data. We
propose an approach for successfully classifying 216 plants based on their known incompletemetabolite content. Structurally similar
metabolites have been clustered using the network clustering algorithm DPClus. Plants have been represented as binary vectors,
implying relationswith structurally similarmetabolite groups, and classified usingWard’smethod of hierarchical clustering.Despite
incomplete data, the resulting plant clusters are consistent with the known evolutional relations of plants. This finding reveals the
significance of metabolite content as a taxonomic marker. We also discuss the predictive power of metabolite content in exploring
nutritional and medicinal properties in plants. As a byproduct of our analysis, we could predict some currently unknown species-
metabolite relations.

1. Introduction

Plant taxonomy is the science that explores, describes, names,
and classifies plants.The systematic and phylogenetic analysis
of plants is traditionally based on macroscopic and micro-
scopic morphological characteristics and is known to be
turbulent [1]. The study of DNA and to a certain extent
m-RNA and proteins has led to the immense subject of
molecular biology, which has been increasingly applied to
reconstruct the phylogeny of higher and lower plants [2].
The use of molecular data in plant taxonomy has been
highly successful in many instances but has the following
two limitations. First, current technologies that use genomic
compartments instead of the entire genome data usually only
partially reveal the evolutional relations among plants. The
number of organisms with completely known genomes in
Kyoto Encyclopedia of Genes andGenomes (KEGG) has now
reached 4505 but includes only 65 plants (November 2016).
This indicates that it is still impractical to reconstruct plant
taxonomy using the entire genome information. Second,

recent research has indicated that horizontal gene transfer
occurs in multicellular eukaryotes, especially in plants, and
has an important role in their eukaryotic evolution. This
suggests that phylogenetic reconstruction cannot be deter-
mined conclusively from sequence data [3, 4]. Paralleled
with molecular biology, exploration of the phylogenetic
distance between species based on metabolites, either alone
or in combination with sequence features, has also begun.
Clemente et al. (2007) presented a method for assessing
the structural similarity of metabolic pathways for several
organisms and reconstructed phylogenies that were very
similar to theNational Center for Biotechnology Information
(NCBI) taxonomy [5]. Borenstein et al. (2008) predicted the
phylogenetic tree by comparing seed metabolite compound
content [6]. Mano et al. (2010) considered the topology of
pathways as chains and used a pathway-alignment method to
classify species [7]. Chang et al. (2011) proposed an approach
from the perspective of enzyme substrates and corresponding
products in which each organism is represented as a vector of
substrate-product pairs. The vectors were then compared to
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reconstruct a phylogenetic tree [8]. Ma et al. (2013) demon-
strated the usefulness of the global alignment of multiple
metabolic networks to infer the phylogenetic relationships
between species [9]. However, most of these studies have
focused on microorganisms, such as archaea, rather than
multicellular eukaryotes.

Plants are the major contributors of natural products
and are usually rich in nutritional or medicinal properties.
Many natural products are biologically active and have
been used for thousands of years as traditional medicines.
Classifying plants on the basis of their chemical constituents,
which is also known as plant chemosystematics, could be
helpful in discovering new edible and medicinal plants and
solving selected taxonomical problems [2, 10, 11]. Traditional
chemosystematics of plants is based on the presence or
absence of selected secondary metabolites, which is far from
the holistic approach involving metabolite content [10, 11].
The incomplete data of metabolite constituents of plants
limits the ability to solve taxonomical problems and discovery
of new natural products or medicinal properties of plants.

With the rapid development of metabolomics, metabo-
lite-related databases (DBs) have been created, including
KNApSAcK, which contains accumulated information about
species-metabolite relations including information about
many secondary metabolites of plants [12]. Such infor-
mation can be used in the systems-biological studies on
the interactions between plants, including the activities of
medicinal plants as well as interactions between plants and
their environments [13]. Metabolite content refers to all
small molecules that are the products or intermediates of
metabolism (metabolites) that are present within a biological
organism. The metabolite content of plants is dominated
by secondary metabolites [14], which are usually of high
structural diversity [15]. As a rule, secondary metabolites
are often similar within members of a clade, and plants
within a taxon often represent similar metabolite content
and bioactive properties. Therefore, the metabolite content
of plants can be used as a taxonomy marker to distinguish
plants and other organisms [11]. However, the expression
of secondary metabolites of a given structural type has
frequently arisen on a number of occasions in different parts
of the plant kingdom. This discrepancy could be due either
to convergent evolution or to differential gene expression
[11]. This suggests that the metabolite content of plants may
reveal more information of the interaction and bioactive
pattern of plants rather than morphology characteristics.
Suchmetabolite-content-based classification not only reveals
the phylogenetic relationship of plants but also can be used for
studying the relationship of plants in terms of their bioactive
properties, guiding prediction of medicinal properties in
bioprospecting, exploring new nutritional or economic uses
of plants, and solving taxonomical problems. Previously,
microorganism species have been classified based on the
volatile metabolites emitted by them, and the results have
been well explained in terms of their pathogenicity [16]. This
finding indicates that it is possible to classify other species,
such as plants, based on metabolite-content similarity. With
the development of plantsmetabolomics and big data biology,

it is now possible to investigate the metabolite content of
plants on a cross-class level [17, 18].

TheKNApSAcKCoreDB is an extensive plant-metabolite
relation DB that can be applied in multifaceted plant
research, such as identification of metabolites, construction
of integrated DBs, and bioinformatics and systems biology
[19, 20] and can be considered an advanced source of
metabolite content of plants. The KNApSAcK Core DB con-
tains 109,976 species-metabolite relationships that encompass
22,399 species and 50,897 metabolites, and these numbers
are still growing [13]. In this paper, we propose an approach
to classify plants based on metabolite-content similarity.
The metabolite-content data of plants and structure data of
compounds are mainly obtained from the KNApSAcK Core
DB and partially from PubChem DB [21, 22]. We measure
the structural similarity between two metabolites by using
the concept of the Tanimoto coefficient [23, 24], construct
a network by selecting highly structurally similar metabolite
pairs, and determine structurally similar groups of metabo-
lites by using the DPClus algorithm [25]. We then link plants
to such metabolite groups instead of individual metabolites
to represent the plants as binary vectors. Several structurally
similar metabolites are generally involved in a metabolic
pathway. Thus, the use of structurally similar metabolite
groups in this study can help to reduce the effect of missing
data. Next, the metabolite-content similarity between plants
is calculated based on binary similarity coefficients which
then transformed into metabolite-content distances. Plants
are finally classified using the hierarchical clustering method,
and the resulting classification is evaluated by comparing
it with the NCBI taxonomy [26]. Our classification results
reveal both the phylogeny- and bioactivity-based relations
among plants. We also use a support vector machine (SVM)
algorithm to classify the plants by their economic uses [27,
28]. The classification performance reveals the predictive
power of metabolite content in exploring nutritional and
medicinal properties of plants. As a byproduct of our analysis,
we can predict some currently unknown species-metabolite
relations. To the best of our knowledge, we are the first to
classify plants based on metabolite content.

