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Objectives: Osteosarcoma is a malignant bone tumor with poor outcomes

affecting the adolescents and elderly. In this study, we comprehensively

assessed the metabolic characteristics of osteosarcoma patients and

constructed a hexosamine biosynthesis pathway (HBP)-based risk score

model to predict the prognosis and tumor immune infiltration in patients

with osteosarcoma.

Methods: Gene expression matrices of osteosarcoma were downloaded from

the Therapeutically Applicable Research to Generate Effective Treatments

(TARGET) and Gene Expression Omnibus (GEO) databases. GSVA and

univariate Cox regression analysis were performed to screen the metabolic

features associated with prognoses. LASSO regression analysis was conducted

to construct the metabolism-related risk model. Differentially expressed genes

(DEGs) were identified and enrichment analysis was performed based on the risk

model. CIBERSORT and ESTIMATE algorithms were executed to evaluate the

characteristics of tumor immune infiltration. Comparative analyses for immune

checkpoints were performed and the Tumor ImmuneDysfunction and Exclusion

(TIDE) algorithm was used to predict immunotherapeutic response. Finally, hub

genes with good prognostic value were comprehensive analyzed including drug

sensitivity screening and immunohistochemistry (IHC) experiments.

Results: Through GSVA and survival analysis, the HBP pathway was identified as

the significant prognostic related metabolism feature. Five genes in the HBP
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pathway including GPI, PGM3, UAP1, OGT and MGEA5 were used to construct

the HBP-related risk model. Subsequent DEGs and enrichment analyses

showed a strong correlation with immunity. Further, CIBERSORT and

ESTIMATE algorithms showed differential immune infiltration characteristics

correlated with the HBP-related risk model. TIDE algorithms and immune

checkpoint analyses suggested poor immunotherapeutic responses with low

expression of immune checkpoints in the high-risk group. Further analysis

revealed that the UAP1 gene can predict metastasis. IHC experiments

suggested that UAP1 expression correlated significantly with the prognosis

and metastasis of osteosarcoma patients. When screening for drug sensitivity,

high UAP1 expression was suggestive of great sensitivity to antineoplastic drugs

including cobimetinib and selumetinib.

Conclusion: We constructed an HBP-related gene signature containing five

key genes (GPI, PGM3, UAP1, OGT, MGEA5) which showed a remarkable

prognostic value for predicting prognosis and can guide immunotherapy and

targeted therapy for osteosarcoma.
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Introduction

Osteosarcoma (OS), a malignant bone tumor affecting the

adolescents and elderly, shows a poor outcome because of high

metastatic rates. The prevalence of OS indicates that it is the

most common malignant bone tumor with a 4.7 per million

incidence rate (1). Additionally, more than 30% of these patients

show metastases at initial diagnosis. Although OS with an

integrated treatment plan shows a 5-year survival rate of 70%,

once the patient develops metastasis or the treatment fails, the

overall survival rate drops significantly to 20-30% (2). Tracing

back to the source, the primary cause of treatment failure and

mortality in patients with OS is the high metastatic potential in

combination with the high tumoral heterogeneity. The

complicated etiology and the high degree of heterogeneity

make the prognostic prediction for OS difficult. Moreover, it is

also imperative that novel prognostic models be developed for

OS, due to limited treatment strategies.

Recent research has shown that cancer is a metabolic disorder.

In 1920s, Otto Warburg discovered that tumor cells are mainly

dependent on glycolysis even in the presence of abundant oxygen,

or the Warburg effect (3). With the development of biochemical

and molecular biological techniques, research on the metabolic

characteristics of tumor cells has constantly updated the

understanding of the phenomenon and mechanism underlying

tumor-related metabolic changes across the different stages of

tumorigenesis (4). For examples, androgen receptor-mediated
02
metabolic reprogramming in prostate cancer promotes the

metabolic conversion in cancer cells to oxidative phosphorylation,

further leading to increased dependence of oxidative

phosphorylation and lipogenesis (5). In breast cancer, notably, the

inhibition of glycolysis promotes the transformation of the breast

cancer stem cells from a quiescent, mesenchymal-like state to an

epithelial-like state, referred to as epithelial-mesenchymal transition

(6). However, interestingly, glucose not only generates energy

through metabolic pathways such as glycolysis but also is

metabolized by the hexosamine biosynthesis pathway (HBP),

leading to the synthesis of uridine diphosphate N-acetyl-

glucosamine (UDP-GlcNAc) and plays an important role in the

post-translational modification of proteins (7). Cancer cells

upregulate the flux of the HBP pathway and expression of UDP-

GlcNAc by increasing the uptake of glucose and glutamine, further

promoting signaling pathways related to tumorigenesis through

protein N-linked and O-linked glycosylation processes (8).

