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Abstract: We employ the spinor analysis method to evaluate exact expressions of spin-spin correlation
functions of the two-dimensional rectangular Ising model on a finite lattice, special process enables us to
actually carry out the calculation process. We first present some exact expressions of correlation functions
of the model with periodic-periodic boundary conditions on a finite lattice. The corresponding forms in
the thermodynamic limit are presented, which show the short-range order. Then, we present the exact
expression of the correlation function of the two farthest pair of spins in a column of the model with
periodic-free boundary conditions on a finite lattice. Again, the corresponding form in the thermodynamic
limit is discussed, from which the long-range order clearly emerges as the temperature decreases.

Keywords: two-dimensional Ising model; spin-spin correlation functions; exact solution; short-range
order; long-range order

1. Introduction

Since the exact solution of the partition function in the absence of a magnetic field of the
two-dimensional rectangular Ising model with periodic-periodic boundary conditions is obtained in the
thermodynamic limit [1] and in finite-size systems [2], many authors have contributed to the knowledge of
various aspects of this model, such as different boundary conditions, the arrangement modes of the spin
lattice, surfaces, or mathematical methods, etc. [3–7].

Besides the partition function of the model, the calculations of spin-spin correlation functions
are an important subject in the research of the two-dimensional Ising model. Some expressions of
correlation functions in the thermodynamic limit have been obtained [3–5,8,9], and the case in a finite
lattice has been studied [10–12].

The determination of exact expressions of the partition function and spin-spin correlation
functions of the model on a finite lattice is not only a theoretical subject; the results obtained can also
be used in the research of finite-size scaling, finite-size corrections, and boundary effects [7,13–16].

In this paper, we present some exact expressions of spin-spin correlation functions of the
two-dimensional rectangular Ising model on a finite lattice by employing the spinor analysis method [2].

In Section 2, for the model with L rows and N columns and periodic-periodic boundary conditions
(Onsager’s lattice), we calculate some exact expressions of the correlation function

〈
σ1 , 1σ1 , 1+Q

〉
and

compare the corresponding forms in the thermodynamic limit obtained here with known results presented
in Reference [9]. The investigation in Section 2 shows the main steps, key points, and problems of the
approach used in this paper. Since the whole process are complex, here we outline the approach.

(1) Although any spin-spin correlation functions
〈
σl , nσl′ , n′

〉
can be expressed by matrices,

and the matrices belong to spin representatives [8], here we only consider
〈
σl , 1σl , 1+Q

〉
, i.e., the

correlation functions of pairwise spins in one column, of which exact expressions can be obtained by
the spinor analysis method.
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(2) When we employ the spinor analysis method to evaluate
〈
σl , 1σl , 1+Q

〉
, it is very difficult to

find the exact eigenvalues of the corresponding rotation matrix; however, the operators of the first
derivative and limit in the expressions of

〈
σl , 1σl , 1+Q

〉
(see (8)) allow us to obtain exact expressions of〈

σ1 , 1σ1 , 1+Q
〉

by only finding approximate eigenvalues of the rotation matrix.
(3) We employ Rayleigh-Schrodinger Perturbation Theory (RSPT) in quantum mechanics and

change “finding eigenvalue up to Q-th order” to “finding eigenvalue through Q times first-order
approximation” (see the discussions in Section 2.5) to find approximate eigenvalues of the rotation
matrix. On the one hand, this approximate method enables us to actually carry out the calculation
process. On the other hand, since RSPT is irregular, the approximate method is in fact incapable
when Q is very larger. Hence, by this approach we can only obtain exact expressions of correlation
functions when Q is a small number, for example, that of 〈σ1 , 1σ1 , 2〉 , 〈σ1 , 1σ1 , 3〉 , 〈σ1 , 1σ1 , 4〉 , · · · ,
etc., which belong to the short-range order.

What is more interesting is the long-range order, as it is closely related to properties of the phase
transformation of the system. To obtain the correlation function that can reveal the long-range order of
the model on a finite lattice, we turn to the model with L rows and N columns and periodic boundary
condition in the horizontal direction and free boundary condition in the vertical direction. For this
model, because of the free boundary condition in a column, and σl , N is the farthest spin of σl , 1 in the
column, we forecast that the correlation functions

〈
σl , 1σl , N

〉
,
〈
σl , 1σl , N−1

〉
,
〈
σl , 1σl , N−2

〉
, · · · will

display the long-range order.
For the model with periodic-free boundary conditions, if we write

〈
σl , 1σl , 1+Q

〉
in matrix forms

and use the method presented in Section 2, then we still can only obtain exact expressions of 〈σ1 , 1σ1 , 2〉 ,
〈σ1 , 1σ1 , 3〉 , · · · but cannot obtain that of

〈
σl , 1σl , N

〉
,
〈
σl , 1σl , N−1

〉
, · · · . On the other hand, if we

write 〈σ1 , 1σ1 , N−n〉 in matrix forms directly (see Formulas (52) and (53) in this paper), then the method
presented in Section 2 is feasible to deal with the matrix forms of 〈σ1 , 1σ1 , N−n〉, and we therefore can
obtain some exact expressions of

〈
σl , 1σl , N

〉
,
〈
σl , 1σl , N−1

〉
,
〈
σl , 1σl , N−2

〉
, · · · .

However, to save space, in this paper we no longer discuss
〈
σl , 1σl , N−1

〉
,
〈
σl , 1σl , N−2

〉
, · · · but

only evaluate
〈
σl , 1σl , N

〉
, for which all of the matrix forms, the corresponding rotation matrices,

and the eigenvalue equations have been given by Reference [12]. Therefore, we only need to derive the
exact expression of

〈
σl , 1σl , N

〉
by employing the method presented in Section 2. (The reason why the

determination of the exact expression of
〈
σl , 1σl , N

〉
fails in Reference [12] is explained in Section 3.3).

After obtaining the exact expression of
〈
σl , 1σl , N

〉
, we discuss the properties of the expression of〈

σl , 1σl , N
〉

in the thermodynamic limit, from which the long-range order emerges as the temperature
decreases, as shown clearly.