2. Materials and Methods

2.1. Dataset and Preliminaries. The major input data are
species-metabolite relationships obtained from the KNAp-
SAcK Core DB, which is a part of the KNApSAcK Family DB
[13].TheKNApSAcKCoreDB containsmost of the published
information about species-metabolite relations, but this is
obviously far from complete regarding plants and other living
organisms. In the preprocessing step, we removed the plants
with inadequate plant-metabolite relations to guarantee that
the amount of metabolite content of selected plants is suffi-
cient enough to reveal their interrelations.

We collected the molecular structure description files for
the metabolites in our dataset as additional input data. The
KNApSAcKCoreDB providesMOLmolecular structure files
for most of the metabolites. For metabolite compounds with
structure files that cannot be obtained from the KNApSAcK
Core DB, we downloaded the SDF files directly from the
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Figure 1: (a) Bipartite graph of plant-metabolite relations.Molecular structures of metabolites are described by 166-bit atom pair fingerprints,
which are used to calculate Tanimoto structure similarity score for each metabolite pair. (b) Bipartite graph of plant versus metabolite-group
relations. Each plant has been associated with metabolite groups instead of single metabolites to reduce effect of incomplete data.

PubChem DB [21, 22]. We used R package ChemmineR
(v2.26.0) to generate atom pair fingerprints from molecular
structure description files for all the metabolite compounds
[29]. These molecular fingerprints were used to measure the
structural similarity for all the metabolite pairs. Figure 1(a)
illustrates the binary plant-metabolite relations and corre-
sponding molecular fingerprints.

2.2. Network Construction of Metabolites Based on Chemical
Structure Similarity. Very little is known of the complete
set of metabolite content of plants. Therefore, for classifying
plants based on currently available metabolite-content data,
an approach that can compensate for the limitations of miss-
ing data is needed. Adjacent metabolites along a metabolic
pathway are often related to similar substructures; therefore,
it can be assumed that structurally similar metabolites are
involved in the sameor similar pathway.Therefore, plants that
share highly structurally similar metabolites are likely to have
common pathways; thus, they are likely to be within the same
category and represent similar bioactivity. To compensate
for the gap in missing data, we primarily linked plants to
structurally similar metabolite groups instead of individual
metabolites for this study.

For the purpose of determining structurally similar
metabolite groups, we initially constructed a network of
metabolites based on chemical structure similarity. We used
the Tanimoto coefficient to measure the structural similarity
between two metabolites [23]. Willett (2014) investigated
different structural similarity measures and concluded that
chemoinformatics research on structural similarity would
continue to be largely based on the use of 2D fingerprints,
and the Tanimoto coefficient has been established as the stan-
dard for similarity searching [30]. The Tanimoto coefficient

between twometabolites𝐴 and 𝐵 is defined as follows, which
is the proportion of the features shared by two compounds
divided by their union:

Tanimoto (𝐴, 𝐵) = 𝐴𝐵

𝐴 + 𝐵 − 𝐴𝐵
. (1)

The variable 𝐴𝐵 is the number of features common in
both compounds, while 𝐴 and 𝐵 are the number of features
that are related to the respective individual compounds. The
Tanimoto coefficient has a range from 0 to 1 with higher
values indicating greater similarity than lower ones. The
Tanimoto coefficient can be calculated from molecular fin-
gerprints using the R package ChemmineR [29]. Empirically,
a Tanimoto coefficient value larger than 0.85 indicates that
the compared compounds represent highly similar bioactive
features [31]. We used 0.85 as the threshold to insert an
edge between two metabolites and constructed a network of
metabolites.

2.3. Clustering of Metabolites Based on DPClus. The DPClus
algorithm is a graph-clustering algorithm that can be used
to extract densely connected nodes as a cluster [25, 32]. This
algorithm can be applied to an undirected simple graph 𝐺 =
(𝑁, 𝐸) that consists of a finite set of nodes𝑁 and a finite set of
edges𝐸. Two important parameters are used in this algorithm
(i.e., density 𝑑 and cluster property cp). Density 𝑑𝑘 of any
cluster 𝑘 is the ratio of the number of edges present in the
cluster (|𝐸|) to the maximum possible number of edges in the
cluster (|𝐸|max). The cluster property of a node 𝑛 with respect
to cluster 𝑘 is represented as

cp𝑛𝑘 =
𝐸𝑛𝑘
𝑑𝑘 × 𝑁𝑘

, (2)
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where 𝑁𝑘 is the number of nodes in 𝑘 and 𝐸𝑛𝑘 is the total
number of edges between 𝑛 and each node of 𝑘.

In this study, we applied the DPClus algorithm to the
structural similarity network of metabolites. The metabolites
were divided intomany groups such that each group contains
structurally similar compounds and can be treated as a dis-
tinctive pattern of structure. Each metabolite group might be
related to a certain pathway, which is related to the phylogeny
and ecology of plants. A plant is related to a metabolite group
if it is related to anymetabolite in the group.Thus, the original
plant-metabolite relations are transformed into plant versus
metabolite-group relations, as shown in Figure 1(b). We used
such groups to measure the similarity between plants, thus
reducing the effects of incomplete metabolite-content data.

2.4. Clustering of Plants Based on Metabolite Groups. The
relations between plants and structurally similar metabolite
groups can be expressed with a sparse binarymatrix, which is
defined as𝑀. Element𝑀𝑖𝑗 = 1means that plant 𝑖 contains at
least one metabolite of group 𝑗, and𝑀𝑖𝑗 = 0means that plant
𝑖 contains no metabolite of group 𝑗. Therefore, for each plant,
we obtain a binary vector such that each bit corresponds to
the presence or absence of a metabolite group.

Let two plants be described by the binary vectors x and
y, each comprised of 𝑝 variables with values either 1 or 0 (“1”
indicates presence while “0” indicates absence), and 𝑝 is the
total number of metabolite groups. The Simpson similarity
coefficient between plants can be calculated as

𝑆𝑠 =
𝑎

min {(𝑎 + 𝑏) , (𝑎 + 𝑐)}
. (3)

Here, 𝑎, 𝑏, and 𝑐 are the frequencies of the events 𝑥&𝑦,
𝑥&𝑦, and 𝑥&𝑦, respectively [33–35].