Therefore, targeting the metabolic characteristics of cancer is a

promising new strategy for tumor treatment. However, the

correlation of metabolism reprogramming with prognosis in OS

remains poorly understood.

The tumor immune microenvironment (TIME) comprises

tumor cells, immune cells, interstitial cells and extracellular

components. TIME reflects the characteristics of immune

infiltration in the tumor microenvironment and plays an

important role in the occurrence and development of tumors (9).

Immune cells in the TIME may have anti- or pro-tumor functions,
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while these two types of cells play different roles across stages of

tumor progression and have been proven to be important in

predicting the prognosis of OS patients (10). Moreover,

immunotherapy represented by immune checkpoint inhibitors

(ICIs) significantly extend the overall survival of patients with

advanced cancer (11). Therefore, evaluating the TIME

characteristics in the development of OS is helpful to improve the

prognosis of the patients through individualized immunotherapy.

In this study, we comprehensively assessed the metabolic

characteristics of OS patients according to metabolic pathways

and further constructed an HBP-based risk score model to

predict the prognosis and tumor immune infiltration. Our

findings provide new clues for examining the potential

molecular mechanisms underlying the link between metabolic

reprogramming and tumor immune infiltration, which may help

guide the targeted therapy and immunotherapy for OS.
Methods

Collection of gene expression datasets

Clinical data and gene expression matrices of OS were

downloaded from the Therapeutically Applicable Research to

Generate Effective Treatments (TARGET, https://ocg.cancer.gov/

programs/target/projects/osteosarcoma) and Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) databases.

A total of 86 OS samples with complete survival data acquired

from the TARGET database provided by the National Cancer

Institute were defined as the training cohort. The GSE21257

dataset was uploaded by Marieke L Kuijjer (12), comprising 53

samples and the corresponding survival data were defined as the

verification cohort following integration.
Gene set variation analysis (GSVA) and
survival curves

GSVA was performed for evaluating the pathway-based

prognostic signature in OS (13). As for the definition of

metabolic pathways, a total of 114 pathways was screened (14)

from The Kyoto Encyclopedia of Genes and Genomes (KEGG).

The metabolic pathway score of each OS sample was calculated

using the R package “GSVA”. Furthermore, the “survival” R

packages was used to calculate the impact of metabolic pathway

scores on survival using the coxph() function, and P< 0.05 were

considered statistically significant.
Construction of the prognostic HBP-
related gene signature

In this study, 7 genes involved in the HBP pathway were used

as candidate prognostic biomarkers for prognosis prediction in
Frontiers in Immunology 03
OS. Based on R package “glmnet”, these candidate biomarkers

were used to obtain an optimal prognostic signature for OS

following the LASSO-Cox regression analysis (15). Lastly, we

built an optimal prognostic model with 5 genes by selecting the

penalty parameter l, correlated to the minimum 10-fold cross-

validation of the model. The HBP-related prognostic risk score

formula for each patient was as follows:

Risk score = Sn
1 coef i �  exprið Þ

while coefi is the coefficient of gene i, and expri is its relative

expression. For the Target-OS dataset, the median value of risk

scores in all patients was defined as the cut-off and the patients

were then divided into two groups— “high-risk” and “low-risk”.

The same cut-off value was used for the GEO21257 dataset. In

addition, this risk model was tested for survival prediction ability

using the R package “ROCR” by analyzing the 1, 3, and 5-year

receiver operating characteristic (ROC) values both in the

training and verification cohorts.
Identification of DEGs and functional
enrichment analysis

DEGs were identified using the R package “limma”. Genes with a

fold-change greater than 1.5 and P-value less than 0.05 were defined

as significant DEGs between the high- and low-risk groups. The R

package “ggplot2” was used to visualize these results. Gene ontology

(GO) and Reactome pathway enrichment analysis were performed

for these DEGs using the Database for Annotation, Visualization, and

Integrated Discovery (DAVID, https://david.ncifcrf.gov) tool, and

FDR< 0.05 was considered statistically significant.
Immune landscape analysis and
prediction of immunotherapy responses

