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Abstract 

The molecular complexity of cancer presents significant challenges to traditional therapeutic approaches, necessitating the development 
of innovative treatment strategies capable of addressing the disease’s dynamic nature and resistance mechanisms. Data-driven method
ologies, particularly those employing Artificial Intelligence (AI), hold substantial promise by advancing a comprehensive understanding of 
the intricate molecular and cellular mechanisms underlying cancer and supporting the development of adaptive, patient-specific 
therapeutic strategies. Initiated through the Mertelsmann Foundation, the Collaborative Research Institute Intelligent Oncology (CRIION) 
in Freiburg im Breisgau, Germany, aims to drive progress in AI-driven oncology. CRIION fosters global collaboration through initiatives 
like the Intelligent Oncology Symposium and supports multidisciplinary projects designed to integrate AI innovations into 
clinical workflows.
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Introduction
The field of oncology is undergoing a paradigm shift, with 
advancements in AI playing a pivotal role in this transformation 
[1–3]. Cancer, a leading cause of global mortality, is projected to 
affect 35 million individuals annually by 2050 [4]. One of the fore
most challenges in addressing this disease arises from its ex
traordinary molecular complexity. There are more potential 
combinations of cancerous mutations than atoms in the universe 
[5], highlighting the astronomical number of genetic variations 
that can drive cancer progression. Identifying the pathways re
sponsible for specific mutations is further complicated by the 
foundational principles of cancer biology, as outlined by Douglas 
Hanahan and Robert A. Weinberg in their seminal work 
Hallmarks of Cancer [6, 7]. The complexity of this task is analogous 
to finding a needle in a haystack, posing substantial hurdles to 
developing targeted therapeutic strategies.

In practice, the search for the right pathway is often infeasi
ble, and many cases, such as those of Acute Myeloid Leukemia 
(AML), follow a starkly defined course. AML, the deadliest form of 
leukemia, exemplifies the challenges of cancer treatment [8–10]. 
Despite aggressive therapeutic interventions, only about 30% of 

patients survive 5 years post-diagnosis, with survival dropping to 
10% for those over 65 years of age. Initial treatment typically 
involves the rapid initiation of chemotherapy with the aim of 
achieving remission. For those who respond, a consolidation 
phase follows to prevent relapse, yet the prognosis remains grim. 
Approximately half of the patients relapse within the first year, 
and this figure rises up to 80% within 5 years [11]. These relapses 
represent critical junctures in the patient journey, underscoring 
the limitations of current therapeutic strategies and the im
mense complexity of addressing the underlying biology of the 
disease. Furthermore, resistance to chemotherapy significantly 
reduces treatment options and increases the likelihood of re
lapse, particularly in older patients where treatment efficacy is 
already limited.

This emphasizes the urgent need for adaptive, personalized 
treatments capable of evolving over time to address the dynamic 
nature of cancer. One promising avenue lies in leveraging AI to 
guide treatment strategies tailored to individual patients. While 
such an approach might initially appear overly ambitious and 
subject to significant regulatory hurdles, precedents already ex
ist. For example, a medical device employing data-driven algo
rithms to adapt insulin delivery has received approval [12], 
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demonstrating the feasibility of adaptive treatments in principle. 
Applying similar methodologies to oncology, despite the addi
tional layers of complexity inherent in cancer therapies, offers a 
viable pathway forward. Initiated through the Mertelsmann 
Foundation, the Collaborative Research Institute Intelligent 
Oncology (CRIION) in Freiburg im Breisgau, Germany, has been 
established with the goal of advancing adaptive, AI-driven treat
ment strategies in oncology. By fostering interdisciplinary collab
oration and integrating innovative AI solutions, CRIION aims to 
address the dynamic challenges of cancer care and contribute to 
a future where therapies are tailored to the individual needs of 
each patient.