2. Short-Range Order in Onsager’s Lattice

2.1. The Definition of the Spin-Spin Correlation Functions and Their Basic Properties

According to the definition of the spin-spin correlation functions,
〈
σl, nσl+P, n+Q

〉
of pairwise

spins σl , n and σl+P , n+Q of Onsager’s lattice read:

〈
σl, nσl+P, n+Q

〉
=

1
Z ∑
{σh , v=±1}

σl, nσl+P, n+Q exp
(

J′

kT

L
∑

l′=1

N
∑

n′=1
σl′ , n′σl′+1 , n′

)
exp

(
J

kT

L
∑

l′=1

N
∑

n′=1
σl′ , n′σl′ , n′+1

)
, (1)

where σL+1 , n = σ1 , n, σl, N+1 = σl , 1; J′(> 0), and J(> 0) are the interaction constants for the
horizontal and vertical directions, respectively;

Z = ∑
{σh , v=±1}

exp

(
J′

kT

L

∑
l=1

N

∑
n=1

σl , nσl+1 , n

)
exp

(
J

kT

L

∑
l=1

N

∑
n=1

σl , nσl , n+1

)
(2)

is the partition function in absence of a magnetic field of the model.
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According to the periodic-periodic boundary conditions of Onsager’s lattice, it is easy to prove〈
σl,nσl+P,n+Q

〉
=
〈
σ1,1σ1+P,1+Q

〉
; in this paper, we calculate

〈
σl,nσl,n+Q

〉
=
〈
σ1,1σ1,1+Q

〉
, i.e., we only

calculate correlation functions of pairwise spins in one column.
Further, because of periodic-periodic boundary conditions, both σ1 , 2 and σ1 , N are the closest

spins of σ1 , 1, and we therefore have 〈σ1, 1σ1, 2〉 = 〈σ1, 1σ1, N〉. Generally speaking, it is easy to prove〈
σ1, 1σ1, 1+Q

〉
=
〈
σ1, 1σ1, 1+N−Q

〉
in terms of periodic-periodic boundary conditions. Hence, σ1 , 1+[N/2]

is the farthest spin of σ1 , 1, where [x] denotes the greatest integer not exceeding x. Thus, we only need

to calculate
〈
σ1, 1σ1, 1+Q

〉
for Q = 1, 2, · · · ,

[
N
2

]
.

2.2. Some Results Concerning the Partition Function Z

From (1), we see that to obtain
〈
σ1, 1σ1, 1+Q

〉
, we need knowledge about the partition function Z

given by (2), from which we summarize some results presented in Reference [2] as follows.

Z =

(
2sinh

2J′

kT

) LN
2 Z̃, Z̃ = Tr

(
1 + Γ2N+1

2
U(↑) +

1− Γ2N+1

2
U(↓)

)
. (3)

Z̃ can thus be obtained by finding the trace of a matrix, where Γ2N+1 is the matrix U defined by (15.68)

in Reference [17], and the matrices
1 + Γ2N+1

2
U(↑) and

1− Γ2N+1

2
U(↓) can be diagonalized at the same

time.
On the other hand, both matrices U(↑) and U(↓) are spin representatives. Byω(↑) andω(↓) we

denote the corresponding rotation matrices of U(↑) and U(↓), respectively; bothω(↑) andω(↓) can be
diagonalized:

(ζ(↑↓))
+
ω(↑↓)ζ(↑↓) = λ(↑↓);

λ(↑↓) = diag
[
λ
(↑↓)
1 λ

(↑↓)
2 · · · λ

(↑↓)
N

]
, λ(↑↓)n = diag

[
eγ

(↑↓)
n e−γ

(↑↓)
n

]
(n = 1, 2, · · · , N) ,

(4)

where A+ indicates a complex conjugate to a matrix A,

cosh γn = cosh 2K′ cosh 2K− cos ϕnsinh2K′sinh2K , e−2K′ = tanh
J′

kT
, K =

J
kT

;

ϕ
(↑)
n =

(2n− 1)π
N

, ϕ
(↓)
n =

2nπ
N

(n = 1, 2, · · · , N = 2M) .
(5)

In the above formulas, γn and ϕn are as the abbreviations for γ
(↑↓)
n and ϕ

(↑↓)
n , respectively. To save

space, we use these abbreviation as far as possible in this paper.
Since properties of the partition function Z vary between even and odd numbers N, we must

calculate
〈
σ1, 1σ1, 1+Q

〉
separately in terms of whether N is an even or odd number. In this paper we

only consider the case that N = 2M as an even number (the case of N = 2M + 1 can be dealt with by
the same approach). From Reference [2], we have:

Z̃ =
1
2

( M
∏

m=1
2 cosh

Lγ
(↑)
m

2

)2

+

(
M
∏

m=1
2sinh

Lγ
(↑)
m

2

)2

+

(
2 cosh

Lγ
(↓)
2M

2

) (
2 cosh

Lγ
(↓)
M

2

) (
M−1
∏

m=1
2 cosh

Lγ
(↓)
m

2

)2

+

(
2sinh

Lγ
(↓)
2M

2

) (
2sinh

Lγ
(↓)
M

2

) (
M−1
∏

m=1
2sinh

Lγ
(↓)
m

2

)2
.

(6)

When N = 2M, γn and ϕn have properties:
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γm = γm′ , ϕm = 2π− ϕm′ , m′ =

{
2M− (m− 1) , for (↑) ;
2M−m , for (↓) ,

m =

{
1, 2, · · · , M , for (↑) ;
1, 2, · · · , M− 1 , for (↓) ,

γ
(↓)
M = 2(K + K′) , γ

(↓)
2M = 2(K− K′) , ϕ

(↓)
M = π , ϕ

(↓)
2M = 2π ,

0 < γ
(↑)
1 < γ

(↑)
2 < · · · < γ

(↑)
M , 0 <

∣∣∣γ(↓)
2M

∣∣∣ < γ
(↓)
1 < γ

(↓)
2 < · · · < γ

(↓)
M−1 < γ

(↓)
M .