Using an online analytical platform CIBERSORT (https://

cibersortx.stanford.edu/), the compositional proportion of

immune infiltrating cells in the OS tissues was calculated

based on the characteristic gene set of 22 immune cell

subtypes (16). According to the relative abundances of 22

immune infiltrating cells, the differences in immune cell

infiltration between the high-risk and low-risk groups were

analyzed. The ESTIMATE algorithm was utilized to calculate

the immune score, stromal score, ESTIMATE score and tumor

purity according to the relative abundances of immune

infiltrating cells and stromal cells in OS patients. The

expression of six common immune checkpoints (PD-1, CTLA-

4, TIM3, LAG3, TIGIT and BLTA) were compared according to

clusters and risks (17). Furthermore, to predict the immune

benefits of ICI therapy, the T-cell exclusion, dysregulation and

TIDE scores were calculated using to the TIDE online algorithm

(http://tide.dfci.harvard.edu/). P value < 0.05 was regarded as a
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statistically significant difference between high- and low-risk

groups using independent Student’s t-test.
Construction of predictive nomogram

Nomogram or the alignment diagram is used to visualize the

relationship among different variables in the prediction model

by constructing a multi-factor regression model and integrating

scores according to the contribution of each influencing factor to

the outcome events. In the present study, all independent

prognostic factors and clinical data were included to construct

the prognostic nomogram for prediction of 3- and 5-year overall

survival of patients in the Target-OS dataset. Calibration curves

were plotted to evaluate the performance of the nomogram.
Screening key metastasis-
associated genes

To screen the key genes in the risk model, the metastatic

status was compared between the high- and low-risk groups

using the Chi-square test. The ROC curve for metastatic

prediction using each HBP-related gene was visualized both in

the training and verification cohorts. Genes with AUCs greater

than 0.65 were considered the key genes for the prediction of

metastasis in OS patients.
Immunohistochemical analysis

In the present study, the protein expression of UAP1 in OS

tissues was assesed by immunohistochemistry (IHC) staining. A

total of 56 OS tissues with corresponding clinical follow-up

information were obtained from The First Affiliated Hospital of

Sun Yat-sen University. All the patients signed an informed consent

form. The slides were incubated with anti-UAP1 following the

manufacturer’s instructions. The IHC staining scores for UAP1

were assessed by two independent pathologists. Based on the

percentage of positively stained cells, the score was calculated as

— 1 for 0-25%; 2 for 26-50%; 3 for 51-75%; and 4 for 75-100%. The

score of staining intensity was ranged from 0 to 3. The final IHC

staining score for each tissue was obtained bymultiplying the scores

of positively stained cells and the scores of staining intensity. All

patients were divided into two groups base on UAP1 expression to

plot the overall survival curve and lung metastasis-free survival

curve, using P< 0.05 as the significance threshold.
Drug sensitivity analysis

The gene expression dataset and the drug sensitivity

information for NCI‐60 cancer cell lines were obtained from
Frontiers in Immunology 04
CellMiner (https://discover.nci.nih.gov/cellminer). After data

integration, a Pearson correlation analysis between drug

sensitivity and the expression of prognostic HBP-related

candidate hub genes was conducted. P-value < 0.05 with

correlation ≥ 0.30 was considered statistically significant.
Western blot analysis

Seven human OS cell lines, U2OS, SAOS2, HOS, 143B,

SJSA1, MG63 and G292, were obtained from American Type

Culture Collection (ATCC). All cell lines were cultured in

Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Grand

Island, NY, USA) supplemented with 10% fetal bovine serum

(Gibco, Grand Island, NY, USA) at 37°C and 5% CO2. The

protein samples extracted from different OS cells were resolved

by SDS-PAGE and transferred subsequently onto polyvinylidene

fluoride membranes, and blocked in 5% skim milk at room

temperature for 1 h. The membranes were incubated with the

primary antibody against UAP1 (Mouse monoclonal, 67545-1-

Ig; Proteintech) at 4°C for 6 h, following which, these were

incubated with secondary antibodies at room temperature for

1 h. Finally, the immunoreactive signals on the membranes were

visualized using an enhanced chemiluminescence kit.
Cell CCK-8 assay

Four antitumor drugs including cobimetinib, copanlisib,

se lumet in ib , and tamoxifen were purchased from

MedChemExpress (Shanghai, China). For the CCK-8 assay,

OS cells in the logarithmic growth phase were plated in 96-

well plates and treated with different concentrations of drugs.