To strengthen our finding with more support, we also
used the Jaccard coefficient, which was previously considered
as a similarity measure between different organisms in
different contexts [33, 36]. The Jaccard similarity coefficient
can be calculated as

𝑆𝑗 =
𝑎

𝑎 + 𝑏 + 𝑐
. (4)

We transformed a similarity coefficient, 𝑠, to a distance
coefficient,𝑑, by the transformation𝑑 = 1−𝑠 and classified the
plants by using Ward’s hierarchical clustering method using
R.

2.5. Classification of Plants by SVMs. Support vectormachines
are supervised machine learning models for classification
and regression analysis [27, 28]. An SVM training algorithm
builds amodel by constructing decision boundaries in feature
space. Examples are predicted to belong to a category based
on the boundaries.

To study the relationship between metabolite groups and
economic uses of plants and evaluate the predictive power
of metabolite content in guiding the discovery of natural
products or medicinal properties in plants, we used an SVM
algorithm, which was implemented by the function svm in
R package e1071 v1.6-7, to classify plants by using default

parameters [37–39]. We used economic uses as labels and
corresponding metabolite groups as features. The classifica-
tion performance is evaluated by using a confusion matrix.
In a confusion matrix, the sum of a column represents
the instances in a predicted class, while the sum of a row
represents the instances in an actual class. All programs in
this research were run in R v3.3.1.

3. Results and Discussion

3.1. Data Preprocessing. The KNApSAcK Core DB con-
tains a total of 111199 species-metabolite binary relations
that encompass 25658 species and 50899 metabolites. This
DB was developed by collecting information on numerous
metabolites of various organisms from published literature
and several DBs, including PubChem [21, 22]. The species-
metabolite relations in the KNApSAcK Core DB can be
represented as a bipartite graph, as shown in Figure 1(a).
The degree distribution of species in a species-metabolite
bipartite graph follows a power law trend (see Supplementary
Figure 1 of the Supplementary Material available online on
https://doi.org/10.1155/2017/5296729) [40]. The metabolite-
content data of plants in the KNApSAcK Core DB is
unbalanced, i.e., many plants are associated with only a
few metabolites and a few plants are associated with many
metabolites, while other plants are in a between situation.
One of the reasons behind this is that different plants have
metabolic pathways of varying complexity. Medicinal plants
usually contain more metabolites compared to edible plants
because the former have gone through less artificial selections
and preserved more secondary metabolites during evolution.
Another reason is that the metabolomics of some important
plants have been studied more systematically. The recorded
metabolite content of such plants is more comprehensive
compared to wild plants. Therefore, in our current research,
we selected 216 plants from a total of 25658 plants in the
KNApSAcK Core DB, such that each of the 216 plants is
reported to be associated with no less than 30 metabolites,
with 135 being the maximum number and 31 being the
minimum.There are a total of 6522 metabolites related to the
216 plants in our input dataset.

3.2. Plant Representation Based on Metabolite-Content Simi-
larity. We dealt with 6522 metabolites involving 216 plants.
We determined the Tanimoto coefficients between all pos-
sible metabolite pairs (21264981 pairs). We selected 54528
metabolite pairs with Tanimoto values greater than 0.85,
which are 0.25% of all the metabolite pairs. On average, each
metabolite is related to about eight different metabolites. We
connected all the selected metabolite pairs and constructed a
network ofmetabolites, as shown in Figure 2(a).This network
involves 5085 metabolites and the other 1437 metabolites are
not included in the network; that is, each of these metabolites
is not structurally similar to any other metabolites. The
5085 metabolites included in the network are divided into
669 connected components. The degree distribution of the
network also follows a power law trend (Figure 2(b)) [40].

To compensate for the gap in incomplete data regard-
ing species-metabolite relations, we associated plants with

https://doi.org/10.1155/2017/5296729
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Figure 2: (a) Structural-similarity-based network of metabolites (plotted using network analysis tool Cytoscape v3.3.0). This network is
composed of many isolated components, and each component contains different number of nodes. (b) Degree distribution of the network in
log scale.

structurally similar metabolite groups instead of individual
metabolites. To achieve this, we applied theDPClus algorithm
to the network of metabolites we developed, as discussed
in the previous section. We did DPClus clustering with the
following settings: cluster property cp was set to 0.5, density
value 𝑑 was set to 0.9, minimum cluster size was set to 2, and
we used the overlapping mode.

The DPClus algorithm generated 1150 clusters (i.e.,
metabolite groups, involving 4700 metabolites). The largest
group contained 174 metabolites, and there were 510 metabo-
lite groups containing only 2 metabolites. Figure 3 shows the
frequency ofmetabolite groupswith respect to size (the count
of metabolites) in both normal scale and log-log scale (inset),
and this distribution also follows a power law trend [40].

A total of 1822 metabolites not included in any cluster are
considered as groups consisting of a single metabolite.

All clusters, large or small, contained structurally similar
metabolites. Large clusters might be related to different
metabolic pathways, but small clusters are likely related to
specific metabolic pathways. A plant is related to ametabolite
group if it is reported to contain any metabolite in the group.
A plant can be represented as a binary vector such that each
bit of the vector corresponds to the presence or absence of a
metabolite group.

3.3. Clustering of Plants Based on Metabolite-Content Sim-
ilarity. We calculated the plant-plant similarity by using
two commonly used binary similarity coefficients Simpson
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Figure 3: Frequency ofmetabolite groupswith respect to group size.
x-axes represent number of metabolites belonging to onemetabolite
group, and y-axes represent frequency of such metabolite groups.
Frequency of metabolite groups in log scale is shown in inset figure.

and Jaccard [33]. The Jaccard coefficient has been used as
a similarity measure to compare the enzyme content of
metabolic networks in each pair of organisms [36]. The
Simpson coefficient was devised to minimize the effect of the
unequal size of two faunas being compared and having in the
denominator only the number of taxa in a sample having the
smaller number [34, 35].

We transformed a similarity score into a distance score
𝑑 using 𝑑 = 1 − 𝑠 and then conducted Ward’s hierarchical
clustering analysis. Thus, we determined two dendrograms
corresponding to two types of coefficients with our approach.

We used the NCBI taxonomy of the 216 plants gen-
erated using a web-based tool from the NCBI homepage
(http://www.ncbi.nlm.nih.gov/taxonomy) as the reference
classification [26]. The NCBI classification reflects the phy-
logenetic patterns within a plant group primarily based on
morphology. According to theNCBI taxonomy, the 216 plants
spread over 52 families with the largest family Fabaceae
containing 42 plants.

