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Abstract: Pursuing a scalable production methodology for materials and advancing it from
the laboratory to industry is beneficial to novel daily-life applications. From this perspective,
chemical vapor deposition (CVD) offers a compromise between efficiency, controllability, tunability
and excellent run-to-run repeatability in the coverage of monolayer on substrates. Hence, CVD meets
all the requirements for industrialization in basically everything including polymer coatings, metals,
water-filtration systems, solar cells and so on. The Special Issue “Advances in Chemical Vapor
Deposition” has been dedicated to giving an overview of the latest experimental findings and
identifying the growth parameters and characteristics of perovskites, TiO2, Al2O3, VO2 and V2O5

with desired qualities for potentially useful devices.
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In a Chemical Vapor Deposition (CVD) process, the reactants are transported to the substrate
surface in the form of vapors and gases. Although there are exceptions, the vapor of the reactive
compound, usually an easily volatilized liquid or in some cases a solid, would sublime directly and is
generally prepared by injection of the liquid into solvent or heated evaporators [1]. The vapor is then
transported to the reaction zone by a carrier gas. The unwanted gas phase nucleation (homogeneous
reaction) in CVD can be eliminated through high carrier-gas flow rates, minimum temperatures and
cold wall reactors [2].

Would it be possible to assemble nanostructures with confined atomic level thickness, high specific
surface area and outstanding surface chemical states at large scale and low cost? CVD is compatible
with in-line manufacturing processes where material properties can be controlled with great accuracy,
varying growth parameters such as temperature, precursor composition and flow rate. There are
various CVD technologies including pulsed-pressure metal organic CVD, atmospheric pressure CVD,
atomic layer deposition, spray pyrolysis, plasma-enhanced CVD, aerosol-assisted CVD and so on.
There are so many variations on CVD technology because there is no possibility of direct control of the
basic processes occurring at the deposition surface. Some of the process technologies that influence
the materials’ basic characteristics and, as a consequence, their potential application, are included
in this Special Issue. The review article by Liu et al. [3] reported on the perovskite photovoltaic
materials, with an emphasis on their development through CVD to deal with challenges such as
stability, repeatability and large area fabrication methods. In this article, one can gain a clear picture of
the influence of different CVD technologies and how the experimental parameters can optimize the
perovskite materials for the respective devices.

Pulsed-pressure metal organic CVD (PP-MOCVD) can be utilized for the development of low-cost
coatings with both macro and micro-scale, three-dimensional features. Films such as TiO2 can be
uniformly deposited with control of the nanostructure dimension and the coating thickness [4].
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Towards this direction, Gorthy et al. [5] highlighted the urgent need for anti-microbial coatings due
to the pandemic of COVID-19 through the growth of nanostructured TiO2 onto handles, push-plates
and switches in hospitals. The morphology nanocharacteristic is believed to be the key function for
photocatalytic activity with enhanced durability.

CVD at atmospheric pressure (APCVD) is a thin film deposition process with typically high
deposition rates. It is an attractive method because it was designed to be compatible with industrial
requirements (up-scaling at low cost and high process speed) [6]. The optimization of APCVD towards
the development of high yield processes can result in the excellent controllability of the materials’
stochiometry, isolating different polymorphs of VO2 [7]. Among the various polymorphs of VO2,
only the monoclinic VO2 is a typical thermochromic material [7]. In particular, it is known to undergo
a reversible metal-to-semiconductor transition associated with a transformation from monoclinic to
tetragonal phase at a critical temperature [8]. Therefore, the utilization of a simple, low cost process
with up-scalable possibilities for the development of VO2 coatings in thermochromic windows is
a priority. In the review paper of Drosos et al. [1], the progress on experimental procedures for
isolating different polymorphs of VO2 is outlined. Additionally, the importance of understanding and
optimizing the behaviour of the materials supported by modelling studies is highlighted. In that way,
theory meets practice, whereas cross-check procedures take place in order to establish firm materials
with advanced characteristics.

Atomic layer deposition (ALD) is a process based on the gas phase chemical process in a sequential
manner. The majority of ALD processes occur at temperatures > 100 ◦C with an exception of Al2O3.
In particular, it can be accomplished with a variety of precursors, in relatively short times and at low
temperature [9]. Xia et al. [10] reported the potential to grow Al2O3 at 200 ◦C utilizing different Al
precursors via ALD. A consistent 0.12 nm/cycle on glass, Si and quartz substrates was demonstrated to
give complex nanostructures with conformity, uniformity and good thickness control as a protection
layer in photoelectrochemical water splitting.

Spray pyrolysis is a process in which a precursor solution is atomized through a generating
apparatus, evaporated in a heated reactor and decomposed on the top of the substrate into particles
and thin films [11]. It is proven to be very useful for the preparation and the design of functional
and versatile classes of materials at low cost and easy processing. This process can result in materials
with enhanced electrochemical performance for electrochromic applications combined in layered and
composite forms for higher reflective property, electrochemical stability and faster electrochromic
response [12,13]. In Mouratis et al.’s letter [14], a new approach regarding the development of V2O5

electrochromic thin films at 250 ◦C using ammonium metavanadate in water as precursor is shown.
The precursor concentration can affect the morphology of the oxides, resulting in a large active surface
area suitable for electrochromic applications.
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