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Abstract: The three-amino-acid-loop-extension (TALE) superfamily genes broadly existed in plants,
which played important roles in plant growth, development and abiotic stress responses. In this
study, we identified 68 Glycine max TALE (GmTALE) superfamily members. Phylogenetic analysis
divided the GmTALE superfamily into the BEL1-like (BLH/BELL homeodomain) and the KNOX
(KNOTTED-like homeodomain) subfamilies. Moreover, the KNOX subfamily could be further
categorized into three clades (KNOX Class I, KNOX Class II and KNOX Class III). The GmTALE genes
showed similarities in the gene structures in the same subfamily or clade, whose coding proteins
exhibited analogous motif and conserved domain compositions. Besides, synteny analyses and
evolutionary constraint evaluations of the TALE members among soybean and different species
provided more clues for GmTALE superfamily evolution. The cis-element analyses in gene promoter
regions and relevant gene expression profiling revealed different regulating roles of GmTALE genes
during soybean plant development, saline and dehydration stresses. Genome-wide characterization,
evolution, and expression profile analyses of GmTALE genes can pave the way for future gene
functional research and facilitate their roles for applications in genetic improvement on soybean in
saline and dehydration stresses.

Keywords: soybean; TALE; genome-wide identification; evolutionary analyses; expression analyses;
plant development; abiotic stresses

1. Introduction

The homeobox genes broadly exist in eukaryotes and play an important role in plant
growth and development [1]. Early research divided the plant homeobox genes into 11
classes, including HD-ZIP, WOX, NDX, PHD, PLINC, LD, DDT, SAWADEE, PINTOX,
KNOTTED-like homeodomain (KNOX) and BLH/BELL homeodomain (BEL1-like) [2].
Importantly, the KNOX and BEL1-like homeodomains can be further loop-connected by
three extra amino acid residues and formed the three-amino-acid-loop-extension (TALE)
superclass homeodomain, which is crucial for the regulations of diverse plant biological
processes [3,4].

The KNOX proteins usually contain four domains: KNOX1, KNOX2, ELK, and KN
homeodomain. In Arabidopsis, the KNOX genes were further classified into three classes
(Class I, Class II and Class III) based on their gene structure characteristics and expression
patterns [3,5–7]. There were four genes in the Arabidopsis KNOX Class I clade, AtSTM,
AtKNAT1, AtKNAT2 and AtKNAT6, which displayed distinct expression patterns and
functions in the meristems [8–10]. For instance, AtKNAT2 showed expression in the inter-
nal vegetative shoot apical meristem (SAM) and participated in carpel development [11].
Besides, AtSTM was proved to be associated with the shoot apical meristem formation
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during embryogenesis [12]. By contrast, the KNOX Class II genes were detected expres-
sions in multiple tissues. Previously, the KNOX Class II genes, AtKNAT7, PoptrKNAT7,
GhKNAT7-A03 and OsKNAT7 were reported to be crucial for cell elongation and secondary
cell wall (SCW) biosynthesis in Arabidopsis, poplar, cotton and rice, respectively [13–15].
Interestingly, the KNOX Class III members were only found in dicotyledons. The KNOX
Class III clade of Arabidopsis only contained one gene (AtKNATM) that affected the leaf
polarity and leaf development [16]. Likewise, BEL1-like proteins also played important
roles in plant growth and development. In Arabidopsis, there were 13 BEL1-like members
and large-scale yeast two-hybrid experiments showed they generally were able to interact
and form heterodimers with at least one KNOX protein [17,18]. An early study reported
that the AtBLH1 protein cooperated with the AtKNAT3 protein to regulate Arabidopsis seed
germination and seedling development [19]. Recently, some GhBEL1-like proteins were
turned out to interact with the GhKNAT7 homologs and influenced the fiber SCW biosyn-
thesis network in cotton [14]. In summary, the TALE superfamilies exhibited functional
and regulating roles in plant development and different biological processes.

By comparison, gene function studies on soybean TALE superfamily members were
rarely reported: GmBHL4 protein was demonstrated to heterodimerize with the GmSBH1
protein and modulated soybean plant growth, high temperature and humidity stress re-
sponses [20], and the ectopic expression of GmKNT1 in Arabidopsis was able to alter of leaf
morphology and flower identity [21]. Despite these studies, our understanding of TALE
superfamily members in soybean is still very limited. With the rapid developments of the
whole genome sequencing technologies, distinct soybean gene families like GRAS [22],
HD-ZIP [23], WOX [24], WRKY [25], NAC [26], MYB [27] and ARF [28], were reported and
systematically characterized. However, investigations on the Glycine max TALE (GmTALE)
superfamily genes are still lacking. In this study, we identified 68 GmTALE superfam-
ily members and explored their phylogenetic relations, gene structures, motif patterns,
conserved domain patterns, chromosomal distributions and gene duplication events. More-
over, we conducted synteny analyses and evolutionary constraint evaluations of the TALE
members among soybean and different species. Besides, the cis-elements in the promoter
regions of the GmTALE genes were also investigated. Soybean is a worldwide economic
crop that abundant in high-quality oil and protein [29,30], which is sensitive to the effects of
abiotic stress and belongs to the group of crops that are less drought and saline tolerant [31].
Importantly, a recent study in poplar comprehensively analyzed the TALE gene family and
turned out that 11 poplar TALE genes were responsive to saline stress [1]. In the current
research, we carried out gene expression profiling in tissues or organs during soybean
plant development, saline and dehydration stresses. To further explore the expression
patterns of GmTALE genes in different tissues during saline and dehydration stresses,
12 representative genes from distinct GmTALE subfamilies or clades were selected and
performed the quantitative RT-PCR analyses. In all, we conducted a comprehensive study
on GmTALE superfamily members, which facilitated future functional studies on GmTALE
genes and may directly or indirectly improve soybean genetic improvement in saline and
dehydration stresses.