We compared the dendrogram trees generated with our
approach with the NCBI taxonomy based on a similarity
score called Baker’s Gamma correlation coefficient using R
package dendextend v1.3.0 [41, 42]. Baker’s Gamma correla-
tion coefficient ranges from −1 to +1, with positive values,
meaning that the two trees are statistically similar. The
results show that both Simpson- and Jaccard-coefficient-
based trees produced similar scores (i.e., 0.062 and 0.059,
resp.), indicating that both trees are statistically similar with
the NCBI taxonomy. We can also extract phylogeny relations
from the trees by referring to the NCBI taxonomy.

Overall, we found that the Simpson coefficient performed
better than the Jaccard coefficient. In the Simpson coefficient
tree, more plants from the same genus or family appeared
nearer to each other compared to the Jaccard coefficient
tree. We illustrate this fact by pointing out some examples
in Supplementary Figure 2. The better performance of the
Simpson coefficient is also reflected with the Baker’s Gamma
correlation coefficient. Therefore, for further explanation,
we selected the Simpson coefficient tree and classified the

plants into 48 groups by cutting the dendrogram at variable
threshold heights empirically chosen to enrich the clusters
with plants of the same genus or family. Supplementary
Figure 3 shows the dendrogram together with group IDs
produced by our classification method.

Themain defined ranks in theNCBI taxonomic hierarchy
are as follows: superkingdom, kingdom, phylum, subclass,
order, family, subfamily, tribe, genus, and species (from high
to low). We collected the taxonomy information of 216 plants
that we considered in this study and annotated each plant
with ranks of family and genus (we used the scientific names
of plants where the first word of a plant name represents
the genus to which the plant belongs). Table 1 lists the 48
groups of plants based on our clustering result with their
taxonomic and usage information. The plants are arranged
by different groups, and for each group plants within the same
family or genus are arranged together to highlight the internal
phylogeny relations. In the dendrogram of Supplementary
Figure 3, neighboring plants belonging to the same genus or
family are indicated by horizontal bold colored lines. Each
genus or family is indicated by a specific color. It is evident
that many clusters are rich with plants from the same genus
or family. Thus, our results imply that plants in the same
taxon correspond to similar metabolite content. Taking into
account the inadequate amount of metabolite data and lim-
ited number of plants we considered for certain families, the
results from our approach are very promising.These indicate
that the proposed approach was designed to compensate for
the shortcomings of limited data. Some deviations in our clas-
sification from theNCBI taxonomy can be explained in terms
of ecological relationships or bioactive similarity.This implies
that, compared to morphology-based taxonomy, metabolite-
content-based classification reveals more information about
the bioactive similarity among plants, which is related to
the nutritional and medicinal properties of plants. Therefore,
metabolite-content-based classification can be used as a time-
efficient predictive tool for guiding discovery of edible and
medicinal properties in wild plants.

3.4. PredictingCurrentlyUnknownPlant-Metabolite Relations.
The species-metabolite relation data in the KNApSAcK Core
DB were collected from previously published papers. Many
more plant-metabolite relations will inevitably be discovered
in the future. However, based on our study, we can predict
some not yet known plant-metabolite relations.When several
plants are included in the same cluster with our approach,
it implies that those plants contain many metabolites that
are either the same or different but structurally very similar.
When several plants contain a different subset of a group
of structurally similar metabolites and they are very close
according to morphological taxonomy, we can assume that
all those plants contain the union of themetabolites currently
detected in them. The basis of this assumption is that similar
metabolic pathways are expected to be active in plants within
a given taxon group.

In our experiments, we found structurally similar
metabolite groups of different sizes, large and small. However,
the metabolites belonging to a smaller group are likely to be
closely related along a certain metabolic pathway. Therefore,

http://www.ncbi.nlm.nih.gov/taxonomy
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Table 1: Taxonomic and use information of 216 plants. Group
ID, plant names, taxonomic ranks (family), and economic uses are
mentioned in consecutive columns. Economic uses of plants are rep-
resented as the following abbreviations: E (edible), M (medicinal), L
(landscaping,), T (timber), P (poisonous), andW (wild plant). Some
plants are both edible and medicinal and are annotated as E/M.

Group Plant Family Use

1

Citrus limon Rutaceae E
Citrus aurantifolia Rutaceae E/M
Citrus paradisi Rutaceae E
Citrus sinensis Rutaceae E
Citrus reticulata Rutaceae E
Citrus aurantium Rutaceae E

2
Houttuynia cordata Saururaceae E/M
Houttuynia emeiensis Saururaceae W

Rhodiola rosea Crassulaceae M

3

Artemisia annua Asteraceae M
Artemisia capillaris Asteraceae M

Rhaponticum
carthamoides Asteraceae W

Solanum lycopersicum Solanaceae E

4

Anthemis aciphylla Asteraceae W
Artemisia annua L. Asteraceae M
Centaurea sessilis Asteraceae W

Valeriana officinalis Caprifoliaceae M
Persicaria minus Polygonaceae M
Mentha arvensis Lamiaceae M
Peucedanum
paniculatum Apiaceae W

5

Zingiber officinale Zingiberaceae E/M
Alpinia galanga Zingiberaceae E/M

Rosmarinus officinalis Lamiaceae M
Cistus albidus Cistaceae W
Pinus halepensis Pinaceae L

6

Myrtus communis Myrtaceae M
Leptospermum
scoparium Myrtaceae M

Santolina corsica Asteraceae W

7

Curcuma amada Zingiberaceae E/M
Curcuma aeruginosa Zingiberaceae W

Cistus creticus Cistaceae W
Melaleuca leucadendra Myrtaceae M

Piper arboreum Piperaceae W
Piper fimbriulatum Piperaceae W

Cedrus libani Pinaceae L
Cyperus rotundus Cyperaceae M

8

Pseudotsuga menziesii Pinaceae T
Pinus sylvestris Pinaceae T
Picea abies Pinaceae T

Citrus unshiu Rutaceae E

9
Prunus persica Rosaceae E
Prunus avium Rosaceae E
Prunus cerasus Rosaceae E

10
Pisum sativum Fabaceae E

Lathyrus odoratus Fabaceae L
Allium cepa Amaryllidaceae E

11
Linum usitatissimum Linaceae T

Vicia faba Fabaceae E
Carthamus tinctorius Asteraceae M

Table 1: Continued.
Group Plant Family Use

12
Phaseolus lunatus Fabaceae E
Phaseolus vulgaris Fabaceae E
Phaseolus coccineus Fabaceae E

13
Triticum aestivum Poaceae E

Zea mays Poaceae E
Spinacia oleracea Amaranthaceae E

14
Raphanus sativus Brassicaceae E
Brassica napus Brassicaceae P
Malus domestica Rosaceae E

15

Hordeum vulgare Poaceae E
Oryza sativa Poaceae E

Cucumis sativus Cucurbitaceae E
Glycine max Fabaceae E

Helianthus annuus Asteraceae E

16

Eriobotrya japonica Rosaceae E
Cassia fistula Fabaceae M

Aesculus hippocastanum Hippocastanaceae P
Camellia sinensis Theaceae E

Rheum sp. Polygonaceae W

17

Robinia pseudoacacia Fabaceae L
Colophospermum

mopane Fabaceae T

Acacia mearnsii Fabaceae W

18

Sinocrassula indica Crassulaceae M
Sedum sarmentosum Crassulaceae M
Rhodiola sachalinensis Crassulaceae M
Phyllanthus emblica Phyllanthaceae E/M
Psidium guajava Myrtaceae E