(7)

2.3. Writing
〈
σ1, 1σ1, 1+Q

〉
in Matrix Form

Since σ2
h , v = 1, we have σ1 , 1σ1 , 1+Q = σ1 , 1σ1 , 2 · σ1 , 2σ1 , 3 · · · · · σ1 , Q−1σ1 , Q · σ1 , Qσ1 , 1+Q,

and, further, considering σ1 , qσ1 , 1+q = lim
φq→0

∂eφqσ1 , qσ1 , 1+q

∂φq
, according to (1),

〈
σ1, 1σ1, 1+Q

〉
can be

written in the form:

〈
σ1 , 1σ1 , 1+Q

〉
=

1
Z

(
Q
∏

q=1
lim

φq→0

∂

∂φq

)
YQ ,

YQ = ∑
{σh , v=±1}

exp

(
Q
∑

q=1
φqσ1 , qσ1 , 1+q

)
exp

(
J′

kT

L
∑

l=1

N
∑

n=1
σl , nσl+1 , n

)
exp

(
J

kT

L
∑

l=1

N
∑

n=1
σl , nσl , n+1

)
,

(8)

Also, by a standard method [1,17] we can further write YQ in the form:

YQ =

(
2sinh

2J′

kT

) LN
2 ỸQ, ỸQ = Tr

(
1 + Γ2N+1

2
V(↑) +

1− Γ2N+1

2
V(↓)

)
. (9)

ỸQ can thus be obtained by finding the trace of a matrix. Here we are not going to write out the explicit
expressions of V(↑) and V(↓), but only point out that:

i. The matrices
1 + Γ2N+1

2
V(↑) and

1− Γ2N+1

2
V(↓) can be diagonalized at the same time.

ii. Both V(↑) and V(↓) are spin representatives, whose corresponding rotation matrices are

ζ(↑)H(↑)(ζ(↑))
+

and ζ(↓)H(↓)(ζ(↓))
+

, respectively, where ζ are introduced by (4),

H = H(0) +
Q

∑
q=1

sinh2φqH(q) + 2
Q

∑
q=1

sinh2φqH
′ (q)

, (10)

the forms of the matrices H(0), H(q), and H
′ (q)

can be expressed in terms of 2× 2 blocks H(0)
lm , H(q)

lm and

H
′ (q)
lm , 1 ≤ l, m ≤ N(= 2M), given by:

H(0)
lm =

[
eLγl 0

0 e−Lγl

]
δlm , (11)

H(q)
lm = e

−iq
(l −m)π

M Hlm , Hlm =
1
N

e
−i

θl − θm

2


e

L(γl + γm)

2 cos
θl + θm

2
−ie

L(γl − γm)

2 sin
θl + θm

2

ie
−

L(γl − γm)

2 sin
θl + θm

2
−e
−

L(γl + γm)

2 cos
θl + θm

2

 , (12)

H
′ (q)
lm = e

−iq
(l −m)π

M H
′
lm , H

′
lm =

1
N

e
−i

θl − θm

2


e

L(γl + γm)

2 cos
θl − θm

2
ie

L(γl − γm)

2 sin
θl − θm

2

ie
−

L(γl − γm)

2 sin
θl − θm

2
e
−

L(γl + γm)

2 cos
θl − θm

2

. (13)

In (12) and (13), the quantities θn are defined by:

sinhγn cos θn = cosh 2K′sinh2K− cos ϕnsinh2K′ cosh 2K ,
sinhγn sin θn = sin ϕnsinh2K′ (n = 1, 2, · · · , N = 2M) .

(14)
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When N = 2M, θn have properties:

θm = 2π− θm′ , θ
(↓)
M = θ

(↓)
2M = 0 . (15)

In (15), the values of m′ and m are exactly the same as those in (7).
We can first evaluate the eigenvalues of the rotation matrices ζHζ+, and then obtain ỸQ in terms

of the spinor analysis method. Finally, we obtain
〈
σ1, 1σ1, 1+Q

〉
according to (8) and (9).

From (10) to (13), we see that H is a Hermitian conjugate matrix. Hence, the eigenvalues of both
matrices ζHζ+ and H are the same, and we therefore can only evaluate the eigenvalues of the rotation
matrix H.

2.4. Basic Properties of the Eigenvalues and Eigenvectors of the Matrix H

Any rotation matrix A has the following property: If τ is an eigenvalue of A, then τ−1 is also an
eigenvalue of A [2]. Since ζHζ+ is a rotation matrix and the eigenvalues of ζHζ+ and H are the same,
H should have the same property. In this sub-section we prove this conclusion.

The eigen equation of H reads:
HΨ = τΨ. (16)

By Ψ =
[
ψ1 · · · ψn · · · ψN

]T
,ψn =

[
ψ∆

n
ψ∇n

]
, where AT means the transpose of a matrix

A, we denote the eigenvector of H, and, introducing C∆
q , C∇q (q = 1, 2, · · · , Q) in terms of:

[
ψ∆

n
ψ∇n

]
= e

−i
θn

2

 e
−

Lγn

2 0

0 e
Lγn

2


 cos

θn

2
isin

θn

2

isin
θn

2
cos

θn

2



×


τ cos h(Lγn)− 1 + τ cos θn sin h(Lγn)

τ2 − 2τ cosh(Lγn) + 1
i

τ sin θn sin h(Lγn)

τ2 − 2τ cosh(Lγn) + 1

−i
τ sin θn sin h(Lγn)

τ2 − 2τ cosh(Lγn) + 1
τ cos h(Lγn)− 1 + τ cos θn sin h(Lγn)

τ2 − 2τ cosh(Lγn) + 1




Q
∑

q=1
e−iqϕn C∆

q

Q
∑

q=1
e−iqϕn C∇q

 ,

we can prove that the eigen Equation (16) is equivalent to:

cothφq

[
C∆

q

C∇q

]
=

Q

∑
q′=1

[
A+(q− q′) −B(q− q′)
−B(q− q′) −A−(q− q′)

][
C∆

q′

C∇q′

]
(q = 1, 2, · · · , Q) ; (17)

where

A±(k) =
1
N

N
∑

n=1
e

ik
2nπ
N τ2 ± 2τ cos θn sin h(Lγn)− 1

τ2 − 2τ cosh(Lγn) + 1

=


1
M

M
∑

m=1
cos

kmπ

M
τ2 ± 2τ cos θ

(↑)
m sin h(Lγ

(↑)
m )− 1

(eLγ
(↑)
m τ − 1) (e−Lγ

(↑)
m τ − 1)

, for (↑) ;

1
M

(
(−1)k

2
e∓Lγ

(↓)
M τ + 1

e∓Lγ
(↓)
M τ − 1

+
1
2

e∓Lγ
(↓)
2M τ + 1

e∓Lγ
(↓)
2M τ − 1

+
M−1
∑

m=1
cos

kmπ

M
τ2 ± 2τ cos θ

(↓)
m sin h(Lγ

(↓)
m )− 1

(eLγ
(↓)
m τ − 1) (e−Lγ

(↓)
m τ − 1)

) , for (↓),

B(k) = −i
1
N

N
∑

n=1
e

ik
2nπ
N 2τ sin θn sin h(Lγn)

τ2 − 2τ cosh(Lγn) + 1
=


1
M

M
∑

m=1
sin

kmπ

M
2τ sin θ

(↑)
m sin h(Lγ

(↑)
m )

τ2 − 2τ cosh(Lγ
(↑)
m ) + 1

, for (↑) ;

1
M

M−1
∑

m=1
sin

kmπ

M
2τ sin θ

(↓)
m sin h(Lγ

(↓)
m )

τ2 − 2τ cosh(Lγ
(↓)
m ) + 1

, for (↓),

where we have used (7) and (15). We see that all A±(k) and B(k) are real functions and satisfy:

A±(−k) = A±(k), B(−k) = −B(k).
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According to the above expressions and the properties of A±(k) and B(k), we can conclude that if
τ and C∆

q (τ) , C∇q (τ) (q = 1, 2, · · · , Q) satisfy (17), then τ′ = τ−1 and

C∆
q (τ

′) = C0(τ)C∇q (τ) , C∇q (τ′) = C0(τ)C∆
q (τ)(q = 1, 2, · · · , Q) (18)

also satisfy (17), where C0(τ) is an arbitrary function. From this discussion we not only prove the
conclusion “If τ is an eigenvalue of the matrix H, then τ−1 is also an eigenvalue”, but also obtain
the relation (18) between

{
C∆

q (τ), C∇q (τ)
}

and
{

C∆
q (τ

−1) , C∇q (τ−1)
}

. The conclusion and the
relation (18) are useful to determine the forms of approximate eigenvalues and the expressions of the
normalized eigenvectors of H, as well as to calculate the determinant of the matrix consisting of the
eigenvectors in the actual calculation process.

2.5. Approximate Method for Solving the Eigen Equation (16)

It is very difficult to find the exact eigenvalues of H by solving the eigen Equation (16). On the

other hand, the operator
Q
∏

q=1
lim

φq→0

∂

∂φq
in (8) allows us to ignore all terms whose orders are higher than

φ1
q(= φq) (q = 1, 2, · · · , Q) in all eigenvalues of H. According to this key property, we can obtain the

exact expressions of
〈
σ1, 1σ1, 1+Q

〉
by only finding approximate eigenvalues of H.

Concretely, as the first step, the term 2
Q
∑

q=1
sinh2φqH

′ (q)
with the factors sinh2φq in (10) can be

ignored, since sinh2φq ≈ φ2
q have φ2

q order. Then, from (11) we see that H(0) in (10) is a diagonal matrix,
whose eigenvalues and eigenvectors are summarized in the following formulas:

H(0)Ψ
(0)
n, ± = e±Lγn Ψ

(0)
n, ±(n = 1, 2, · · · , N = 2M);

Ψ
(0)
n, ± =

[
ψ

(0)
n , 1 , ± · · · ψ

(0)
n , m , ± · · · ψ

(0)
n , N , ±

] T
, ψ(0)

n, m, ± =

[
0
0

]
(m 6= n) ,

ψ
(0)
n, n, + =



[
1
0

]
, for the eigenvalue eLγn ;[

0
0

]
, for the eigenvalue e−Lγn ,

ψ
(0)
n, n, − =



[
0
0

]
, for the eigenvalue eLγn ;[

0
1

]
, for the eigenvalue e−Lγn .

(19)

which are as the zeroth order approximation of the eigen Equation (16).

The term
Q
∑

q=1
sinh2φqH(q) with the factors sinh2φq ≈ 2φq (q = 1, 2, · · · , Q) in (10) can be regarded

as a perturbation term. Then, by using RSPT, we can obtain the approximate eigenvalues of H.
However, although what eigenvalues we need are only corrected to the φ1

q(= φq) order
(q = 1, 2, · · · , Q), we must calculate the perturbation terms up to the Q-th order, not only for the

first-order approximation, because all of the terms with the factor
Q
∏

q=1
sinh2φq appear in the Q-th order

eigenvalues and are needed, which only include the φ1
q order for every φq.

However, if we calculate the eigenvalues up to the Q-th order by using RSPT, then not only
the actual calculation process is very complex, but there are also many unwanted terms with factors

φk
q (k ≥ 2), for example, the term with the factor sinh32φ1

Q
∏

q=4
sinh2φq, in the Q-th order eigenvalues.

To take out those terms with factors φk
q (k ≥ 2), we change “finding the eigenvalue up to the Q-th

order” to “finding the eigenvalue through Q times first-order approximation”.

Concretely, since now H = H(0) +
Q
∑

q=1
sinh2φqH(q), we first consider the matrix H(0) + sinh2φ1H(1),

in which the eigenvalues and eigenvectors
{

τ(0), Ψ(0)
}

of H(0) are given by (19) and sinh2φ1H(1) is as
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perturbation term. By only calculating first-order approximation we obtain all eigenvalues and eigenvectors{
τ(1), Ψ(1)

}
of H(0) + sinh2φ1H(1); therefore, all terms in

{
τ(1), Ψ(1)

}
only correct to the φ1

1 order.

Then, we consider the matrix H(0) + sinh2φ1H(1) + sinh2φ2H(2). Since now all eigenvalues and
eigenvectors

{
τ(1), Ψ(1)

}
of H(0) + sinh2φ1H(1) are known, we regard sinh2φ2H(2) as a perturbation

term, and, by only calculating the first-order approximation, obtain all eigenvalues and eigenvectors{
τ(2), Ψ(2)

}
of H(0) + sinh2φ1H(1) + sinh2φ2H(2), in which all terms are only of the φ1

1 and φ1
2 orders.

In particular, all of the terms with the factor sinh2φ1sinh2φ2 ≈ φ1φ2 remain.
Then, we consider the matrix H(0) + sinh2φ1H(1) + sinh2φ2H(2) + sinh2φ3H(3). Since now all

eigenvalues and eigenvectors
{

τ(2), Ψ(2)
}

of H(0)+ sinh2φ1H(1)+ sinh2φ2H(2) are known, we regard

sinh2φ3H(3) as a perturbation term, and, by only calculating the first-order approximation, obtain all
eigenvalues and eigenvectors

{
τ(3), Ψ(3)

}
of H(0) + sinh2φ1H(1) + sinh2φ2H(2) + sinh2φ3H(3),

in which all terms are only of the φ1
1, φ1

2 and φ1
3 orders. In particular, all of the terms with the factor

sinh2φ1sinh2φ2sinh2φ3 ≈ φ1φ2φ3 remain, and, many unwanted terms with factors sinh22φ1sinh2φ2,
sinh2φ2sinh22φ3, etc., do not appear in the eigenvalues of τ(3).

We follow this approach up to sinh2φQH(Q) and every time we only calculate thr first-order

approximation, which leads to the eigenvalues and eigenvectors
{

τ(Q), Ψ(Q)
}

of all terms being only

of the φ1
q(= φq) order. All of the terms with

Q
∏

q=1
sinh2φq remain, and at the same time those unwanted

terms with φk
q (k ≥ 2) do not appear.

On the one hand, the above approximate method allows us to actually carry out the calculation
process to find the eigenvalues and eigenvectors of H. In particular, once we obtain

{
τ(1), Ψ(1)

}
,

we can obtain Ỹ1 by the spinor analysis method, as well as obtain 〈σ1, 1σ1, 2〉 in terms of (8) and (9).

Once we obtain
{

τ(2), Ψ(2)
}

, we can obtain Ỹ2 by the spinor analysis method, and, further, obtain

〈σ1, 1σ1, 3〉 in terms of (8) and (9),· · · . Generally speaking, once we obtain
{

τ(q), Ψ(q)
}

, we can obtain

Ỹq, and, further, obtain
〈
σ1, 1σ1, 1+q

〉
.

On the other hand, since RSPT is irregular, when Q is very large, e.g., Q ≈
[

N
2

]
, the above

approach no longer functions. Hence, by this approach we can only obtain the exact expressions of
correlation functions when Q is a small number, for example, 〈σ1, 1σ1, 2〉 , 〈σ1, 1σ1, 3〉 , 〈σ1, 1σ1, 4〉 , · · · ,
etc., which belong to the short-range order, but we cannot obtain the exact expressions of correlation
functions when Q is larger, for example,

〈
σ1, 1σ1, [N/2]+1

〉
,
〈

σ1, 1σ1, [N/2]

〉
,
〈

σ1, 1σ1, [N/2]−1

〉
, · · · , etc.,

which belong to the long-range order.

2.6. Recurrence Formulas of the Eigenvalues and Eigenvectors
{

τ(Q), Ψ(Q)
}

According to the discussions in the above sub-section, we first regard sinh2φ1H(1) as a
perturbation term, and, by using RSPT, evaluate eigenvalues and eigenvectors

{
τ(1), Ψ(1)

}
of

the matrix H(0) + sinh2φ1H(1) up to the first-order approximation. However, according to (7),

all eigenvalues e±Lγ
(↑)
n are doubly-degenerate; and, except e±Lγ

(↓)
2M and e±Lγ

(↓)
M , all the remaining

eigenvalues e±Lγ
(↓)
n are also doubly-degenerate. Hence, for doubly-degenerate eigenvalues of H(0),

we must use the degenerate perturbation theory; the results obtained up to φ1
1 order are as follows.

α
(1)
m , ↑↓ =

sinh2φ1

M
cos2 θ

(↑↓)
m
2

, β
(1)
m , ↑↓ =

sinh2φ1

M
sin2 θ

(↑↓)
m
2

, δ
(1)
M = δ

(1)
2M =

sinh2φ1

2M
, (20)
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∆Ψ
(0)
m, ±, ↑↓, I =

cos
θ
(↑↓)
m
2√

2


2M
∑

l = 1
l 6= m , l 6= m′

cos
θ
(↑↓)
l
2

sin h
L
(

γ
(↑↓)
l − γ

(↑↓)
m

)
2

Ψ
(0)
l, ± −

2M
∑

l=1

i sin
θ
(↑↓)
l
2

sinh
L
(

γ
(↑↓)
l + γ

(↑↓)
m

)
2

Ψ
(0)
l, ∓

 ,

∆Ψ
(0)
m, ±, ↑↓, II =

i sin
θ
(↑↓)
m
2√

2


2M
∑

l = 1
l 6= m , l 6= m′

i sin
θ
(↑↓)
l
2

sin h
L
(

γ
(↑↓)
l − γ

(↑↓)
m

)
2

Ψ
(0)
l, ± −

2M
∑

l=1

cos
θ
(↑↓)
l
2

sinh
L
(

γ
(↑↓)
l + γ

(↑↓)
m

)
2

Ψ
(0)
l, ∓

 ,

∆Ψ
(0)
M, ±, ↓ =

2M
∑

l = 1
l 6= M

cos
θ
(↓)
l
2

sin h
L
(

γ
(↓)
l − γ

(↓)
M

)
2

Ψ
(0)
l, ± −

2M
∑

l=1

i sin
θ
(↓)
l
2

sinh
L
(

γ
(↓)
l + γ

(↓)
M

)
2

Ψ
(0)
l, ∓ ,

∆Ψ
(0)
2M, ±, ↓ =

2M
∑

l = 1
l 6= 2M

cos
θ
(↓)
l
2

sin h
L
(

γ
(↓)
l − γ

(↓)
2M

)
2

Ψ
(0)
l, ± −

2M
∑

l=1

i sin
θ
(↓)
l
2

sinh
L
(

γ
(↓)
l + γ

(↓)
M

)
2

Ψ
(0)
l, ∓.

(21)

In Table 1, (20) and (21), the values of m′ and m are exactly the same as those in (7).

Table 1. The eigenvalues and eigenvectors of H(0) + sinh2φ1H(1) corrected to the φ1
1(= φ1) order.

Eigenvalue
{

τ(1)
}

Eigenvector
{

Ψ(1)
}

e±(Lγ
(↑↓)
m +α

(1)
m,↑↓)

1√
2
(Ψ

(0)
m,± −Ψ

(0)
m′ ,±)−

sinh2φ1
2M

∆Ψ
(0)
m,±,↑↓,I

e±(Lγ
(↑↓)
m −β

(1)
m,↑↓)

1√
2
(Ψ

(0)
m,± + Ψ

(0)
m′ ,±)−

sinh2φ1
2M

∆Ψ
(0)
m,±,↑↓,II

e±(Lγ
(↓)
M +δ

(1)
M ) Ψ

(0)
M,± −

sinh2φ1
4M

∆Ψ
(0)
M,±,↓

e±(Lγ
(↓)
2M+δ

(1)
2M) Ψ

(0)
2M,± −

sinh2φ1
4M

∆Ψ
(0)
2M,±,↓

From Table 1, we see that all eigenvalues
{

τ(1)
}

of H(0) + sinh2φ1H(1) are nondegenerate.

Hence, all degenerate eigenvalues of H(0) are relieved by sinh2φ1H(1). Thus, when we calculate
the eigenvalues and eigenvectors

{
τ(2), Ψ(2)

}
of H(0) + sinh2φ1H(1) + sinh2φ2H(2), we only need

use nondegenerate perturbation theory; this is applicable up to sinh2φQH(Q). Further, since from{
τ(q), Ψ(q)

}
to
{

τ(q+1), Ψ(q+1)
}
(q = 1, 2, · · · , Q− 1), we need only to calculate the first-order

approximation in terms of sinh2φq+1 ≈ 2φq+1, and the corresponding recurrence formulas are:

τ
(q+1)
m = τ

(q)
m +

sinh2φq+1

2M
(Ψ

(q)
m )

+
H(q+1)Ψ

(q)
m ,

Ψ
(q+1)
m = Ψ

(q)
m −

sinh2φq+1

2M

4M
∑

l = 1
l 6= m

(Ψ
(q)
l )

+
H(q+1)Ψ

(q)
m

τ
(q)
l − τ

(q)
m

Ψ
(q)
l

(m = 1, 2, · · · , 4M ; q = 1, 2, · · · , Q− 1) ,

, (22)

In the calculation, all terms including the φk
q(k ≥ 2) order are ignored.
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In principle, by following the above approach we obtain the eigenvalues
{

τ(Q)
}

. Furthermore,

considering that up to the first-order approximation for φq, we have 1 + Csinh2φq ≈ eCsinh2φq , the

eigenvalues
{

τ(Q)
}

of H can be denoted by the forms:

e±(Lγ
(↑↓)
m +α

(Q)
m , ↑↓), e±(Lγ

(↑↓)
m −β

(Q)
m , ↑↓) , e±(Lγ

(↓)
M +δ

(Q)
M ), e±(Lγ

(↓)
2M+δ

(Q)
2M ),

where the value of m is exactly the same as that in (7).
Based on the above forms of the eigenvalues

{
τ(Q)

}
and using the spinor analysis method,

we obtain:

ỸQ =

 M
∏
l=1

2 cosh
Lγ

(↑)
l + α

(Q)
l , ↑

2

 M
∏

m=1
2 cosh

Lγ
(↑)
m − β

(Q)
m , ↑

2


+

 M
∏
l=1

2sinh
Lγ

(↑)
l + α

(Q)
l , ↑

2

 M
∏

m=1
2sinh

Lγ
(↑)
m − β

(Q)
m , ↑

2


+

(
2 cosh

Lγ
(↓)
2M + δ

(Q)
2M

2

)(
2 cosh

Lγ
(↓)
M + δ

(Q)
M

2

)M−1
∏
l=1

2 cosh
Lγ

(↓)
l + α

(Q)
l , ↓

2

M−1
∏

m=1
2 cosh

Lγ
(↓)
m − β

(Q)
m , ↓

2


+

(
2sinh

Lγ
(↓)
2M + δ

(Q)
2M

2

)(
2sinh

Lγ
(↓)
M + δ

(Q)
M

2

)M−1
∏
l=1

2sinh
Lγ

(↓)
l + α

(Q)
l , ↓

2

M−1
∏

m=1
2sinh

Lγ
(↓)
m − β

(Q)
m , ↓

2

.

(23)

Finally, according to (8) and (9), we obtain:

〈
σ1, 1σ1, 1+Q

〉
=

1
Z̃
(

Q

∏
q=1

lim
φq→0

∂

∂φq
)ỸQ, (24)

where Z̃ and ỸQ are given by (6) and (23), respectively.

2.7. The Exact Expressions of 〈σ1, 1σ1, 2〉 and 〈σ1, 1σ1, 3〉 on a Finite Lattice

Although in Section 2.5 we presented a simplified approximate method, the actual calculation
process of

〈
σ1, 1σ1, 1+Q

〉
is still complex; here, we only present the expressions of 〈σ1, 1σ1, 2〉 and

〈σ1, 1σ1, 3〉 directly.

When Q = 1, substituting α
(1)
m , ↑↓ , β

(1)
m , ↑↓ , δ

(1)
M , and δ

(1)
2M given by (20) into (23), we obtain Ỹ1, and,

further, we have:

lim
φ1→0

∂Ỹ1

∂φ1
=

(
M
∑

m=1

cos θ
(↑)
m

M
tanh

Lγ
(↑)
m

2

) (
M
∏
l=1

2 cosh
Lγ

(↑)
l

2

)2

+

(
M
∑

m=1

cos θ
(↑)
m

M
coth

Lγ
(↑)
m

2

) (
M
∏
l=1

2sinh
Lγ

(↑)
l

2

)2

+

(
1

2M
tanh

Lγ
(↓)
2M

2
+

1
2M

tanh
Lγ

(↓)
M

2
+

M−1
∑

m=1

cos θ
(↓)
m

M
tanh

Lγ
(↓)
m

2

)

×
(

2 cosh
Lγ

(↓)
2M

2

) (
2 cosh

Lγ
(↓)
M

2

) (
M−1
∏
l=1

2 cosh
Lγ

(↓)
l

2

)2

+

(
1

2M
coth

Lγ
(↓)
2M

2
+

1
2M

coth
Lγ

(↓)
M

2
+

M−1
∑

m=1

cos θ
(↓)
m

M
coth

Lγ
(↓)
m

2

)

×
(

2sinh
Lγ

(↓)
2M

2

) (
2sinh

Lγ
(↓)
M

2

) (
M−1
∏
l=1

2sinh
Lγ

(↓)
l

2

)2

.

(25)
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Substituting Z̃ given by (6) and the above expression into (24), we obtain the expressions of
〈σ1, 1σ1, 2〉 of the model on a finite lattice:

〈σ1, 1σ1, 2〉 =
1
Z̃

lim
φ1→0

∂Ỹ1

∂φ1
. (26)

Then, using
{

τ(1), Ψ(1)
}

presented in Table 1, (20) and (21), and according to (22), we obtain{
τ(2)

}
, which can be denoted by the forms:

e±(Lγ
(↑↓)
m +α

(2)
m , ↑↓), e±(Lγ

(↑↓)
m −β

(2)
m , ↑↓) , e±(Lγ

(↓)
M +δ

(2)
M ), e±(Lγ

(↓)
2M+δ

(2)
2M),

where

α
(2)
m, ↑↓ =

sinh2φ1 + sinh2φ2

M
cos2 θm

2
− sinh2φ2

M
sin2 ϕm

+
sinh2φ1sinh2φ2

4M2

2M
∑

k = 1
k 6= m , k 6= m′

4 cos2 θm

2
cos2 θk

2
cos ϕm cos ϕk − sin θm sin θk sin ϕm sin ϕk

eL(γm−γk) − 1

+
sinh2φ1sinh2φ2

4M2

2M
∑

k=1

4 cos2 θm

2
sin2 θk

2
cos ϕm cos ϕk + sin θm sin θk sin ϕm sin ϕk

eL(γm+γk) − 1
,

β
(2)
m, ↑↓ =

sinh2φ1 + sinh2φ2

M
sin2 θm

2
− sinh2φ2

M
sin2 ϕm

+
sinh2φ1sinh2φ2

4M2

2M
∑

k = 1
k 6= m , k 6= m′

− 4 sin2 θm

2
sin2 θk

2
cos ϕm cos ϕk + sin θm sin θk sin ϕm sin ϕk

1− e−L(γm−γk)

+
sinh2φ1sinh2φ2

4M2

2M
∑

k=1

−4 sin2 θm

2
cos2 θk

2
cos ϕm cos ϕk − sin θm sin θk sin ϕm sin ϕk

1− e−L(γm+γk)
,

δ
(2)
M =

sinh2φ1 + sinh2φ2

2M
− sinh2φ1sinh2φ2

2M2

2M
∑

k = 1
k 6= M

1

eL(γ(↓)
M −γ

(↓)
k ) − 1

cos2 θ
(↓)
k
2

cos ϕ
(↓)
k

− sinh2φ1sinh2φ2

2M2

2M
∑

k=1

1

eL(γ(↓)
M +γ

(↓)
k ) − 1

sin2 θ
(↓)
k
2

cos ϕ
(↓)
k ,

δ
(2)
2M =

sinh2φ1 + sinh2φ2

2M
+

sinh2φ1sinh2φ2

2M2

2M−1
∑

k=1

1

eL(γ(↓)
2M−γ

(↓)
k ) − 1

cos2 θ
(↓)
k
2

cos ϕ
(↓)
k

+
sinh2φ1sinh2φ2

2M2

2M
∑

k=1

1

eL(γ(↓)
2M+γ

(↓)
k ) − 1

sin2 θ
(↓)
k
2

cos ϕ
(↓)
k .

In the above expressions, the values of m′ and m are exactly the same as those in (7). We see that
all terms with the factor sinh2φ1sinh2φ2 remain in the above expressions.

Substituting the above expressions of α
(2)
m , ↑↓, β

(2)
m , ↑↓, δ

(2)
M , and δ

(2)
2M into (23), we obtain Ỹ2, and,

further, we have:
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lim
φ2→0

∂

∂φ2
lim

φ1→0

∂Ỹ2

∂φ1

=

 M
∑

m=1

W(↑)
m

M
tanh

Lγ
(↑)
m

2
+

1
2M

M
∑

m=1

1
M

2 cos2 ϕ
(↑)
m − sin2 θ

(↑)
m

cosh2 Lγ
(+)
m
2

+

(
M
∑

m=1

1
M

cos θ
(↑)
m tanh

Lγ
(↑)
m

2

)2


×
(

M
∏
l=1

2 cosh
Lγ

(↑)
l

2

)2

+

 M
∑

m=1

W(↑)
m

M
coth

Lγ
(↑)
m

2
− 1

2M

M
∑

m=1

1
M

2 cos2 ϕ
(↑)
m − sin2 θ

(↑)
m

sinh2 Lγ
(+)
m
2

+

(
M
∑

m=1

1
M

cos θ
(↑)
m coth

Lγ
(↑)
m

2

)2


×
(

M
∏
l=1

2sinh
Lγ

(↑)
l

2

)2

+

((
W(↓)

2M
2M

tanh
Lγ

(↓)
2M

2
+

W(↓)
M

2M
tanh

Lγ
(↓)
M

2
+

M−1
∑

m=1

W(↓)
m

M
tanh

Lγ
(↓)
m

2

)

+
1

2M

 1
2M

1

cosh2 Lγ
(↓)
2M

2

+
1

2M
1

cosh2 Lγ
(↓)
M

2

+
M−1
∑

m=1

1
M

2 cos2 ϕ
(↓)
m − sin2 θ

(↓)
m

cosh2 Lγ
(↓)
m

2


+

(
1

2M
tanh

Lγ
(↓)
2M

2
+

1
2M

tanh
Lγ

(↓)
M

2
+

M−1
∑

m=1

1
M

cos θ
(↓)
m tanh

Lγ
(↓)
m

2

)2
×
(

2 cosh
Lγ

(↓)
2M

2

)(
2 cosh

Lγ
(↓)
M

2

)(
M−1
∏
l=1

2 cosh
Lγ

(↓)
l

2

)2

+

((
W(↓)

2M
2M

coth
Lγ

(↓)
2M

2
+

W(↓)
M

2M
coth

Lγ
(↓)
M

2
+

M−1
∑

m=1

W(↓)
m

M
coth

Lγ
(↓)
m

2

)

− 1
2M

 1
2M

1

sinh2 Lγ
(↓)
2M

2

+
1

2M
1

sinh2 Lγ
(↓)
M

2

+
M−1
∑

m=1

1
M

2 cos2 ϕ
(↓)
m − sin2 θ

(↓)
m

sinh2 Lγ
(−)
m
2


+

(
1

2M
coth

Lγ
(↓)
2M

2
+

1
2M

coth
Lγ

(↓)
M

2
+

M−1
∑

m=1

1
M

cos θ
(↓)
m coth

Lγ
(↓)
m

2

)2
×
(

2sinh
Lγ

(↓)
2M

2

)(
2sinh

Lγ
(↓)
M

2

)(
M−1
∏
l=1

2sinh
Lγ

(↓)
l

2

)2

,

(27)

where W(↑↓)
m is introduced by:

Wm =
1

2M


2M
∑

k = 1
k 6= m , k 6= m′

4 cos2 θm

2
cos2 θk

2
cos ϕm cos ϕk − sin θm sin θk sin ϕm sin ϕk

eL(γm−γk) − 1

+
2M
∑

k=1

4 cos2 θm

2
sin2 θk

2
cos ϕm cos ϕk + sin θm sin θk sin ϕm sin ϕk

eL(γm+γk) − 1

+
2M
∑

k = 1
k 6= m , k 6= m′

4 sin2 θm

2
sin2 θk

2
cos ϕm cos ϕk − sin θm sin θk sin ϕm sin ϕk

1− e−L(γm−γk)

+
2M
∑

k=1

4 sin2 θm

2
cos2 θk

2
cos ϕm cos ϕk + sin θm sin θk sin ϕm sin ϕk

1− e−L(γm+γk)

 ,

(28)

where the value of m′ is exactly the same as that in (7).
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Substituting Z̃ given by (6) and (27) into (24), we obtain the expressions of 〈σ1, 1σ1, 3〉 of the model
on a finite lattice:

〈σ1, 1σ1, 3〉 =
1
Z̃

lim
φ2→0

∂

∂φ2
lim

φ1→0

∂Ỹ2

∂φ1
(29)

2.8. The Expressions of 〈σ1, 1σ1, 2〉 and 〈σ1, 1σ1, 3〉 in the Thermodynamic Limit

We now consider the thermodynamic limit. First, if L is very large, then according to (7) we have:

2 cosh
Lγ

(↑↓)
m
2
≈ 2sinh

Lγ
(↑↓)
m
2
≈ exp

Lγ
(↑↓)
m
2

,tanh
Lγ

(↑↓)
m
2
≈ coth

Lγ
(↑↓)
m
2
≈ 1(m = 1, 2 · · ·M);

However, when the system crosses its critical temperature, γ
(↓)
2M = 2(K − K′) changes sign,

following which we therefore have:

2 cosh
Lγ

(↓)
2M

2
≈ exp

L
∣∣∣γ(↓)

2M

∣∣∣
2

, 2sinh
Lγ

(↓)
2M

2
≈

γ
(↓)
2M∣∣∣γ(↓)
2M

∣∣∣ exp
L
∣∣∣γ(↓)

2M

∣∣∣
2

, tanh
Lγ

(↓)
2M

2
≈ coth

Lγ
(↓)
2M

2
≈

γ
(↓)
2M∣∣∣γ(−)
2M

∣∣∣ .
Hence, for Z̃ and lim

φ1→0

∂Ỹ1

∂φ1
given by (6) and (25), respectively, when L is very large, we obtain:

Z̃ ≈ 1
2

( M
∏

m=1
exp

Lγ
(↑)
m

2

)2

+

(
M
∏

m=1
exp

Lγ
(↑)
m

2

)2

+ exp
L
∣∣∣γ(↓)

2M

∣∣∣
2

exp
Lγ

(↓)
M

2

(
M−1
∏

m=1
exp

Lγ
(↓)
m

2

)2

+
γ
(↓)
2M∣∣∣γ(↓)
2M

∣∣∣ exp
L
∣∣∣γ(↓)

2M

∣∣∣
2

exp
Lγ

(↓)
M

2

(
M−1
∏

m=1
exp

Lγ
(↓)
m

2

)2


≈
(

M
∏

m=1
exp

Lγ
(↑)
m

2

)2

×
{

1 , K < K′ ;
2 , K > K′ ,

(30)

lim
φ1→0

∂Ỹ1

∂φ1
≈
(

M
∑

n=1

cos θ
(↑)
n

M

) (
M
∏
l=1

exp
Lγ

(↑)
l

2

)2

+
1
2

 1
2M

γ
(↓)
2M∣∣∣γ(−)
2M

∣∣∣ + 1
2M

+
M−1
∑

n=1

cos θ
(↓)
n

M

 1 +
γ
(↓)
2M∣∣∣γ(−)
2M

∣∣∣
 exp

L
∣∣∣γ(↓)

2M

∣∣∣
2

 (exp
Lγ

(↓)
M

2

) (
M−1
∏
l=1

exp
Lγ

(↓)
l

2

)2

≈
(

M
∑

n=1

cos θ
(↑)
n

M

) (
M
∏

m=1
exp

Lγ
(↑)
m

2

)2

×
{

1 , K < K′ ;
2 , K > K′ .

Substituting the above two expressions into (26), we obtain:

lim
L→ ∞
N → ∞

〈σ1 , 1σ1 , 2〉 = lim
M→∞

M
∑

m=1

cos θ
(↑)
m

M
= lim

M→∞

(
1
2

M
∑

m=1

cos θ
(↑)
m

M
+

1
2

2M
∑

m=M+1

cos θ
(↑)
m

M

)

= lim
N→∞

N
∑

n=1

cos θ
(↑)
n

N
=
∫ 1

0 dx cos θ(πx) ,

(31)

where the function θ(πx) in terms of (14) is defined by:

cos θ(πx) =
cosh 2K′sinh2K− cos(πx)sinh2K′ cosh 2K√

(cosh 2K′ cosh 2K− cos(πx)sinh2K′sinh2K)2 − 1
,

sin θ(πx) =
sin(πx)sinh2K′√

(cosh 2K′ cosh 2K− cos(πx)sinh2K′sinh2K)2 − 1
.

(32)
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The result (31) is in accordance with that in Reference [8].
According to the similar discussions, for 〈σ1, 1σ1, 3〉 we first have:

lim
L→ ∞
N → ∞

〈σ1, 1σ1, 3〉 ≈ lim
L→ ∞
M→ ∞

M

∑
m=1

W(↑)
m

M
+ ( lim

M→∞

M

∑
m=1

cos θ
(↑)
m

M
)

2

. (33)

We discuss the first term in (28) as an example to show how to calculate lim
L→∞

W(+)
m . First, using (7)

and (15), the first term in (28) can be written in the form:

1
2M

2M
∑

k = 1
k 6= m , k 6= m′

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

eL(γ(↑)
m −γ

(↑)
k ) − 1

=
1
M

M
∑

k = 1
k 6= m

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

eL(γ(↑)
m −γ

(↑)
k ) − 1

=
1
M

m−1
∑

k=1

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

eL(γ(↑)
m −γ

(↑)
k ) − 1

+
1
M

M
∑

k=m+1

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

eL(γ(↑)
m −γ

(↑)
k ) − 1

.

According to (7), when k < m, γ
(↑)
k < γ

(↑)
m , lim

L→∞
eL(γ(↑)

m −γ
(↑)
k ) = ∞, and, thus, the first term in the

above expression vanishes; when k > m, γ
(↑)
k > γ

(↑)
m , lim

L→∞
eL(γ(↑)

m −γ
(↑)
k ) = 0, we therefore obtain:

lim
L→∞

1
2M

2M
∑

k = 1
k 6= m , k 6= m′

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

eL(γ(↑)
m −γ

(↑)
k ) − 1

=
1
M

M
∑

k=m+1

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

−1
.

Using this method to deal with the remaining terms in W(↑)
m , we finally obtain:

lim
L→∞

W(↑)
m =

2
M

(
M
∑

k=m+1
sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k −

M
∑

k=m+1
cos θ

(↑)
m cos θ

(↑)
k cos ϕ

(↑)
m cos ