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ABSTRACT: The energetic viability of the previously proposed biogenetic pathway for the formation of two unique
monoterpenoid indole alkaloids, voacafricine A and B, which are present in the fruits of Voacanga africana, was investigated using
density functional theory computations. The results of these calculations indicate that not only is the previously suggested pathway
not energetically viable but also that an alternative biosynthetic precursor is likely.

■ INTRODUCTION
Antibiotic resistance has contributed to an increasing interest
in the development of plant-based antibiotics. Plant-derived
natural products have been used in traditional medicine since
ancient times. For example, Voacanga africana (Apocynaceae)
is a flowering small tropical tree native to West Africa. Its root
bark is used to treat diarrhea in Kinshasa,1 while its stem bark
has been used in the treatment of leprosy, diarrhea, ulcers,
generalized edema, and microbial infections in Côte d’Ivoire,
Ghana, Cameroon, and Congo.2,3 Additionally, in Cameroon,
the fruits, leaf extracts, and seed extracts are used to treat
orchitis, gonorrhea, and tooth decay, respectively.4−8 Most of
the applications of V. africana are linked to its antimicrobial
properties.9,10 Pharmacological studies have found that the
main bioactive compounds that are responsible for its success
as a traditional medicine are monoterpenoid indole alkaloids
(MIAs).11 In a recent study,12 the fruits of V. africana were
investigated and two MIAs, called voacafricine A and
voacafricine B (Scheme 1), were isolated and shown to
possess antibacterial activity against Staphylococcus aureus and
Salmonella typhi bacteria. This study suggested a plausible
biogenetic pathway (Scheme 1) involving 19-epi-voacristine as
a precursor. This 6/5/7/6/6 pentacycle is a major indole
alkaloid present in V. africana.13 Curious about the geometric
constraints these polycyclic structures would impose on a
rearrangement such as that proposed, we evaluated the
energetic viability of the proposed process using density
functional theory calculations to determine which elementary
steps, if any, would require enzymatic intervention.14−16

In the proposed pathway,12 dehydration of 19-epi-voacris-
tine generates 4,20-didehydro-voacangine (Scheme 1). The
introduction of hydroxyl groups to the C-18 and 20 positions
of 4,20-didehydro-voacangine forms a diol intermediate, which
could be protonated to form A in anticipation of water loss.
Loss of water and cleavage of the C-16−C-21 bond leads to
proposed intermediate B, which could reclose (via N-4 attack
on C-16) to form intermediate C. The conversion of A to C
was our focus. Intermediate C could then be transformed to
voacafricine A via epoxidation, intramolecular nucleophilic
substitution, and ester hydrolysis and voacafricine B via
deoxygenation.
Computational Methods. All calculations were per-

formed with Gaussian16.17 Geometry optimizations were
performed using mPW1PW91/6-31+G(d,p), a level of theory
that has been used to model many carbocation rearrange-
ments.18 Calculations were performed in the gas phase, water,
and chloroform. Calculations with implicit solvents were
performed using the Polarizable Continuum Model
(PCM).19 Continuum dielectric environments corresponding
to two solvents were used: water (ε = 78.36), a very polar
solvent, and chloroform (ε = 4.71), a nonpolar solvent with a
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dielectric constant that falls within the range of estimates for
enzyme active sites.20 Structures also were optimized at the
B3LYP-D3(BJ)/6-311+G(d,p)21 and M06-2X/6-311+G-
(d,p)22 levels to compare geometries and relative energies.
For key transition structures (TSs), which were confirmed to
have single imaginary frequencies, intrinsic reaction coordi-
nates (IRCs) were computed to verify the minima to which
they are connected.23 All energies given are free energies at
room temperature, except those in the IRC plots, which are
electronic energies. CylView2.024 was used to generate three-
dimensional molecular images.