Phellodendron amurense Rutaceae M
Epimedium sagittatum Berberidaceae M

19
Solanum lycopersicum Solanaceae E
Solanum tuberosum Solanaceae E
Nicotiana tabacum Solanaceae M

20

Capsicum annuum Solanaceae E
Petunia x hybrida Solanaceae L
Daucus carota Apiaceae W

Asclepias curassavica Apocynaceae L
Humulus lupulus Cannabaceae M
Cyperus rotundus Cyperaceae M

21

Glycyrrhiza uralensis Fabaceae M
Glycyrrhiza aspera Fabaceae W
Glycyrrhiza glabra Fabaceae E/M
Glycyrrhiza inflata Fabaceae M

22

Lupinus luteus Fabaceae W
Lupinus albus Fabaceae E
Derris scandens Fabaceae W

Erythrina variegata Fabaceae L
Erythrina senegalensis Fabaceae M

23

Euchresta japonica Fabaceae W
Euchresta formosana Fabaceae W
Sophora flavescens Fabaceae M
Maackia amurensis Fabaceae L
Sophora secundiflora Fabaceae W

Daphniphyllum oldhamii Daphniphyllaceae M

24

Medicago sativa Fabaceae E
Clitoria ternatea Fabaceae E
Trifolium pratense Fabaceae M
Sophora japonica Fabaceae T

Lespedeza homoloba Fabaceae W
Melilotus messanensis Fabaceae W
Glycyrrhiza pallidiflora Fabaceae W
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Table 1: Continued.
Group Plant Family Use

Dalbergia odorifera Fabaceae T

25

Corydalis claviculata Papaveraceae W
Papaver somniferum Papaveraceae M
Corydalis solida Papaveraceae W

Cocculus laurifolius Menispermaceae W
Stephania cepharantha Menispermaceae W
Stephania cepharantha Menispermaceae W
Cocculus pendulus Menispermaceae W
Annona cherimola Annonaceae E
Xylopia parviflora Annonaceae W

26

Brassica oleracea Brassicaceae E
Brassica rapa Brassicaceae E

Armoracia lapathifolia Brassicaceae E
Hesperis matronalis Brassicaceae L

27

Alstonia macrophylla Apocynaceae T
Alstonia angustifolia Apocynaceae M

Alstonia angustifolia var.
latifolia Apocynaceae M

28

Millettia pinnata Fabaceae L
Millettia pinnata Fabaceae L
Neorautanenia
amboensis Fabaceae W

Tephrosia purpurea Fabaceae P
Amorpha fruticosa Fabaceae L
Piscidia erythrina Fabaceae T

29 Gymnadenia conopsea Orchidaceae M
Bletilla striata Orchidaceae M

30

Taiwania
cryptomerioides Cupressaceae T

Chamaecyparis
formosensis Cupressaceae T

Cryptomeria japonica Cupressaceae T

31

Gutierrezia microcephala Asteraceae P
Saussurea lappa Asteraceae M
Artemisia spp. Asteraceae W
Citrus spp. Rutaceae E

Citrus sudachi Rutaceae M
Murraya paniculata Rutaceae M
Cannabis sativa Cannabaceae M
Iris domestica Iridaceae M

32

Tabernaemontana
coffeoides Apocynaceae W

Kopsia dasyrachis Apocynaceae W
Catharanthus roseus Apocynaceae M
Rauvolfia vomitoria Apocynaceae W

33

Nardostachys chinensis Caprifoliaceae W
Acritopappus confertus Asteraceae W

Isodon xerophilus Lamiaceae W
Cynanchum

sublanceolatum Apocynaceae W

Caesalpinia crista Fabaceae T
Murraya euchrestifolia Rutaceae W
Curcuma zedoaria Zingiberaceae E

34 Garcinia mangostana Clusiaceae E/M
Garcinia dulcis Clusiaceae W

35

Atalantia buxifolia Rutaceae W
Ruta graveolens Rutaceae E/M

Clausena excavata Rutaceae W
Angelica furcijuga Apiaceae E/M

36 Andrographis paniculata Acanthaceae M
Scutellaria baicalensis Lamiaceae M

Table 1: Continued.

Group Plant Family Use

37
Zanthoxylum simulans Rutaceae M

Zanthoxylum
integrifolium Rutaceae W

38
Magnolia denudata Magnoliaceae M
Magnolia officinalis Magnoliaceae M
Aeschynanthus
bracteatus Gesneriaceae W

39
Broussonetia papyrifera Moraceae E

Morus alba Moraceae E/M
Artocarpus communis Moraceae E

40 Sinapis alba Brassicaceae E
Vachellia rigidula Fabaceae E

41
Lycium chinense Solanaceae M

Mandragora autumnalis Solanaceae M
Angelica sinensis Apiaceae M

42
Cullen corylifolium Fabaceae M

Calophyllum inophyllum Calophyllaceae T
Juniperus phoenicea Cupressaceae W

43

Taxus cuspidata Taxaceae P
Taxus brevifolia Taxaceae M
Taxus baccata Taxaceae M

Taxus wallichiana Taxaceae M
Taxus chinensis Taxaceae M
Taxus mairei Taxaceae M

Taxus yunnanensis Taxaceae M

44

Panax notoginseng Araliaceae M
Panax ginseng Araliaceae M

Panax pseudoginseng
var. notoginseng Araliaceae M

Panax ginseng C.A.
Meyer Araliaceae M

Bupleurum
rotundifolium Apiaceae M

Beta vulgaris Amaranthaceae E
Bellis perennis Asteraceae E/M

45

Xylocarpus granatum Meliaceae W
Spiraea formosana Rosaceae W
Hibiscus taiwanensis Malvaceae W
Begonia nantoensis Begoniaceae W

Alpinia blepharocalyx Zingiberaceae W
Taraxacum formosanum Asteraceae W

46 Aristolochia elegans Aristolochiaceae L
Aristolochia heterophylla Aristolochiaceae M

47

Artabotrys uncinatus Annonaceae W
Annona purpurea Annonaceae E
Rubia yunnanensis Rubiaceae M
Withania somnifera Solanaceae M

48

Salvia officinalis Lamiaceae E/M
Orthosiphon stamineus Lamiaceae W

Plantago major Plantaginaceae M
Rehmannia glutinosa Rehmanniaceae M

Olea europaea Oleaceae E/M
Lonicera japonica Caprifoliaceae M
Eleutherococcus

senticosus Araliaceae M

Diospyros kaki Ebenaceae E
Punica granatum Lythraceae E
Curcuma domestica Zingiberaceae E/M



BioMed Research International 9

Table 2: Reported plant-metabolite relations of 6 plants of genus Citrus with a given metabolite group (including 2 metabolites: Limonene
and Cyclohexane). 1/0 indicates presence/absence of a metabolite in a plant.