2. Results
2.1. Identification of TALE Superfamily Members in Soybean

In this study, 68 GmTALE genes were identified from the soybean Wm82.a2.v1 genome
on JGI Phytozome 13 (https://phytozome-next.jgi.doe.gov/, accessed on 15 April 2021),
and referring to the nomenclature of TALE genes in poplar [1], we named them GmTALE1
to GmTALE68 according to their gene coordinate (Table S1). Among the identified GmTALE
genes, 66 genes were located on the 20 distinct soybean chromosomes. The remaining two
genes, Glyma.U009200.2.Wm82.a2.v1 and Glyma.U039200.1.Wm82.a2.v1, were mapped on
scaffold_21 and scaffold_44 of the soybean genome and were designated as GmTALE67
and GmTALE68, respectively.

https://phytozome-next.jgi.doe.gov/
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Concomitantly, the fundamental characteristics of the GmTALE family members were
explored and listed in Table S1 including the open reading frame (ORF) length, the protein
size (aa, amino acid), the isoelectric point (pI), the molecular weight (MW), the subcellular
localization and the conserved domain compositions. As is shown in Table S1, the protein
sizes of the GmTALE members varied from 83 aa (GmTALE61) to 795 aa (GmTALE43) and
were corresponding to the MW ranged from 9514.28 Da to 87,161.19 Da. The pI values
spanned from 4.43 (GmTALE28) to 8.94 (GmTALE44). Subcellular location predictions
indicated that the GmTALE proteins (64 members) were mainly located in the nuclear
region. Besides, three GmTALE members (GmTALE8, GmTALE20 and GmTALE29) were
speculated in the cytoplasmic region, and one member (GmTALE61) was predicted in the
extracellular region. And the gene coding sequences and protein sequences of the GmTALE
members were listed in Table S2.

2.2. Phylogenetic Analysis and Classification of GmTALE Members

To categorize the GmTALE proteins, the protein sequences of 68 identified GmTALE
and the 22 reported AtTALE in Arabidopsis (Table S3) were aligned to build the maximum
likelihood (ML) phylogenetic tree with the best scoring model JTT + G + I model (Figure 1).
Referring to the classification in Arabidopsis, the 68 GmTALE family members were evenly
divided into the BEL1-like subfamily and the KNOX subfamily (Table S1 and Figure 1) [4].
Besides, the 34 KNOX subfamily members were further classified into three classes, includ-
ing KNOX-Class I (18 members), KNOX-Class II (13 members) and KNOX-Class III (three
members) [4].
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Figure 1. Unrooted phylogenetic tree of three-amino-acid-loop-extension (TALE) proteins in soybean
and Arabidopsis. By using MEGA 7.0, the multiple protein sequences in two species were aligned
with the MUSCLE method, and the tree was built used the maximum likelihood (ML) method with
the best scoring JTT + G + I model. The tree was further categorized into the KNOX and BEL1-like
subfamilies. All the GmTALE proteins have been emphasized in red.
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2.3. Gene Structures and Motif Compositions of GmTALE Members

To gain more insight into the potential relationship between gene structure-function
and the evolution process of GmTALE members, we investigated gene structures (the
exon-intron patterns and the conserved domain compositions) of the identified GmTALE
members (Figure 2). For the exon-intron patterns, the GmTALE genes displayed one to
six exons (one GmTALE gene contains one exon; three GmTALE genes contain three exons,
39 GmTALE genes contain four exons, 17 GmTALE genes contain five exons and eight
GmTALE genes contain six exons). GmTALE genes classified in the same subfamily showed
similar gene structures (Figure 2b). Notably, most genes in the BEL1-like subfamily (except
for GmTALE26) uniformly contained four exons. Moreover, the conserved domains of
GmTALE members were also depicted (Figure 2b). As a whole, most GmTALE members
(except for GmTALE61) contained the Homeobox_KN domains. While GmTALE members
in the BEL1-like subfamily harbored POX domains, and the KNOX1, KNOX2 and ELK
domains merely showed up in the KNOX subfamily. Importantly, the KNOX1 and KNOX2
domains were reported to compose the MEINOX domain, which mediated the formations
of heterodimers between KNOX and BEL1-like proteins [14,32].
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of GmTALE members. The phylogenetic tree was as built used the maximum likelihood (ML) method with the best scoring
JTT + G model. (b) Gene structures of GmTALE genes. Blue boxes represent the untranslated 5′- and 3′-regions; yellow
boxes indicate exons; black lines indicate introns. The numbers (0, 1, 2) indicate the phases of the introns. The diverse
conserved domains were represented with different colored boxes. (c) The motif patterns GmTALE members. Besides, the
length of relevant gene structures and motif components can be estimated with respective scales at the bottom of panels.

To better illustrate the conserved domain patterns of the GmTALE gene members,
we carried out motif scanning by setting the motif amount as 10 with the MEME online
software (https://meme-suite.org/meme/tools/meme, accessed on 15 April 2021). The
detailed information of the ten MEME-motifs was listed in Table S4. And the Seq Logos
of the MEME-motifs were depicted in Figure S1. A diagram was further constructed by
the ten scanned MEME-motifs (named Motif 1–10) in Figure 2c. Importantly, GmTALE
members within the same subfamily displayed similar motif compositions. Most BEL1-like
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subfamily members contained Motif 1, 2, 3, 7, 8, and 10, whereas the KNOX subfamily
members were associated with Motif 1, 3, 4, 5, 6 and 9. In particular, the different clades of
the KNOX subfamily exhibited diverse motif components. The KNOX Class I members
contained Motif 1, 4, 5 and 6. By contrast, the GmTALE members in the KNOX Class II
were associated with Motif 1, 3, 4, 6 and 9, while the KNOX Class III members were only
coupled with Motif 4 and 6. Interestingly, distinct GmTALE members showed different
motif constitutions, which paralleled to their conserved domain patterns. Taken together,
we summarized the subordinations between conserved domains and the MEME-motifs:
Motif 1, 3 and 8 corresponded to the Homeobox_KN domain; Motif 2, 7 and 10 were
associated with the POX domain; Motif 5 and 9 were correlated to the ELK domain; Motif
6 was linked to the KNOX1 domain and Motif 4 was correlated to the KNOX2 domain
(Table S4).