Roadmap for adaptive and 
personalized treatments
The development of adaptive treatment demands advancements at 
multiple levels. These include improvements in diagnosis, such as 
the detection and classification of cells and their states across mul
tiple scales, encompassing molecular, cellular, and multicellular 
levels [13]. It also involves modeling transitions influenced by ge
netic variation, natural processes, or engineered perturbations. 
Prognosis focuses on the prediction of cell and (immuno-)therapy 
response dynamics, future states and complex tumor microenvi
ronment interactions, agnostic to different drugs and dosages, guid
ing future data generation and in silico experimentation. 
Additionally, treatment strategies must integrate the ability to com
bine existing drugs effectively for individual treatment decisions, 
alongside the discovery and development of new drugs or 
neoantigen-based therapies. A critical component is the incorpora
tion of temporal factors into treatment strategies, to allow thera
pies to evolve continuously as the disease progresses and adapt 
dynamically to emerging resistances. Across all these areas, efforts 
must span multiple data modalities, integrating established meth
ods with innovations while also exploring entirely novel 
approaches. These efforts should aim to develop efficient and effec
tive solutions that enable fast and robust readouts with feasible re
source requirements, ensuring practical scalability and adaptability 
in real-world applications. This vision constitutes a broad roadmap 
with numerous incremental and transformative milestones to be 
achieved across these critical areas.

The need for multidisciplinary collaboration
Achieving this ambitious goal requires the collaboration of di
verse disciplines, including medicine and biology, hardware engi
neering, computer science and AI, while maintaining close 
supervision and engaging in formative discussions with fields 
such as ethics, law, and nursing sciences. However, each of these 
disciplines comes with its unique workflows and scientific cul
tures, necessitating the creation of a space where these perspec
tives can intersect, fostering mutual understanding and 
establishing a common language.

To foster mutual understanding and ensure close collabora
tion among all disciplines involved, an interdisciplinary frame
work (cf. Fig. 1) is essential to guarantee alignment among 
stakeholders [14]. This process begins with problem identifica
tion and brainstorming, where experts from various fields define 
key challenges and opportunities from their unique perspectives 
and expertise. The next step involves data assessment, focusing 
on evaluating data availability, quality, and quantity, as well as 
labeling practices and requirements. With these foundations in 

place, a formal problem definition is developed to align technical 
and clinical objectives.

Depending on the specific characteristics of the defined prob
lem—such as the number of prediction or decision steps involved, 
the complexity of expert judgments to be captured, and the avail
ability of labels and ground truth—expertise across the full spec
trum of AI methodologies is brought together within CRIION. 
Depending on the required expressiveness and feasibility of the so
lution, approaches span from classical machine learning algo
rithms [15, 16] to sophisticated deep function approximators [17], 
and from unsupervised [18] and supervised [19] learning to (inverse) 
reinforcement learning [20, 21]. Strategic emphasis is placed on the 
transferability and robustness of solutions, e.g. by leveraging gener
alization capabilities of foundation models [22], the improvement 
and scalability of explainability methods [23, 24], and carefully bal
ancing model expressiveness against computational cost. The inte
gration of complementary modules—such as prediction, decision 
support, and uncertainty estimation—is pursued to build coherent 
system-level solutions capable of robustly tackling variability, un
certainty, and heterogeneity, while accounting for the safety- 
critical nature of clinical and oncological decision-making.

Following this, model development and assessment are con
ducted, measuring both objective performance criteria and hu
man understanding of the results. Finally, the framework 
concludes with continuous deployment and real-world testing, 
where AI systems are integrated into clinical workflows and iter
atively improved for robustness through feedback from real- 
world applications, held-out test sets, and fundamental unit tests 
within allowed fluctuations.

Key desiderata for AI in oncology
Underlying this framework are four central desiderata:

1. Trustworthiness, emphasizing reliability, robustness, and 
safety in high-stakes medical applications. This includes re
specting ethical values and principles [25, 26] as well as re
producibility through automation. 