Citrus limon Citrus aurantifolia Citrus paradisi Citrus sinensis Citrus reticulata Citrus aurantium
Limonene 1 1 1 1 1 1
Cyclohexane 0 1 1 1 1 0

Table 3: Predicted unrecorded metabolites for 6 Citrus plants, encompassing 38 plant-metabolite relations.

Species Predicted unrecorded metabolites

Citrus limon Gibberellin A4; methyl salicylate; cyclohexane; o-isopropenyl toluene; jasmonic acid; 10-apoviolaxanthal;
alpha-trans-bergamotene

Citrus aurantifolia Methyl salicylate; citral; benzeneacetaldehyde; o-isopropenyl toluene; methyl epijasmonate; salvigenin
Citrus paradisi Rhoifolin; isopropanol; methyl salicylate; citral; benzeneacetaldehyde; o-isopropenyl toluene

Citrus sinensis Isoscutellarein 7,8-dimethyl ether; isoscutellarein 7,8,4-trimethyl ether; o-isopropenyl toluene; methyl epijasmonate;
salvigenin; gibberellin A53; violaxanthin

Citrus reticulata Gibberellin A81; gibberellin A9; isopropanol; citral; 6-demethoxytangeritin; tetramethylscutellarein
Citrus aurantium Apigenin 7-rutinoside; methyl salicylate; salvigenin; cyclohexane; benzeneacetaldehyde; o-isopropenyl toluene

for predicting currently unknown plant-metabolite relations,
we focused on only smaller metabolite groups and empiri-
cally considered the metabolite groups of size no more than
eight.

In summary, we follow the following steps to improve
prediction accuracy.

Step 1. We select a group of plants that are in the same cluster
according to our approach and at the same time belong to the
same genus or family. Let us call such a group 𝑆.

Step 2. We determine the set (𝐾) of structurally similar
metabolite groups of size no more than eight such that each
metabolite group is associated with at least two plants in 𝑆.

Step 3. All the metabolites of a metabolite group in 𝐾 are
assigned to the plants in S which are associated with the
group. This process is repeated for each group in 𝐾.

Based on known information, however, we exclude some
metabolites that are mainly structure isomers from this pre-
diction process because some isomers are usually produced
by different pathways [43, 44]. We discuss this method with
an example as follows.

Predicting Metabolites for Citrus Plants. Six Citrus plants (Cit-
rus limon, Citrus aurantifolia, Citrus paradisi, Citrus sinensis,
Citrus reticulata, and Citrus aurantium) are considered an
excellent group in our classification (Group 1 in Table 1, we
call it group 𝑆) and belong to the same genus (Citrus). We
extract the set𝐾 ofmetabolite groups (with size nomore than
eight) in which each metabolite group is associated with at
least two plants in 𝑆. There is a total of 58 such metabolite
groups in𝐾. For each metabolite group in𝐾 which is related
to multiple plants, we can construct a plant-metabolite table.
Table 2 is a plant-metabolite table for a givenmetabolite group
that contains two metabolites, Limonene and Cyclohexane,
and their association to six plants in 𝑆. In Table 2, “1” means
that the metabolite is reported in the corresponding plant

and “0” means that the metabolite is unreported in that
plant.We treat all these unreported plant-metabolite relations
as currently unknown but actual relations. We repeat this
process for all 58 metabolite groups in 𝐾 and obtain a list of
unrecorded metabolites for the plants in 𝑆, which we show in
Table 3. Following thismethod,we canpredict some currently
unrecordedmetabolites and find some widespreadmedicinal
species that can be substitutions ofmore endangered relatives
currently being used [45].

Not all the predicted metabolites might actually be
produced in given plants because of the complexity of
metabolic pathway evolution. On the contrary, many true
relations could not be predicted due to the limitation of
the incomplete data source. However, with developments in
plant metabolomics, we may be able to add more plant-
metabolite relations in our analysis in the future and produce
better results. For other plant groups, we can also predict
numerous unrecorded metabolites. We list all the predicted
plant-metabolite relations in Supplementary Table 1.

3.5. Relationship between Metabolite Content and Uses of
Plants. Our unsupervised approach for classifying plants is
based on metabolite-content similarity using hierarchical
clustering. Our results substantially match those of tradi-
tional morphology-based taxonomy. However, our results
further reflect the usage patterns of plants.

The metabolite content of plants is always related to their
bioactive properties, and the similarity of the metabolite
content of plants can reveal their bioactive similarity. Gen-
erally, medicinal properties are not randomly distributed in
different classes of plants. Some plant classes are represented
by more medicinal plants than others. It is suggested that
there is a phylogenetic pattern in medicinal properties even
within one genus [45–47]. A similar distribution could also
be observed in our classification that plants with certain
uses are concentrated in the same group. Many plant groups
in our classification are of similar usage patterns. A plant
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Table 4: Resulting confusion matrix from support vector machine
(SVM) algorithm. 162 plants are labeled as edible (E),medicinal (M),
timber (T), landscaping (L), and poisonous (P), and SVMmodel was
constructed to classify them.

M E T L P Recognition rate [%]
M 81 0 0 0 0 100
E 1 47 0 0 0 97.9
T 6 0 8 0 0 57.2
L 8 1 0 5 0 35.7
P 4 1 0 0 0 0
Total: 162 plants. Accuracy: 87.0%.

is frequently related to multiple uses, but we only consider
the most common use in this paper. We collected all the
plant resource information fromvarious data sources, includ-
ing Wikipedia (https://www.wikipedia.org), and annotated
plants by their uses such as medicinal, edible, ornamental,
forestry, poisonous, and timber. Table 1 lists the usage patterns
of 216 plants. The economic uses of plants are represented
by different letters (E: edible, M: medicinal, L: landscaping,
including forestry and ornamental plants, T: timber, P:
poisonous, andW: wild plants that are not yet widely used by
humans). Eleven groups (ID: 1, 9, 10, 12, 13, 14, 15, 19, 26, 39,
and 40) involving 38 plants mostly consist of edible plants,
and 14 groups (ID: 2, 4, 6, 18, 21, 27, 29, 31, 36, 38, 41, 43,
44, and 48) involving 69 plants mostly consist of medicinal
plants. Moreover, 3 groups (ID: 8, 17, and 30) involving 10
plants mostly consist of landscaping or timber plants. This
implies that the proposed classification approach of plants is
consistent with their economic uses.