After 72 h of drug induction, 10 μL CCK-8 solution was added to

the cells and incubated for 2.5 h. The optical density (OD) at 490

nm was measured on a microplate reader. The IC50 value was

calculated on the GraphPad Prism 9 software by non-linear

regression analysis.
Results

Overexpression of the HBP pathway is
related to poor prognosis in OS

To detect the distinct metabolism pathways associated with

prognosis, GSVA was conducted for 114 metabolic pathways

obtained from KEGG. Eight metabolic pathways were screened

in the Target-OS (Figure 1A), including primary bile acid

biosynthesis, caffiene metabolism, transsulfuration, nicotinate

and nicotinamide metabolism, hexosamine biosynthesis,

porphyrin and chlorophyll metabolism, folate biosynthesis and

ADP-ribosylation. In the GSE21257 cohort (Figure 1B), nine
frontiersin.org

https://discover.nci.nih.gov/cellminer
https://doi.org/10.3389/fimmu.2022.1028263
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2022.1028263
metabolic pathways were associated significantly with prognosis,

including nicotinamide adenine metabolism, aldosterone

biosynthesis, cortisol biosynthesis, folate one carbon

metabolism, thromboxane biosynthesis, estradiol biosynthesis,

re t ino l metabol i sm, hexosamine biosynthes i s and

selenocompound metabolism. The HBP pathway was

commonly observed for both datassets and predicted poor

prognosis of OS patients. Kaplan-Meier survival analyses of

HBP pathway in the Target-OS cohort (Figure 1C) and the

GSE21257 (Figure 1D) cohorts showed that patients with low

GSVA scores showed better overall survival than those with high

scores (P = 0.044 in Target-OS; P = 0.015 in GSE21257). These

results demonstrated that the HBP pathway plays a major role in

OS, particularly in the prognosis of OS patients.
Construction of the HBP-related five-
gene signature for prognosis
prediction for OS

To assess the prognostic prediction value of the HBP pathway

in OS, a risk signature model was constructed (Figures 2A, B). Five

genes with the best lambda value were selected following LASSO

analysis for establishing the risk model, including PGM3, OGT,

MGEA5, UAP1 and GPI. A risk score was assigned to each patient

according to the constructed prognostic model (Risk score =

0.0026*GPI expression + 0.017*MGEA5 expression +

0.042*OGT expression + 0.057*PGM3 expression +

0.008*UAP1 expression) and patients in the Target-OS

(Figure 2C) and the GSE21257 (Figure 2E) cohorts were

categorized into high- and low-risk groups. The levels of gene

expression in the HBP-related gene signature and the survival data

for each patient in the Target-OS (Figure 2C) and GSE21257

(Figure 2E) cohorts were visualized on a heatmap. The

constructed risk model showed promising predictive ability over

a period of 5 years in both cohorts according to ROC analysis, the

AUCs for 1-, 3-, and 5 years in the Target-OS cohort was 0.78,

0.63, and 0.70, respectively (Figure 2D), while the corresponding

values in the GSE21257 cohort were 0.74, 0.75, and 0.77

(Figure 2F). Moreover, the survival heatmap of all tumor types

from The Cancer Genome Atlas (TCGA) datasets showed

significant correlation between HBP-related genes and the

overall survival of patients (Figure 2G).
Functional characteristics of DEGs based
on the HBP-related risk model

Further analyses were conducted to reveal how the HBP-

related risk model impacted OS patients’ prognoses. First, the

levels of gene expression in the high- and low-risk groups were

compared to screen DEGs. As shown in Figure 3A, 3135 DEGs

were identified, among which 2412 were upregulated and 723
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were downregulated in the Target-OS cohort. In the GSE21257

cohort, 1238 DEGs were identified, of which 937 were

upregulated and 301 were downregulated (Figure 3B). The

intersection of the Venn diagram shows the number of

overlapping genes between both cohorts, and 76 genes were

commonly identified (Figure 3C). GO function enrichment

analysis indicated that DEGs were enriched in innate immune

response, identical protein binding, beta-amyloid binding,

inflammatory response (Figure 3D). The Reactome pathway

enrichment analysis indicated that DGEs was closely

associated with the immune system, innate immune system,

adaptive immune system, neutrophil degranulation, initial

triggering of complement and classical antibody-mediated

complement activation (Figure 3E). Therefore DEGs were

strongly associated with immunodeficiency in OS, thereby

likely contributing to a poor prognosis in these patients.
Differential immune cell infiltration
correlates with the HBP-
related risk model