2. Efficiency, which aims to balance the data requirements of 
sophisticated AI systems with the challenges of data collec
tion and labeling in the wet lab. 

3. Explainability, to provide transparent and interpretable AI 
models [27] that foster trust among clinicians and patients. 

4. Accessibility, ensuring that research and technologies can be 
implemented across diverse clinical settings and popula
tions. Accessibility encompasses both AI applications and 
data management, enabling the sharing and use of datasets 
across different institutions. Supported initiatives, such as 
the FRAI.lab at the University Hospital Freiburg, focus on 
establishing robust medical data interfaces for hospitals, 
further enabling this goal. 

By adhering to the above mentioned guiding principles, this inter
disciplinary approach seeks to bridge the gap between cutting- 
edge innovation and meaningful patient impact in oncology.

Targeted research projects addressing 
clinical challenges
Building upon the outlined roadmap and guided by the key desid
erata, the Mertelsmann Foundation has funded several targeted 
research projects within CRIION. These projects, undertaken 
with research groups at the University Hospitals of Freiburg, 
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Augsburg, Basel, Frankfurt, and Zurich, the University of 
Freiburg, the Universities of Applied Sciences in Furtwangen and 
Munich, as well as industrial partners such as Labmaite GmbH, 
are designed to address specific challenges in developing adap
tive, personalized cancer treatments.

Enhancing diagnosis and prognosis
At the molecular level, efforts focus on integrating diverse data 
modalities, such as detecting disease signatures in immune rep
ertoires [15, 16, 28–30] and through liquid biopsies [31, 32]. These 
projects aim to develop diagnostic systems, exploring biomarkers 
that provide insights into immune responses and tumor genetics. 
At the cellular and multi-cellular levels, projects aim to enhance 
diagnostic precision by classifying stained cells across multiple 
scales [17, 22], using advanced imaging techniques and Machine 
Learning algorithms to achieve rapid readouts. These efforts con
tribute to the roadmap’s goal of improving diagnosis through de
tailed detection and classification of cells and their states. 
Expanding beyond stained fixed-cell images, CRIION is advancing 
into the realm of live-cell imaging [22], enabling the detection of 
dynamic cell states and transitions in live cells, which aligns 
with modeling transitions influenced by genetic variations and 
natural processes. Recognizing the importance of reducing the 
burden of data annotation for recorded images (posing a signifi
cant bottleneck in training AI models), there is a need to develop 
AI models that minimize data annotation requirements [18], 
making sophisticated AI systems more feasible in clinical settings 
where data is often scarce or expensive to obtain.

CRIION also aims towards forecasting cell dynamics over 
time. This predictive capability is crucial for prognosis, as it 
allows researchers to anticipate how cancer cells might evolve in 
response to treatments, thereby informing more effective thera
peutic strategies. Since explaining complex AI prediction models 
can help identifying novel AI-based biomarkers, CRIION investi
gates the development of novel explainability methods for state- 

of-the-art AI models, such as (vision) transformers. By enhancing 
the transparency of AI decision-making processes, this supports 
the desideratum of building trustworthiness in AI systems 
among clinicians and patients. Further, hardware development 
of devices and platforms is required to support the real-time 
monitoring and analysis required for adaptive treatments, en
hancing both the accessibility and practicality of these technolo
gies in clinical environments [33].

Treatment optimization
CRIION projects aim to create efficient active and offline learning 
methods for drug discovery [20], particularly in designing anti
body sequences with desired properties. By incorporating asyn
chronous wet lab interactions, these approaches facilitate a 
more dynamic and responsive drug development process, align
ing with the roadmap’s vision of adaptive treatments that evolve 
over time. Understanding that technological advancements must 
be accompanied by ethical considerations, particularly for treat
ment, CRIION contributes to laying an ethical framework for AI 
in oncology. This effort ensures that the deployment of AI in can
cer care adheres to ethical standards, addressing concerns such 
as patient privacy, data security, and informed consent, thereby 
reinforcing the desideratum of trustworthiness.