2.4. Chromosomal Distributions of GmTALE Genes

As is illustrated in Figure 3, the GmTALE genes were unevenly distributed on the
20 chromosomes (Chr01 to Chr20), scaffold_21 and scaffold_44 of the soybean genome.
Remarkably, Chr04 enclosed the most GmTALE genes (seven genes), whereas Chr20, scaf-
fold_21 and scaffold_44 respectively contained one gene. And the chromosome or scaffold
length did not present an apparent correlation with the number of GmTALE genes. To
better revealing the distributing tendency of GmTALE genes, a series of gradient colors
were endowed on soybean chromosomes or scaffolds, which were deduced from the gene
numbers in the 300-kb genetic intervals on different soybean chromosomes or scaffolds
(Table S5). Interestingly, most identified GmTALE genes tended to gather in the regions
with high gene density.
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Figure 3. Chromosomal distributions of GmTALE genes. Chromosomal names were placed at the left. The scale on left is in
megabases (Mb). Gradient colors from red to blue that attached to soybean chromosomes were corresponding from high to
low gene density by setting the estimating hereditary interval as 300 kb. The red color represented high gene density, and
the blue color represented low gene density. The blank regions on chromosomes were the genetic regions that lacked gene
distributing information. And the centromeres were depicted with black dots. Besides, the tandemly duplicated GmTALE
gene pairs were linked by red arcs.
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2.5. Duplication, Syntenic and Evolutionary Analyses of GmTALE Genes

Tandem and segmental duplication events were regarded as two major driving forces
in plant gene family expansions [33]. Referring to the former research, a 200-kb chromo-
somal region including two or more genes could be determined as a tandem duplication
event [34,35]. In this study, two tandem duplication events associated with four GmTALE
genes (GmTALE15/GmTALE16 and GmTALE24/GmTALE25) were detected on Chr04 and
Chr06 (Table S6). And the tandemly duplicated gene pairs were linked by the red arcs in
Figure 3. By contrast, segmental duplications resulted in a large amount of duplicated
chromosomal blocks in the genomes and often happened during polyploidization events
with chromosome rearrangements [36]. In total 91 segmental duplication events associated
with 63 GmTALE genes were dug throughout the soybean genome (Table S6). And the ho-
mologous GmTALE genes were further illustrated and jointed by red curves in the collinear
Circos plot in Figure 4. Compared to the tandem duplications, the segmental duplication
events mainly drove the expansion of GmTALE superfamily.
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To further explore the evolutionary clues of the TALE members among soybean
and other species, four dicots (Arabidopsis thaliana, Glycine soja, Vigna unguiculata and
Solanum lycopersicum) and two monocots (Oryza sativa and Sorghum bicolor) were applied
for the synteny analyses (Table S7). Correspondingly, 233, 129, 84, 66, 22 and 19 GmTALE
orthologous genes were identified in Glycine soja, Vigna unguiculata, Solanum lycopersicum,
Arabidopsis thaliana, Sorghum bicolor and Oryza sativa, respectively. And the outputting
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results were integrated into the comparative syntenic schematics in Figure 5. Besides, we
filtered the non-redundant GmTALE genes that exhibited the syntenic relationships among
soybean and the other six species (Table S8). A total of 67 GmTALE members (except for
GmTALE61) were found to be syntenic with Glycine soja (66 GsTALE members), Vigna
unguiculata (32 VuTALE members), Solanum lycopersicum (23 SlTALE members), Arabidopsis
thaliana (18 AtTALE members), Sorghum bicolor (10 SbTALE members) and Oryza sativa
(nine OsTALE members). And an interactive Venn diagram of the non-redundant GmTALE
genes throughout the different species was displayed in Figure S2. Notably, two GmTALE
members (GmTALE2 and GmTALE12) had syntenic pairs throughout all the six species,
which were further emphasized in bold in Table S8. The common orthologous gene pairs
throughout distinct species may be useful for conducting relevant evolutionary studies of
GmTALE genes.
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To illuminate the evolutionary constraints acting on the TALE superfamily, the Ka/Ks
(non-synonymous substitution/synonymous substitution) ratios of the TALE orthologous
gene pairs among soybean and the six species were calculated (Table S7). Moreover, the
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obtained Ka/Ks ratio values were depicted in the boxplot in Figure 6. Due to the lack of
calculated Ka/Ks ratio values, the results among soybean and the two monocots were
manually removed from the boxplot. As is shown in Figure 6, most of the orthologous
TALE gene pairs displayed Ka/Ks < 1, indicating that the soybean TALE superfamily
undergone strong purifying selective pressure during evolution among the dicots [22].
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2.6. Cis-Element Analyses of Soybean GmTALE Genes

The cis-elements play essential roles in the transcriptional regulation of gene expres-
sion [37]. In this study, the promoter region sequences (the 2000 bp upstream sequences
from gene initiation codons) of GmTALE genes were extracted for the cis-element analyses
(Table S9). Moreover, the discovered cis-elements were proportionally displayed in Fig-
ure S3. Remarkably, the cis-elements like light responsive, auxin responsive, gibberellin
responsive, abscisic acid responsive, MeJA responsive, defense and stress responsive,
drought inducibility and anaerobic induction broadly existed in the gene promoter regions
(Table S10). In summary, the acquired results demonstrated that GmTALE genes take poten-
tial roles in various biological processes, responses to plant hormones and abiotic stresses.