The proportions of different immune cells types were

calculated by CIBERSORT and correlations among immune

cells were relatively weak, indicating weak interactions among

immune cells in OS (Figures 4A, C). After organizing the

immune infiltration patterns in patients in the Target-OS

(Figure 4B) and GSE21257 (Figure 4D) cohorts, the high- and

low-risk groups showed significantly different immune cell

infiltration profiles. The infiltration of resting CD4 memory T

cells, resting NK cells and activated NK cells differed

significantly between the high- and low-risk group in the

Target-OS cohort (Figure 4E). Moreover, in GSE21257, the

infiltration of plasma cells, resting CD4 memory T cells,

follicular helper T cells, gamma delta T cells and Neutrophils

differed significantly (Figure 4F).
Immune infiltration characteristics and
immunotherapeutic responses correlate
with the HBP-related risk model

The ESTIMATE algorithm was used to evaluate the immune

status and patients in the high-risk group showed lower stromal,

immune, and ESTIMATE (Figures 5A, B) scores. Moreover, the

efficacy of immunotherapy evaluated by TIDE analysis showed

that patients in the high-risk group were more likely to have no

response to immunotherapy as compared to those in the low-

risk group (Figure 5C). Moreover, the TIDE score and T-cell

exclusion score were significantly higher in the high-risk group

while the T-cell dysfunction score was low (Figure 5D). We

assessed the association between risk stratification and several

immune checkpoints, including PD-1, CTLA-4, TIM3, LAG3,
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TIGIT and BTLA. High TIM3 expression was observed in low-

risk patients both in Target-OS (Figure 5E) and the GSE21257

(Figure 5F) cohorts.
The HBP-related risk model is
independent prognostic factor and can
predict metastasis in OS

By integrating risk score, age, gender, and metastasis status, a

quantitative method was developed to create a nomogrammodel
Frontiers in Immunology 06
for predicting the overall survival of patients in the Target-OS

cohort (Figure 6A and Table 1). As shown in the calibration plot,

a good performance was achieved in predicting 3- and 5-year

survival probabilities (Figure 6B). In the Target-OS cohort,

higher fraction of metastasis was observed (Chi-square =

1.575, P = 0.210) among OS patients in the high-risk group

(30.2%) than those in the low-risk group (18.6%) (Figure 6C),

and consistent results were obtained in the GSE21257 cohort

(Chi-square = 3.847, P = 0.049) (Figure 6E). On comparing the

ROC curves of expressions of HBP-related genes for predicting

metastasis, UAP1 expression showed a high AUC score in both
B

C D

A

FIGURE 1

Identification of the HBP pathway associated with overall survival in OS patients. (A, B) The heatmaps of survival-associated metabolic signatures
in Target-OS (A) and GSE21257 (B) cohorts. (C, D) Survival analyses of the HBP pathway for Target-OS (C) and GSE21257 (D) cohorts show
considerable differences between the high and low GSVA score group.
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cohorts (AUC=0.68, Figure 6D; AUC=0.68, Figure 6F),

indicating that it was better for predicting metastasis relative

to the other genes in the HBP-related gene signature. Thus, we

further analyzed the protein expression of UAP1 in OS tissues by

IHC staining (Figure 6G). Patients with high UAP1 expression

had worse overall survival and lung metastasis-free survival rates

relative to other patients as evidenced by the results of the

Kaplan-Meier analysis (Figure 6H), indicating that UAP1 was a

promising biomarker for predicting prognosis and metastasis in

OS patients.
Prediction of drug sensitivity targeting
UAP1 and verification on OS cells