In this section, we investigate the relations between
usage patterns and metabolite content of plants using a
supervised classification technique. We considered every
metabolite group as a pathway pattern such that each group
can be used as a feature for classifying plants by their uses.
For this analysis, we considered 48 edible plants (E), 81
medicinal plants (M), 14 timber plants (T), 14 landscaping
plants (including forestry and ornamental plants), and 5
poisonous plants (P).We considered the plants that have both
edible and medicinal uses (plants with “E/M” in Table 1) as
medicinal plants. We applied an SVM algorithm to classify
the plants, using economic uses of plants as labels and
corresponding metabolite groups as features. Classification
performance was evaluated from the resulting confusion
matrix, as shown in Table 4.The rows of the confusionmatrix
indicate documented uses of plants and columns indicate the
predicted uses from the SVM algorithm. Recognition rate is
the proportion of correctly predicted plants corresponding to
a class.

We found that all the medicinal plants and all but one
edible plant were classified correctly. This implies that the
metabolite content of medicinal and edible plants substan-
tially differs. However, half the timber and landscaping plants
were classified as medicinal plants. Therefore, timber and
landscaping plants are somewhat related to medicinal plants
in terms of metabolite content. All the poisonous plants were
classified incorrectly: four plants were classified as medicinal

plants and one as edible. This implies that poisonous plants
are more similar to medicinal plants. Many poisonous plants
can be used in treating specific diseases if the doses are
carefully controlled [48]. In summary, edible plants represent
exclusive metabolite content and can be differently classified
from inedible plants. Furthermore,metabolite-content-based
classification also reveals the predictive power of medicinal
properties in bioprospecting. This indicates that our pro-
posed approach can be used for exploring nutritional or
medicinal properties of plants.

4. Conclusion

We proposed an approach for comparing the metabolite
content of plants and classifying plants by their metabolite
content. We showed that with this approach we can classify
plants similar to the traditional morphology-based plant
taxonomy. Naturally, this work can be generalized from
various perspectives. First, our approach can be regarded
as a novel chemosystematics method that can be used to
consider the global metabolite content of plants instead of
a group of metabolites as done in previous research. The
resulting classification is consistent with natural phylogenetic
and chemosystematics patterns of plants. Some deviations in
our classification from the NCBI taxonomy can be explained
in terms of bioactive similarity.Moreover, the complexity and
known extent of metabolite content vary for different plants.
We found that the Simpson coefficient can minimize the
effect of the unequal size of the metabolite content of organ-
isms and performs better in comparing metabolite content
of plants than the Jaccard coefficient, which has been widely
used as a similarity measure in various biological studies.

We also described a method for predicting unrecorded
metabolites by structurally similar metabolite groups and
phylogenetic relation of plants. With this method, we can
predict some unrecorded metabolites and find new edi-
ble/medicinal plants from wild plants that have not been
used by humans. Moreover, we studied the relation between
the metabolite content of plants and their economic uses.
We found that edible and medicinal plants represent unique
metabolic pathway patterns and can be classified with an
SVM algorithm with our integrated metabolite-content data.
Our proposed metabolite-content-based plant-classification
approach reveals the predictive power ofmedicinal properties
in bioprospecting.Theperformance of this approach depends
on the completeness of the metabolite-content data we use
becausemetabolite groups, whichwere regarded asmetabolic
pathway patterns in our research, have been extracted from
the background network of metabolites by using the DPClus
algorithm. Therefore, if we can add more plant-metabolite
relations, we can classify metabolites and species more
accurately. Also, metabolites along identical pathways always
correspond to high structural similarity. Our approach will
be useful for predicting metabolic pathways in plants.
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[7] A. Mano, T. Tuller, O. Béjà, and R. Y. Pinter, “Comparative clas-
sification of species and the study of pathway evolution based
on the alignment of metabolic pathways,” BMC Bioinformatics,
vol. 11, no. 1, article no. S38, 2010.

[8] C.-W. Chang, P.-C. Lyu, and M. Arita, “Reconstructing phy-
logeny from metabolic substrate-product relationships,” BMC
Bioinformatics, vol. 12, supplement, p. S27, 2011.

[9] C.-Y. Ma, S.-H. Lin, C.-C. Lee, C. Y. Tang, B. Berger, and C.-
S. Liao, “Reconstruction of phyletic trees by global alignment
of multiple metabolic networks,” BMC Bioinformatics, vol. 14,
supplement 2, article S12, 2013.

[10] R. Singh, “Chemotaxonomy: a tool for plant classification,”
Journal of Medicinal Plants, vol. 4, no. 2, pp. 90–93, 2016.

[11] M. Wink, “Evolution of secondary metabolites from an ecolog-
ical and molecular phylogenetic perspective,” Phytochemistry,
vol. 64, no. 1, pp. 3–19, 2003.

[12] Y. Shinbo, Y. Nakamura, M. Altaf-Ul-Amin et al., “KNApSAcK:
a comprehensive species-metabolite relationship database,” in
Plant Metabolomics, pp. 165–181, Springer, Berlin, Germany,
2006.

[13] F. M. Afendi, T. Okada, M. Yamazaki et al., “KNApSAcK family
databases: integrated metabolite-plant species databases for
multifaceted plant research,” Plant and Cell Physiology, vol. 53,
no. 2, p. e1, 2012.

[14] R. Hegnauer, “Chemical characters in plant taxonomy: some
possibilities and limitations,” Pure and Applied Chemistry, vol.
14, no. 1, pp. 173–187, 1967.

[15] E. Pichersky and D. R. Gang, “Genetics and biochemistry of
secondary metabolites in plants: an evolutionary perspective,”
Trends in Plant Science, vol. 5, no. 10, pp. 439–445, 2000.

[16] A. A. Abdullah,M. Altaf-Ul-Amin, N.Ono et al., “Development
and mining of a volatile organic compound database,” BioMed
Research International, vol. 2015, Article ID 139254, 13 pages,
2015.

[17] V. Marx, “Biology: the big challenges of big data,” Nature, vol.
498, no. 7453, pp. 255–260, 2013.