2.7. Expression Profiling of the GmTALE Genes in Different Soybean Tissues or Organs

The published RNA-seq data in SoyBase database (https://soybase.org/soyseq/,
accessed on 15 April 2021) were adopted to explore the expression profiles of the GmTALE
genes in different tissues or organs including young leaf, flower, one cm (centimeter) pod,
pod shell 10 DAF (days after flowering), pod shell 14 DAF, seed 10 DAF, seed 14 DAF, seed
21 DAF, seed 25 DAF, seed 28 DAF, seed 35 DAF, seed 42 DAF, root and nodule [38]. The
expression profiles of 64 GmTALE genes (except for GmTALE8, GmTALE29, GmTALE67
and GmTALE68) were extracted (Table S11). To better illustrate the expression variations
of the identified GmTALE genes, the acquired data were Log2 normalized to generate a
heatmap in Figure 7a. In general, GmTALE genes in the distinct subfamilies presented
diverse expression patterns. In the KNOX subfamily, most GmTALE genes in Class I and
Class III universally showed low expression levels, whereas some KNOX Class II members
(except for GmTALE61) tended to display relatively high gene expressions throughout

https://soybase.org/soyseq/
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tissues or organs. In the BEL1-like subfamily, the GmTALE genes in the same clade showed
similar expression patterns and tissue-preferences. For example, GmTALE3, GmTALE5,
GmTALE7, GmTALE22, GmTALE31, GmTALE37, GmTALE39 and GmTALE54 were clustered
in the same clade and displayed relatively high expression levels in nodule and root.
Another clade harbored GmTALE18, GmTALE26 and GmTALE59 universally displayed low
expression levels (Figure 7a), whereas its adjacent clade consisted of four GmTALE genes
(GmTALE9, GmTALE12, GmTALE35 and GmTALE64) was found to be high expression levels
by comparison.
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Figure 7. Expression profiling of GmTALE genes in various tissues or organs during soybean de-
velopment. (a) Hierarchically clustered expression profiles of GmTALE genes in various tissues or
organs during soybean development. DAF: days after flowering; cm: centimeter. (b) Gene expression
correlation heatmap of the expressed GmTALE genes in various tissues or organs during soybean
development. Yellow: positively correlated; blue: negatively correlated. The phylogenetic tree was
as built used the maximum likelihood (ML) method with the best scoring JTT + G model.
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Concomitantly, we calculated the correlation coefficients of the expressed GmTALE
genes to further illustrate expression patterns in tissues or organs (Table S12). Then the
acquired correlation coefficient matrix was recruited to draw a heatmap that clustered by
the phylogeny of the GmTALE members (Figure 8b). To display the expression correlations
among diverse clades, the correlation heatmap was divided into different blocks with
the dotted lines based on the classification of the GmTALE subfamilies. Furthermore, we
enclosed the BEL1-like and KNOX subfamilies with the solid boxes and labeled their names
in bold in the heatmap. As a whole, both the positive and negative correlations broadly
existed and interlaced among the GmTALE members of internal or external subfamilies.
Notably, most GmTALE gene members in the KNOX Class I clade shared similar expression
patterns and exhibited positive correlations. Comparably, eight GmTALE gene members
(GmTALE3, GmTALE5, GmTALE7, GmTALE22, GmTALE31, GmTALE37, GmTALE39 and
GmTALE54) that clustered in one clade of the BEL1-like subfamily were broadly negatively
correlated with the GmTALE gene members both internal and external subfamilies, which
highlighted their different expression patterns. Overall, the disparity and similarity of gene
expression patterns in distinct tissues or organs may manifest the potential regulating roles
of the GmTALE genes during soybean plant development.
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clustered expression profiles of GmTALE genes in the soybean root during saline stress. Na: saline stress; Co: control.
(b) Hierarchically clustered expression profiles of GmTALE genes in the soybean root during dehydration. De: dehydration.
(c) Gene expression correlation heatmap of the expressed GmTALE genes in the soybean root during saline stress. Red:
positively correlated; green: negatively correlated. (d) Gene expression correlation heatmap of the expressed GmTALE genes
in the soybean root during dehydration. Orange: positively correlated; blue: negatively correlated. The phylogenetic tree
was as built used the maximum likelihood (ML) method with the best scoring JTT + G + I model.
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2.8. Expression Profiling of the GmTALE Genes in Soybean Root during Saline Stress and
Dehydration

Previously, the TALE genes were reported to be associated with the saline stress re-
sponse in poplar [1]. In the present study, we extracted the GmTALE gene expression
profiles in the soybean root during saline stress and dehydration from the former published
RNA-seq data [39]. As a result, the relevant expression profiles of 49 identified GmTALE
genes were extracted including four-time points (0 h, 1 h, 6 h and 12 h) under the abiotic
stress treatments (Table S13). Based on the Log2 normalized expression data, two heatmaps
were respectively depicted corresponding to the GmTALE gene expressions during saline
stress and dehydration in Figure 8a,b. In the KNOX Class I clade, most GmTALE genes (ex-
cept for GmTALE36, GmTALE50 and GmTALE65) displayed relatively low expression levels.
By contrast, considerable gene members in the KNOX Class II clade (except for GmTALE19)
and BEL1-like subfamily (except for GmTALE2, GmTALE16, GmTALE25, GmTALE26 and
GmTALE63) exhibited high gene expressions. Interestingly, the GmTALE genes with high
or low transcript levels showed similarities during saline stress and dehydration. More-
over, the gene expression heatmap was simultaneously row-scaled with the zero-to-one
method to show the expression variations of each GmTALE gene during saline stress and
dehydration (Figure S4). As a whole, different GmTALE genes exhibited various expression
patterns during the abiotic stresses.