Finally, we analyzed the correlation between UAP1

expression and antitumor drug sensitivity using the CellMiner

database. Among the FDA-approved antitumor drugs, UAP1

expression correlated positively with the IC50 of axitinib,

lenvatinib, simvastatin, temsirolimus, and zoledronate

(Figures 7A). Cancer cells with higher UAP1 expression were

more sensitive to cobimetinib, copanlisib, selumetinib and
Frontiers in Immunology 07
tamoxifen (Figures 7B). Next, we verified the antineoplastic

effect of different concentrations of cobimetinib, copanlisib,

selumetinib and tamoxifen on the proliferation of OS cell

lines. 7 cell lines were selected and divided into two groups

according to the level of UAP1 protein expression (Figure 7C),

while the low-UAP1 group comprises U2OS, SAOS2 and HOS,

and the high-UAP1 group comprises 143B, SJSA-1, MG63 and

G292. In the CCK-8 assay, higher IC50s of cobimetinib (P =

0.03) and selumetinib (P = 0.04) were observed in the OS cells

with low UAP1 expression (Figures 7D, F). Moreover, the IC50s

of copanlisib (P = 0.29) and tamoxifen (P = 0.67) among

different OS cells showed no statistical differences

(Figures 7E, G).
Discussion

In the occurrence of malignancy, tumor cells show some

unique malignant characteristics, including uncontrolled

proliferation, continuous angiogenesis, tissue invasion and

migration. Numerous studies have been conducted on such

characteristics and recent studies showed that metabolic
B

C D

E F

G

A

FIGURE 2

Identification of HBP-related 5 genes with prognostic value in OS patients. (A, B) The adaptive LASSO Cox regression for the prognostic value of
HBP-related genes. (C–F) The risk score distribution, survival status, heatmap and time-dependent ROC curve of HBP-related gene signature in
Target-OS (C, D) and GSE21257 (E, F) cohorts. (G) The survival heatmap of HBP-related genes across all tumor types from The Cancer Genome
Atlas (TCGA). The red frame and blue frame represent statistical significance in Kaplan-Meier survival analyses.
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reprogramming in tumor cells endows energy and material

requirements, thus promoting these malignant features (18).

Therefore, researchers have included metabolic reprogramming

as a new feature of malignant transformation. To reveal the

metabolic reprogramming characteristics in OS, RNA-

sequencing data from Target-OS and GSE21257 cohorts were

assigned GSVA scores based on 114 metabolic signaling

pathways screened from The KEGG database (14). According

to the Cox regression analysis, our results indicated that

dysregulation in the HBP pathway correlated significantly with

the prognosis of OS patients.

The HBP pathway is an important branch of cellular

g lucose metabol i sm which impacts the funct ional

macromolecular structures in cancer (19, 20). One

downstream metabolite of this pathway, UDP-GlcNAc, is

an essential molecule that promote carcinogenesis (21).

Here, we constructed an HBP-related prognostic model for

OS. The HBP-related prognostic risk score included the

expression of GPI, PGM3, UAP1, OGT and MGEA5. GPI

catalyzes the production of fructose-6-phosphate through its

enzymatic activity in glycolysis. Recently, secreted forms of

GPI have been reported frequently in musculoskeletal tumors
Frontiers in Immunology 08
(22). Anti-apoptotic properties have been observed in cells

with high GPI expression owing to resistance to ER stress (23,

24). PGM3 is the enzyme that converts N-acetylglucosamine-

6-phosphate to N-acetylglucosamine-1-phosphate. In breast

cancer, inhibition of PGMs using the inhibitor FR054 can

induce apoptosis by activating the unfolded protein response

and promoting the accumulation of intracellular ROS (25). In

a study on pancreatic cancer, the upregulation of PGM3

correlated significantly with gemcitabine resistance, while

inhibiting PGM3 significantly suppressed the malignant

phenotype of tumor cells and enhance the drug sensitivity

of gemcitabine by modulating the EGFR-Akt pathway (26).

UAP1 is a the rate-limiting enzymes for the production of

UDP-GlcNAc, which is an important donor substrate for

subsequent glycosylation. UAP1 is overexpressed in prostate

cancer cells and correlates negatively with Gleason score.