[18] M. Altaf-Ul-Amin, F. M. Afendi, S. K. Kiboi, and S. Kanaya,
“Systems biology in the context of big data and networks,”
BioMed Research International, vol. 2014, Article ID 428570, 11
pages, 2014.

[19] S. Ikeda, T. Abe, Y. Nakamura et al., “Systematization of the
protein sequence diversity in enzymes related to secondary
metabolic pathways in plants, in the context of big data biology
inspired by theKNApSAcKmotorcycle database,”Plant andCell
Physiology, vol. 54, no. 5, pp. 711–727, 2013.

[20] Y. Nakamura, F. Mochamad Afendi, A. Kawsar Parvin et al.,
“KNApSAcK metabolite activity database for retrieving the
relationships between metabolites and biological activities,”
Plant and Cell Physiology, vol. 55, no. 1, p. e7, 2014.

[21] E. E. Bolton, Y. Wang, P. A. Thiessen, and S. H. Bryant, “Pub-
Chem: integrated platform of small molecules and biological
activities,” Annual Reports in Computational Chemistry, vol. 4,
pp. 217–241, 2008.

[22] Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H.
Bryant, “PubChem: a public information system for analyzing
bioactivities of small molecules,”Nucleic Acids Research, vol. 37,
supplement 2, no. 2, pp. W623–W633, 2009.

[23] J. W. Godden, L. Xue, and J. Bajorath, “Combinatorial pref-
erences affect molecular similarity/diversity calculations using
binary fingerprints and tanimoto coefficients,” Journal of Chem-
ical Information and Computer Sciences, vol. 40, no. 1, pp. 163–
166, 2000.

[24] X. Chen and C. H. Reynolds, “Performance of similarity mea-
sures in 2D fragment-based similarity searching: comparison
of structural descriptors and similarity coefficients,” Journal of
Chemical Information and Computer Sciences, vol. 42, no. 6, pp.
1407–1414, 2002.

[25] M. Altaf-Ul-Amin, H. Tsuji, K. Kurokawa, H. Asahi, Y. Shinbo,
and S. Kanaya, “DPClus: a density-periphery based graph
clustering software mainly focused on detection of protein
complexes in interaction networks,” Journal of Computer Aided
Chemistry, vol. 7, pp. 150–156, 2006.

[26] S. Federhen, “The NCBI taxonomy database,” Nucleic Acids
Research, vol. 40, no. 1, pp. D136–D143, 2012.

[27] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

[28] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide
to support vector classification,” Tech. Rep., Department
of Computer Science, National Taiwan University, 2003,
http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf.

[29] Y. Cao, A. Charisi, L.-C. Cheng, T. Jiang, and T. Girke, “Chem-
mineR: a compound mining framework for R,” Bioinformatics,
vol. 24, no. 15, pp. 1733–1734, 2008.

[30] P. Willett, “The calculation of molecular structural similarity:
principles and practice,” Molecular Informatics, vol. 33, no. 6-7,
pp. 403–413, 2014.

[31] Y. C.Martin, J. L. Kofron, and L.M. Traphagen, “Do structurally
similar molecules have similar biological activity?” Journal of
Medicinal Chemistry, vol. 45, no. 19, pp. 4350–4358, 2002.

[32] Md. Altaf-Ul-Amin, M. Wada, and S. Kanaya, “Partitioning a
PPI network into overlapping modules constrained by high-
density and periphery tracking,” ISRN Biomathematics, vol.
2012, Article ID 726429, 11 pages, 2012.

[33] S. S. Choi, S. H. Cha, and C. C. Tappert, “A survey of
binary similarity and distance measures,” Journal of Systemics,
Cybernetics and Informatics, vol. 8, no. 1, pp. 43–48, 2010.

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf


12 BioMed Research International

[34] W. C. Fallaw, “A test of the Simpson coefficient and other binary
coefficients of faunal similarity,” Journal of Paleontology, pp.
1029–1034, 1979.

[35] H.-W. Ma and A.-P. Zeng, “Phylogenetic comparison of
metabolic capacities of organisms at genome level,” Molecular
Phylogenetics and Evolution, vol. 31, no. 1, pp. 204–213, 2004.

[36] K. Deyasi, A. Banerjee, and B. Deb, “Phylogeny of metabolic
networks: a spectral graph theoretical approach,” Journal of
Biosciences, vol. 40, no. 4, pp. 799–808, 2015.

[37] C.-C. Chang and C.-J. Lin, “LIBSVM: a Library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 3, article 27, 2011.

[38] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection
using second order information for training support vector
machines,” Journal of Machine Learning Research, vol. 6, pp.
1889–1918, 2005.

[39] E. Dimitriadou, K.Hornik, F. Leisch, D.Meyer, andA.Weinges-
sel, Misc Functions of the Department of Statistics (e1071), TU
Wien, Vienna, Austria, 2005.

[40] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai,
“Lethality and centrality in protein networks,” Nature, vol. 411,
no. 6833, pp. 41–42, 2001.

[41] F. B. Baker, “Stability of two hierarchical grouping techniques
Case I: sensitivity to data errors,” Journal of the American
Statistical Association, vol. 69, no. 346, pp. 440–445, 1974.

[42] T. Galili, “dendextend: an R package for visualizing, adjusting
and comparing trees of hierarchical clustering,” Bioinformatics,
vol. 31, no. 22, pp. 3718–3720, 2015.

[43] P. M. Dewick, Medicinal Natural Products. A Biosynthetic
Approach, John Wiley and Sons, Chichester, UK, 3rd edition,
2009.

[44] J. McMurry and T. Begley, The Organic Chemistry of Biological
Pathways, chapter 3, Roberts and Company Publishers, Engle-
wood, Colo, USA, 2005.

[45] C. H. Saslis-Lagoudakis, B. B. Klitgaard, F. Forest et al., “The use
of phylogeny to interpret cross-cultural patterns in plant use and
guide medicinal plant discovery: an example from pterocarpus
(leguminosae),” PLoS ONE, vol. 6, no. 7, Article ID e22275, 2011.

[46] N. Rønsted, M. R. E. Symonds, T. Birkholm et al., “Can
phylogeny predict chemical diversity and potential medicinal
activity of plants? A Case Study of Amaryllidaceae,” BMC
Evolutionary Biology, vol. 12, no. 1, article 182, 2012.

[47] M. Ernst, C. H. Saslis-Lagoudakis, O. M. Grace et al., “Evo-
lutionary prediction of medicinal properties in the genus
Euphorbia L.,” Scientific Reports 6, 2016.

[48] N. Tamilselvan, T. Thirumalai, P. Shyamala, and E. David, “A
review on some poisonous plants and their medicinal values,”
Journal of Acute Disease, vol. 3, no. 2, pp. 85–89, 2014.