Likewise, the gene expression correlation analyses during saline stress and dehydra-
tion were also conducted, and the acquired correlation coefficient matrixes were respec-
tively displayed in Tables S14 and S15. Accordingly, the correlation heatmaps for GmTALE
gene expression during saline stress and dehydration were built in Figure 8c,d. In general,
positive and negative correlations of gene expression were universally existed and inter-
laced among the GmTALE members of internal or external subfamilies. However, the gene
expression correlation patterns were diverse during the two abiotic stresses. For instance,
during saline stress, in the BEL1-like subfamily, GmTALE2, GmTALE16 and GmTALE25
showed broadly negative correlations with most GmTALE members in the BEL1-like sub-
family and the KNOX Class II clade compared to those during dehydration. In all, the
GmTALE genes distinctly expressed and responded to saline stress and dehydration with
different expression patterns.

2.9. Quantitative RT-PCR Investigations of GmTALE Gene Expression Patterns in Different
Tissues during Saline Stress and Dehydration

Taking the gene expression patterns during saline stress and dehydration (Figure S2)
as well as the cis-elements in gene promoter regions (Figure S3) into consideration, 12
representative GmTALE genes, whose expression levels were relatively high at diverse time
points, were carefully selected from different GmTALE subfamilies or clades and carried
the quantitative RT-PCR analyses. The specific primers of the selected genes were designed
and listed in Table S16. Quantitative RT-PCR assays were conducted to investigate the
selected gene expression patterns in leaf, stem and root tissues during saline stress and
dehydration (Figures 9 and 10).

Compared to the transcriptome data, we additionally analyzed the selected GmTALE
gene expressions in the leaf and stem tissues as well as explored the gene transcript levels
after 24 h (24-h) stress treatments. Overall, the relative expressions of selected GmTALE
genes significantly up-regulated at different time points, which indicated they were respon-
sive to the saline and dehydration stresses but under distinct response patterns (Figures 9
and 10). To better illustrate the diverse gene expression patterns of the selected GmTALE
genes throughout tissues and different abiotic stresses, we integrated the obtained quan-
titative RT-PCR results and constructed a gene expression cubic heatmap in Figure 11. It
is worth noting that the gene up-regulated levels under the abiotic stresses in stem tissue
universally lower than those in root and leaf tissues (Figure 11). To sum up, the selected
genes displayed distinct expression patterns during saline stress and dehydration in dif-
ferent soybean tissues, which may manifest their possible roles in responding to different
abiotic stresses.
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3. Discussion

The TALE superfamily genes were ubiquitously found in plant genomes, which
were crucial for regulating plant development, growth and stress responses [1,14]. With
the rapid developments of biotechnology and bioinformatic techniques in recent years,
the TALE gene members in Arabidopsis, potato, poplar and cotton have been genome-
wide identified and studied [1,4,14,40]. However, the genome-wide identification and
characterization of soybean TALE superfamily members are still lacking. In this study,
we carried out systematical identification and investigation on the GmTALE superfamily
members, including their phylogenetic relationships, gene structures, conserved domains
and motif patterns, gene chromosomal locations, gene duplication analysis, syntenic
analyses, evolutionary constraints evaluations and cis-elements analyses in gene promoter
regions. Besides, we also explored the expression patterns of the GmTALE genes in various
tissues during soybean development, saline stress and dehydration.

Comparably, the numbers of TALE superfamily members were varied in species.
Here, we obtained more TALE gene members in soybean (68 members) than those in
Arabidopsis (22 members), poplar (35 members), G. arboretum (46 members) and G. raimondii
(48 members) [1,4,14]. Whereas, compared to G. barbadense (88 members) and G. hirsutum
(94 members), soybean had fewer TALE genes [14]. Polyploidy occurred in the majority of
angiosperms and according to the overview of the sequenced plant polyploid genomes [41],
we speculated that the numbers of TALE genes were associated both with the species
genome sizes as well as their ploidy levels.

To explore the evolutionary correlations and classification of the 68 identified GmTALE
proteins, we constructed the ML-phylogenetic tree with the best scoring model. Referring
to the classification of TALE superfamily in Arabidopsis, the GmTALE members were
equally divided into the BEL1-like subfamily and the KNOX subfamily, and the KNOX
subfamily was further distributed into three classes. The TALE members in the same
clade of different species may indicate their analogous biological functions [22]. Notably,
each GmTALE subfamily or hereditary class had specific domains or motif combinations
(Figure 2), which also support our classification results. Specific domains or motifs were
reported to play important roles in DNA binding and protein interactions [42]. For instance,
the POX domains were exclusively existed in plant proteins and associated with homeobox
domains. In Arabidopsis, proteins containing the POX domains were included in the BEL1-
like proteins and reported to interact with KNAT2 and KNAT5 proteins and affected plant
development [4,17]. The ELK domain usually spanned about 21 amino acids and was
dubbed for a highly conserved series of Glu, Leu, and Lys amino acids. It could function as a
nuclear localization signal, which was also considered to act as a protein-protein interaction
domain [32,43–45]. The KNOX1 and KNOX2 domains together formed the MEINOX region.
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Importantly, KNOX1 played a role in suppressing target gene expression. KNOX2, essential
for function, was thought to be necessary for homo-dimerization [32]. The specific domain
or motif patterns of GmTALE members may suggest they have different functions, which
need to recruit future validations.