What’s more, UAP1 protects tumor cells from ER stress,

thereby conferring advantages for tumor growth (27). UAP1

expression is upregulated in lung adenocarcinoma and

correlates positively with larger tumor sizes and advanced

TNM stages (28). OGT, a glycosyltransferase, is responsible

for catalyzing the O-GlcNAc glycosylation reaction. In breast
B C

D E

A

FIGURE 3

Differential expression analysis and enrichment analysis of the HBP-related prognostic model. (A, B) Volcano map of DEGs between the high-
and low-risk groups in Target-OS (A) and GSE21257 (B) cohorts. (C) Venn diagram of the intersection DEGs between the Target-OS and
GSE21257 cohorts. (D, E) Functional annotation of the 76 DEGs in GO function (D) and REACTOME pathway enrichment analysis (E).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1028263
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2022.1028263
cancer, reducing intracellular O-GlcNAcation by inhibiting

OGT attenuates the expression of the transcription factor

FoxM1, further resulting in the downregulation of

downstream target genes and inhibiting tumorigenesis (29).

Inhibition of OGT also mediate the degradation of HIF-1a by

downregulating O-GlcNAcation, further leading to ER stress

and inducing apoptosis (30). MGEA5 or OGA is a
Frontiers in Immunology 09
hexosaminidase responsible for the removal of O-GlcNAc

from target proteins. OGA is upregulated in several cancers

and drives aerobic glycolysis and tumor growth by inhibiting

the catalytic activity of PKM2 (31). However, in another

separate study, inhibiting OGA in colorectal cancer cells

promoted the level of O-GlcNAcation, thus promoting the

expression and activity of b-catenin and E-cadherin and
B

C D

E

F

A

FIGURE 4

The landscape of immune cell infiltration in high- and low-risk OS patients. (A–D) Correlation matrix and relative proportion of all 22 immune
infiltration cell proportions based on CIBERSORT in the Target-OS (A, B) and GSE21257 (C, D) cohorts. (E, F) Boxplots visualize the differences of
all 22 immune cells between the high- and low-risk groups. “*” represents P < 0.05 and “**” represents P < 0.01.
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further induce EMT phenotype of cancer cells and promote

tumor metastasis (32).

Based on the HBP-related risk model, functional

enrichment analysis was performed to investigate the

potential underlying molecular mechanisms. DEGs were

screened according to risk score grouping and further

functional GO and Reactome enrichment analysis were

performed. Interestingly, DEGs were significantly enriched in

pathways and functions related to immunity. Therefore, we

sought to further examine the different immunological

characteristics of the high- versus low-risk group. We

assessed the proportion of 22 infiltrating immune cells using

the CIBERSORT algorithm, which showed the enrichment of

M0 macrophages and M2 macrophages in OS patients. Both in

the Target-OS and GSE21257 cohorts, a significant increase in

the infiltration of resting CD4+ memory T-cells was seen in the

high-risk group. Significant difference was obtained by

comparative analysis of tumor immune scores including the

ESTIMATE, stromal and immune score. The HBP-related

prognostic model was closely correlated to tumor immune

infiltration in OS patients, which may guide the designing of

immunotherapeutic strategies for these patients
Frontiers in Immunology 10
Immunotherapy activates or promotes the function of the

immune system through targeted drugs and kill cancer cells

through the body’s self-defense mechanism. Many solid

tumors have been successfully treated with immunotherapy,

resulting in a paradigm shift in cancer treatment (33).

Therefore, understanding the TIME characteristics can

further help develop effective immunotherapy strategies for

different cancers. The behavior of immune cells and responses

to immunotherapy are intricately linked to various metabolic

mechanisms (34). In this study, the HBP-related gene

signature could predict the immunotherapeutic effect, as

evidenced by the results of the TIDE algorithm, which is

commonly utilized for predicting the therapeutic responses of

patients undergoing treatment with ICIs (35). The results

suggested that patients with higher risk scores had higher

TIDE and T-cell dysfunction scores along with lower T cell

exclusion score, which implied that higher risk scores were

suggestive of less likelihood for the benefits in patients with

ICIs owing to immune evasion. Moreover, patients in the low-

risk group had higher expression of TIM3, a common

inhibitory immunoreceptor identified in cancer during the

past decades (36, 37). Overall, these results showed that the
B

C D

E

F

A

FIGURE 5

Association between the HBP-related prognostic risk model and immune microenvironment along with immunotherapy prospects. (A, B) Stromal,
immune and ESTIMATE scores calculated by ESTIMATE algorithm between the high- and low-risk groups. (C) Distributions of responders and non-
responders predicted by TIDE immunotherapy analyses in high and low risk groups among all patients in Target-OS and GSE21257 cohorts. (D)
Distribution of TIDE scores in high- versus low-risk group. (E, F) Violin plots visualizing significantly different immune checkpoint (TIM3) between
high- and low-risk patients. “*” represents P < 0.05 and “**” represents P < 0.01.
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HBP-related risk model could guide the immunotherapy for

OS patients, and those with lower risk scores may benefit

from ICI treatment.