By anchoring these projects with junior professorships in core 
research areas and maintaining a strong connection with acade
mia and industry partners, CRIION ensures that its efforts are 
both cutting-edge and grounded in practical applicability. Each 
project contributes a vital component to the overarching goal of 
developing adaptive, personalized treatments, bringing oncology 
closer to a future where care is more effective, precise, and re
sponsive to individual patient needs. Translating research inno
vations into clinical practice is essential for improving patient 
outcomes in oncology. This process ensures that scientific dis
coveries and technological advancements directly benefit those 
affected by cancer.

Figure 1. Interdisciplinary framework for advancing AI-assisted oncology. The framework outlines a five-step process involving physicians, biologists, 
computer scientists, engineers and ethicists to develop and implement Machine Learning solutions in Translational Oncology. Key steps include 
problem identification (Step 1), data assessment (Step 2, Requirement I), formal problem definition (Step 3), model development and assessment (Step 
4, Requirement II), and continuous deployment emphasizing trustworthiness (Requirement III) and accessibility (Requirement IV, Step 5). This 
approach ensures clinically relevant, reliable, and widely adoptable solutions. The Figure contains AI-generated components created with DALL-E 2.

AI in optimized cancer treatment | 3  



The Intelligent Oncology Symposium: a 
platform for global collaboration
CRIION aims at fostering international collaborations and has 
created a network to facilitate the exchange of ideas and the 
identification of important research directions. To strengthen 
this mission, the Intelligent Oncology Symposium was established as 
a bi-yearly event, providing a platform for interdisciplinary dia
logue and global cooperation in AI-driven oncology. Over the 
course of two successful symposia, the events have welcomed 
several speakers from 9 different countries and more than 300 
attendees, emphasizing its role as a hub for international knowl
edge sharing.

Building on the urgent need for adaptive, personalized cancer 
treatments, the symposium brought together expertise from di
verse fields to address both foundational challenges and practi
cal applications. Discussions explored how AI can optimize 
diagnostic precision and therapeutic decisions [34–38], offering 
novel solutions to improve patient outcomes in oncology. This 
naturally led to examining how computational tools can provide 
deeper insights into the molecular and cellular complexities of 
cancer [39–42], bridging gaps in our understanding of disease 
mechanisms. These insights set the stage for addressing key reg
ulatory and ethical considerations [43–47], ensuring that AI solu
tions are both trustworthy and accessible for clinical use. The 
symposium also highlighted pathways for translating these 
advances into practice [48–52], emphasizing strategies to deploy 
AI effectively in real-world settings while accounting for the con
straints of healthcare systems and patient needs.

By fostering this multidisciplinary dialogue, the symposium 
underscores CRIION’s vision of integrating cutting-edge AI inno
vations with clinical expertise to develop adaptive, scalable, and 
equitable approaches to cancer care.

Conclusion: towards a future of adaptive 
cancer care
Artificial intelligence offers powerful tools to provide deeper 
insights into disease mechanisms of cancer. The roadmap pre
sented here highlights the importance of multidisciplinary col
laboration, combining expertise from medicine, biology, 
computer science, and engineering, while addressing ethical and 
regulatory considerations essential for clinical adoption. Initiated 
through the Mertelsmann Foundation, the interdisciplinary 
Collaborative Research Institute Intelligent Oncology (CRIION), strives 
to create an open and creative research network at the intersec
tion of Translational Oncology and Machine Learning for talents 
from around the globe in the heart of Freiburg, Germany. By be
ing home to targeted projects and hosting initiatives like the 
Intelligent Oncology Symposium, CRIION facilitates the exchange 
of knowledge and the development of practical solutions. With a 
strong focus on accessibility, CRIION aims to ensure that AI tech
nologies are both innovative and applicable across diverse 
healthcare settings, bringing us closer to improved outcomes and 
more equitable care for patients worldwide.
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