Similar to the cases in poplar and cotton, the protein sizes and molecular weights of
the TALE members in the BEL1-like subfamily of soybean are much larger than those in
the KNOX family (Table S1) [1,14]. Gene structure analysis showed that all GmTALE genes
contain introns. Previous studies demonstrated that the introns are crucial for the evolution
and generating of new gene family members [46,47]. Remarkably, considerable introns
were located in the 5′ UTR (untranslated region) of BEL1-like subfamily genes compared to
those of the KNOX subfamily (Figure 2). The intron distribution patterns of GmTALE genes
may provide valuable clues for investigating the evolution of GmTALE genes. Moreover,
GmTALE gene structures shared similarities in the same subfamily or clade, whereas, were
distinct in different subfamilies. The characteristic divergencies and consistencies of the
GmTALE members may also manifest their functional comparability and difference.

Plant genome evolutions often along with segmental and tandem duplications that
resulted in the expansions of different gene families [48]. Gene duplication analysis turned
out that most GmTALE genes were originated from segmental duplications (Table S6) that
highlighted the important roles of segmental duplications in gene family expansions [33,49].
To further investigate the evolution clues for GmTALE members, four dicotyledons and
two monocotyledons were recruited and performed the synteny analyses (Figure 5). We
detected more GmTALE orthologous genes in dicotyledons than those in monocotyledons.
Besides, Glycine max (soybean) and Glycine soja displayed the best synteny. The results
indicated that the syntenies among TALE superfamily members may parallel to the evolu-
tionary divergence of species. Importantly, GmTALE2 and GmTALE12 had syntenic pairs
throughout dicotyledons and monocotyledons, which demonstrated that these ortholo-
gous pairs are conserved and may already exist before the ancestral divergence [22,35].
Moreover, the syntenic gene pairs among diverse species may be beneficial for evolutional
research on GmTALE superfamily.

The cis-element analyses in gene promoter regions revealed the different roles of the
identified GmTALE genes in regulating soybean development and responses to various
abiotic stresses (Figure S3). By exploring the expression patterns of GmTALE genes during
developments and abiotic stresses in various organs or tissues, we acquired a series of
diverse transcript abundance (Figures 7a and 8a,b) [38,39]. Importantly, considerable
GmTALE genes in the BEL1-like subfamily and the KNOX Class II clade displayed high
gene expressions, which may manifest they were possibly key genes in regulating these
processes. Moreover, the gene expression correlations were also assessed and visualized
(Figures 7b and 8c,d). Correspondingly, the positive and negative correlations were broadly
detected and varied in distinct GmTALE gene subfamilies. Interestingly, despite relevant
GmTALE genes presented similarities in expressions (high or low) during saline stress and
dehydration, whereas the gene expression correlation patterns of GmTALE genes during
the stress treatments were different (Figure 8). Hence, we inferred that functional GmTALE
genes may broadly play roles in responding to saline stress and dehydration while under
different mechanisms.

Abiotic stresses, such as salinity, drought, high temperature, can decrease productivity
and cause considerable losses in crop yields [50]. In poplar and soybean, relevant TALE
genes were reported to be associated with the responses to distinct abiotic stresses [1,20,51].
In the current investigation, we further carried out the quantitative RT-PCR analyses to
assess the responses of representative GmTALE genes to saline stress and dehydration in
leaf, stem and root tissues (Figures 9–11). Importantly, the cubic heatmap integrated a global
view of the expression patterns of representative GmTALE genes responding to different
abiotic stresses. It is worth noting that GmTALE8 and GmTALE28 up-regulated both during
saline stress and dehydration throughout different tissues (Figure 11), which may indicate
they were the key responsive genes to the two abiotic stresses. In general, the up-regulated
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levels of the selected genes in root tissue at distinct time points of the quantitative RT-PCR
assays (Figures 9–11) were higher than those of the former transcriptome data (Table S13
and Figure 8) [39]. Besides, the selected GmTALE genes universally presented higher
expressions in the root and leaf tissues than in stem tissue during the stress treatments.
Compared to the stem tissue, the root and leaf tissues may more sensitive to abiotic stresses.
And the GmTALE genes might be extensively mobilized in root and leaf tissues to respond
to the abiotic stresses. Taken together, the GmTALE genes have underlying regulatory roles
in responding to abiotic stresses. And the variations in temporal and spatial expression
patterns of the core functional GmTALE genes may be regarded as an effective regulation
strategy in response to abiotic stresses.

This study provided a comprehensive investigation of GmTALE superfamily, which
may be beneficial to gain insights into their biological functions. However, the current study
only provided a preliminary characterization of GmTALE genes, and further functional
validation should be carried out to understand the different roles of GmTALE genes in
various biological processes.

4. Materials and Methods
4.1. Identification of Soybean TALE Superfamily Members

To identify the TALE superfamily members in soybean, we downloaded the soybean
genome (the Glycine max Wm82.a2.v1 version) and its annotation file from JGI Phytozome
13 with the accession number of ACUP02000000 (https://phytozome-next.jgi.doe.gov/
info/Gmax_Wm82_a2_v1, accessed on 15 April 2021). The AtTALE protein sequences
in Arabidopsis were obtained from the TAIR (https://www.arabidopsis.org/, accessed on
15 April 2021) and as the query sequences to extract the most representative GmTALE
protein (the longest protein) sequences by TBtools software (https://github.com/CJ-Chen/
TBtools/releases, accessed on 15 April 2021) [52]. The acquired GmTALE protein se-
quences were further verified by NCBI BLASTp (https://blast.ncbi.nlm.nih.gov/Blast.
cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome, accessed on
15 April 2021). The conserved domains of GmTALE proteins were explored in the NCBI-
Conserved Domain database (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi,
accessed on 15 April 2021). Proteins that lack TALE-associated domains were manually
removed. The molecular weight (MW), isoelectric point (pI) and amino acid (aa) numbers
of the identified GmTALE proteins were obtained from ExPASy (http://expasy.org/tools/,
accessed on 15 April 2021) online tools. Besides, the CELLO software (http://cello.life.
nctu.edu.tw/, accessed on 15 April 2021) was adopted for the GmTALE gene subcellular
localization predictions.