Based on the Cox proportional hazards regression models,

univariate and multivariate analyses were performed to identify

the prognostic value of the HBP-related risk model for OS patients

in the Target-OS cohort. According to the results, our OS risk

scoring model shows promising prognostic utility. Moreover, the

ROC curves of our HBP-related genes for predicting metastasis

and IHC analysis showed that UAP1 expression was a good

prognosis predictor not only for overall survival but also for

metastasis. Finally, we perform the correlation analysis and

experimental verification to investigate the sensitivity of UAP1

to FDA-approved antineoplastic drugs based on the CellMiner
Frontiers in Immunology 11
database. The results suggested that OS cells with higher UAP1

expression were more sensitive to cobimetinib and selumetinib. In

summary, the HBP-related risk model contributes to guide

targeted therapy for metabolic reprogramming, and may even

help overcome cancer immunotherapy resistance by reversing

tumor T-cell exclusion in OS.
Conclusions

In conclusion, we constructed an HBP-related gene

signature containing five key genes (GPI, PGM3, UAP1, OGT

and MGEA5) with a remarkable prognostic value for predicting

prognosis in OS. Furthermore, significant differences in immune
B

C D E F

G H

A

FIGURE 6

Prognosis prediction validation of HBP-related risk model for OS patients. (A) Nomogram for predicting the probability of 3-, and 5-year overall
survival for OS patients. (B) Calibration plot of the nomogram for predicting the probability of overall survival at 3-, and 5 years. (C, E) Distributions
of patients with metastasis and non-metastasis between high- and low-risk groups in Target-OS (C) and GSE21257 (E) cohorts. (D, F) ROC curves
for evaluating the predictive efficacy of HBP-related genes for metastasis in the Target-OS (D) and GSE21257 (F) cohorts. (G, H) Survival analysis
showed a different survival portion between high and low UAP1 expression in osteosarcoma patients for overall survival (G) and lung metastasis free
survival (H).
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G

FIGURE 7

Prediction of drug sensitivity targeting UAP1 and in-vitro cell verification. (A, B) Correlation analysis between the UAP1 expression and drug
sensitivity in the NCI-60 cell lines. (C) The level of UAP1 protein expression in OS cell lines, as detected by western blotting. (D–G) IC50 of
antineoplastic drugs including cobimetinib (D), copanlisib (E), selumetinib (F) and tamoxifen (G) in OS cell lines according to the CCK-8 assay.
“*” represents P < 0.05.
Frontiers in Immunology frontiersin.org12

https://doi.org/10.3389/fimmu.2022.1028263
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2022.1028263
infiltration and immunotherapeutic response were identified

between the high- and low-risk patients, which may help guide

the development of immunotherapy and targeted therapy

for OS.
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SUPPLEMENTARY FIGURE 1

Prognostic value of metabolism pathways in OS patients based on forest
plots. (A, B) Prognostic value of metabolism pathways in Target-OS (A)
and GSE21257 (B) cohorts.

SUPPLEMENTARY FIGURE 2

Relationship between the HBP-related risk model and immune

checkpoints in OS patients. (A, B) Violin plots visualizing expression

of the immune checkpoints (BTLA, CTLA4, LAG3, PDCD1, TIGIT)
between the high- and low-risk groups in Target-OS (A)and
GSE21257 (B) cohorts.
TABLE 1 Univariate and multivariate Cox proportional hazard model for overall survival based on the Target-OS cohort.

Characteristics Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

RiskScore 4.725 (2.451-9.109) <0.001 3.475 (1.783-6.773) <0.001

Age 0.988 (0.910-1.072) 0.770 1.032 (0.943-1.129) 0.497

Gender

Male

Female 1.468 (0.706-3.052) 0.304 1.603 (0.733-3.506) 0.237

Metastasis Status

Non-metastatic

Metastatic 4.770 (2.285-9.954) <0.001 3.625 (1.601-8.209) 0.002
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