■ RESULTS AND DISCUSSION
The computed free energy profile for the conversion of A to C
in water (see the SI for results in the gas phase and
chloroform) is given in Figure 1, and TS geometries are
shown in Figure 2. On the basis of our results, the conversion
of A to B cannot occur in a single step, but rather it would
involve three discrete chemical steps.
First, the loss of water is facilitated by a nearby tertiary

amine, which displaces the water to form an aziridinium ion
(A1). The A → A1 reaction is predicted to have a low barrier
(∼10 kcal/mol). Polycyclic natural product-derived aziridi-

nium ions have been described previously.25 Shown in Figure 3
is the computed structure of intermediate A1. All four N−C
distances in A1 are close to each other and are in the range
expected for typical N−C single bonds (ranging from 1.47 to
1.53 Å). While some C−N−C bond angles in A1 are distorted,
this structure does not show the geometric features expected
for a nonclassical ion and instead resembles a classical
aziridinium ion, similar to other polycyclic natural product-
derived aziridium ions.25

Second, cleavage of the C-16−C-21 bond coupled to a 1,2-
shift of C-16 to C-20 and cleavage of the C-20−N-4 bond
leads to A2. To characterize the synchronicity of these bond-
forming/breaking events, the IRC for the A1 → A2 reaction
(Figure 4) was analyzed in detail (Figure 5).26−29 Before
[TS2]‡ is reached, the N-4−C-20 bond breaks, leading to a
TSS that resembles a hyperconjugated but classical alkyl cation
(Figures 2 and 4). Subsequently, a 1,2-alkyl shift process
ensues as the C-16−C-21 and C-16−C-20 bonds break and
form synchronously. The resulting cation is in conjugation
with the N-4 lone pair, leading to a shortening of the N-4−C-
21 bond. The A1 → A2 reaction is predicted to have a barrier
of ∼30 kcal/mol, which, based on the analysis above, appears
to arise primarily from C−N bond cleavage. The magnitude of
this barrier indicates that if this pathway is followed, enzyme-

Scheme 1. Proposed Biogenetic Pathway to Voacafricine A and B Starting From 19-epi-voacristine
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induced barrier lowering would be required, either by selective
stabilization of [TS2]‡, selective destabilization of A1, or both.
Third, cleavage of the C-16−C-20 bond, promoted by π-

electron donation from the indole, generates intermediate B.
This step is predicted to be endergonic and to have a barrier of
∼20 kcal/mol.
Conversion of B to C is predicted to proceed directly, as

suggested previously, with a low barrier (∼7 kcal/mol).
However, the overall conversion of A1 to [TS4]‡ is predicted

to involve a barrier of ∼26 kcal/mol, again pointing to the
necessity of enzymatic intervention.
Thus, there is a problem with the A → C pathway: two

barriers >25 kcal/mol are encountered en route to C. Reducing
these through enzymatic intervention is not impossible but is a
lot to ask of Nature. Nonetheless, we examined this possibility
using “theozyme” calculations.30,31 Since the A1 → A2 barrier
was predicted to be the largest, we focused on its reduction.
We examined complexes of A1 and [TS2]‡ with one or two
water molecules (also models of hydroxyl-containing enzyme

Figure 1. Relative free energies (PCM(water)-mPW1PW91/6-31+G(d,p), kcal/mol) of species involved in the A → B → C pathway.

Figure 2. Geometries of optimized TSs from Figure 1. Selected distances shown on the three-dimensional molecular images are in Å.
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sidechains), formate (a simple model of Asp and Glu),
trifluoroacetate (a model of Asp and Glu that accounts for pKa
lowering in an enzyme), and benzene (a model of aromatic
enzyme sidechains). In none of these cases did the predicted
A1 → A2 barrier drop below 24 kcal/mol (see the Supporting
Information for details). While these results do not definitively
rule out the possibility of extreme enzymatic barrier lowering,
we consider it unlikely. In addition, alternative mechanisms
connecting A to C were considered, but none were found to
have lower barriers than that discussed above (see the

Supporting Information for details). It is notable, however,
that natural products with skeletons similar to that of B but
derived from different precursors have been described.32

■ CONCLUSIONS
Using DFT calculations, a proposed rearrangement mechanism
involved in the biosynthesis of voacafricine A and B was
examined and found not to be energetically viable. Additional
calculations addressing the potential for lowering the barrier
for this process through selective transition state stabilization

Figure 3. Computed structure of intermediate A1 [mPW1PW91/6-31+G(d,p)]. Selected distances are provided in Å.

Figure 4. IRC plot obtained [PCM(water)-mPW1PW91/6-31+G(d,p)] for the formation of intermediate A2. Energies for IRC points are
electronic energies in kcal/mol relative to the reactant.
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by an enzyme did not reveal an array of potential active site
groups that would lower the barrier into a biologically
reasonable range. Given these results, and our inability to
find an alternative path connecting the same reactants and
products, we suggest that alternatives to structures A and/or C
be considered.
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