4.2. Phylogenetic Analysis and Classification of GmTALE Members

The GmTALE and AtTALE protein sequences were together aligned by the MUSCLE
method in MEGA 7.0 (https://www.megasoftware.net/, accessed on 15 April 2021) with the
default parameters [53,54]. The aligned sequences were applied to build the phylogenetic
tree that used the maximum likelihood (ML) method with the best scoring JTT + G + I model
followed by the parameters: partial deletion, and 1000 bootstrap replications. Then the
GmTALE proteins were classified referring to the category of TALE proteins in Arabidopsis [4].
By using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/, accessed on 15 April
2021), the preliminary phylogenetic tree was visually examined, and different subfamilies
were highlighted in distinct colors. Adobe Illustrator CC 2019 (https://www.adobe.com/
products/illustrator.html, accessed on 15 April 2021) was adopted to modified the text sizes
and draw different colored arcs surrounding different GmTALE subfamilies.

4.3. Gene Structure and Conserved Motif Analyses

Based on the soybean genome annotation file and acquired conserved domain infor-
mation, we depicted the GmTALE gene structures by TBtools [52]. The MEME v5.1.1 online
tool (http://meme-suite.org/tools/meme, accessed on 15 April 2021) was recruited for
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conserved motifs scanning by setting motif numbers as ten. Moreover, the Seq Logos of
ten obtained MEME-motifs were visualized by TBtools. The output graphs were further
modified by Adobe Illustrator CC 2019.

4.4. Chromosomal Location, Duplication and Synteny Analyses of GmTALE Genes

According to the soybean genome annotation file, we obtained the 300-kb hereditary
interval gene densities and further transformed them into the gradient-colored heatmap
on soybean chromosomes or scaffolds. The chromosomal locations of GmTALE genes were
displayed by TBtools [52]. The segmentally and tandemly duplicated homologous GmTALE
genes were detected by TBtools. In the gene chromosomal location plot and the collinear
Circos plot, the duplicated GmTALE gene pairs were linked by the red arcs and cruves. To
investigate the synteny among the TALE members of soybean and other species, we further
downloaded the genome data and the gene annotation files of species including Arabidopsis
thaliana (TAIR annotation release 10), Glycine soja (V1.1), Vigna unguiculata (V1.1), Solanum
lycopersicum (ITAG3.2), Oryza sativa (MSU annotation release 7.0) and Sorghum bicolor
(V3.1.1). The genome and its annotation file of Arabidopsis thaliana were downloaded from
JGI Phytozome 13 (https://phytozome-next.jgi.doe.gov/info/Athaliana_TAIR10, accessed
on 15 April 2021). The genome and its annotation file of Glycine soja were downloaded from
JGI Phytozome 13 (https://phytozome-next.jgi.doe.gov/info/Gsoja_v1_1, accessed on
15 April 2021). The genome and its annotation file of Vigna unguiculata were downloaded
from JGI Phytozome 13 (https://phytozome-next.jgi.doe.gov/info/Vunguiculata_v1_1,
accessed on 15 April 2021). The genome and its annotation file of Solanum lycopersicum
were downloaded from JGI Phytozome 13 (https://phytozome-next.jgi.doe.gov/info/
Slycopersicum_ITAG3_2, accessed on 15 April 2021). The genome and its annotation file of
Oryza sativa were downloaded from JGI Phytozome 13 (https://phytozome-next.jgi.doe.
gov/info/Osativa_v7_0, accessed on 15 April 2021). The genome and its annotation file
of Sorghum bicolor were downloaded from JGI Phytozome 13 (https://phytozome-next.
jgi.doe.gov/info/Sbicolor_v3_1_1, accessed on 15 April 2021). The synteny analyses and
the depiction of syntenic graphs of multiple species were performed by TBtools. Further-
more, the overviews of the GmTALE genes that contained orthologous genes in different
species were presented by the Venn diagram. The ratios of nonsynonymous substitution
(Ka) to synonymous substitution (Ks) of GmTALE orthologous gene pairs were calculated
by TBtools, and the obtained results were illustrated with the box plot by Graphpad Prism 8
(https://www.graphpad.com/scientific-software/prism/, accessed on 15 April 2021).
The derived graphs were further edited by Adobe Illustrator software CC 2019.

4.5. Cis-Element Analyses of GmTALE Gene Promoter Regions

The upstream 2000 bp sequences of the identified GmTALE genes were extracted
by TBtools [52]. Then the extracted sequences were submitted to PlantCARE (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 15 April 2021) to
analyze the cis-elements in the gene promoter regions [55]. The diagram of cis-elements in
the GmTALE gene promoter region was depicted by TBtools and was further modified by
Adobe Illustrator CC 2019.

4.6. Expression Profiling Analyses of GmTALE Genes

The expression profiles of GmTALE genes during plant development were obtained
from the recorded RNA-seq data on Soybase (https://soybase.org/soyseq/, accessed on
15 April 2021) [38]. The expression profiles of GmTALE genes in soybean roots during saline
stress and dehydration were derived from published RNA-seq data [39], the RNA-seq reads
deposited in Sequence Read Archive database (https://www.ncbi.nlm.nih.gov/sra, ac-
cessed on 15 April 2021) under the accession numbers: SRX531069, SRX531070, SRX531071,
SRX531072, SRX531073, SRX531074, SRX531075, SRX531076, SRX531077, SRX531078,
SRX531079, SRX531080, SRX531081, SRX531082, SRX531083, SRX531084, SRX531085,
SRX531086, SRX531087, SRX531088 and SRX531089. And all the transcript levels of the
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identified GmTALE genes were assessed by the RPKM (reads per kilobase per million)
values. To better illustrate the expression variations of the identified GmTALE genes, the
extracted RPKM values were Log2 normalized to depict relevant heatmaps of GmTALE
gene expression profiles by TBtools [52]. To conduct the gene expression correlation analy-
ses, the obtained RPKM values were further submitted to the Omicshare online software
(https://www.omicshare.com/tools/Home/Soft/getsoft, accessed on 15 April 2021) to
gain the expression correlation matrixes of the GmTALE genes. Based on the obtained
correlation matrixes, we illustrated associated gene expression correlation heatmaps by
TBtools. Cubic heatmaps for representative selected GmTALE genes during abiotic stress
treatments throughout leaf, stem and root tissues were depicted by TBtools. The output
graphs were modified by Adobe Illustrator CC 2019.

4.7. Plant Material, Abiotic Stress Treatments and Samplings

Soybean cultivar Williams 82 was adopted as the plant material in this study. Plant
material was planted and harvested in 2019 at Dangtu Experimental Station, National
Center for Soybean Improvement, Nanjing Agricultural University, Dangtu, Anhui, China.
The health and plump soybean seeds were germinated in sterilized vermiculite for three
days at 26 ◦C in the dark. Then the uniform soybean seedlings were transferred into the
pots with a mixture of humus and vermiculite (1:2, v/v). The seedlings were cultivated in a
greenhouse at 26 ◦C with photoperiod 16-h light/8-h dark and 60% relative humidity until
the V1 growth stage (the first trifoliate growth stage). For the saline treatment, the seedlings
were removed from the pots and held with the foam floats in the 100 mM NaCl solution.
For the dehydration treatment, the seedlings were removed from the pots and left in the
air at room temperature (22 ◦C) under water-limiting conditions to impose dehydration
stress [39,56]. Samplings were focused on the leaf, stem and root tissues (weighed about
0.1 g of the tissues) after 0, 1, 6, 12 and 24 h after the abiotic stress treatments. Samples
collected and frozen in liquid nitrogen and then stored at −80 ◦C. Five seedlings were
set as one independent biological replicate per time point and sampled under different
treatments. And three independent biological replicates were conducted at each time point.
Total RNA was isolated from the frozen tissues.

4.8. RNA Isolations and Quantitative RT-PCR Analyses

Three independent biological replicates were applied for RNA isolations and quanti-
tative RT-PCR analyses. The RNAprep pure plant kit (TIANGEN, Beijing, China) was used
for total RNA isolations. The extracted RNA was quality tested by electrophoresis and
then quantified with a Nanodrop ND-1000 spectrophotometer (Thermo Scientific, Wilm-
ington, DE, USA) [22]. The HiScript II 1st Strand cDNA Synthesis Kit (Vazyme Biotech,
Nanjing, China) was adopted for the conversion of total RNA to cDNA library [22]. To
further explore the expression patterns of the GmTALE genes in different tissues during
abiotic treatments, we selected 12 representative GmTALE genes from different GmTALE
subfamilies or clades for quantitative RT-PCR analyses. The specific quantitative RT-PCR
primers were designed by Primer Premier 5 software (http://www.premierbiosoft.com/
primerdesign/, accessed on 15 April 2021). The quantitative RT-PCR assays were operated
on a BioRad CFX96 real-time system (CFX96 Touch, Bio-Rad, Hercules, CA, USA) with
SYBR qPCR Master Mix (Vazyme Biotech, Nanjing, China) [22]. The housekeeping GmActin
gene was determined as an internal control. Triplicate quantitative assays were performed
on each cDNA sample and analyzed by a 2−∆∆CT method [57].

4.9. Statistical Analyses

Student’s t-test was performed by Graphpad Prism 8 software. p-value cut-off of 0.05
was the criterion to determine whether the test was significantly different or not. All the
error bars were standard deviation (SD) from the independent biological replicates.
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5. Conclusions

In the present study, we identified 68 TALE superfamily members in soybean, which
were unevenly distributed on 20 chromosomes and two scaffolds of the soybean genome.
The GmTALE members were further evenly divided into the BEL1-like subfamily and the
KNOX subfamily. Besides, the KNOX subfamily was separated into Class I, Class II and
Class III clades. Gene structures, conserved domain patterns and motif compositions of the
GmTALE members in the same subfamily or clade displayed universal similarities, which
may indicate their analogous biological functions. Gene duplication analyses demonstrated
that segmental duplications took a major role in the expansion of GmTALE superfamily
and generating novel GmTALE genes. Moreover, the syntenic and evolutionary analyses of
the TALE proteins among soybean and multiple species provided more detailed evidence
for GmTALE gene evolution. Cis-element analyses in gene promoter regions, as well as
transcriptome data and quantitative RT-PCR investigations, manifested that the GmTALE
genes play potential roles during soybean development and abiotic stress responses. To
conclude, our work laid a foundation for the functional study of GmTALE genes in the
future, which may enlighten soybean genetic improvement in resistance to saline and
dehydration stresses.
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aa amino acid
At Arabidopsis thaliana
BEL1-like BLH/BELL homeodomain
CDS Coding sequences
cm Centimeter
DAF Days after flowering
Gm Glycine max
Gs Glycine soja
Ka Non-synonymous substitution
KNOX KNOTTED-like homeodomain
Ks Synonymous substitution
ML Maximum likelihood
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MW Molecular weight
ORF Open reading frame
Os Oryza sativa
pI Isoelectric point
RPKM Reads per kilobase per million
SAM Shoot apical meristem
Sb Sorghum bicolor
SCW Secondary cell wall
SD Standard deviation
Sl Solanum lycopersicum
TALE Three-amino-acid-loop-extension
UTR Untranslated region
Vu Vigna unguiculata
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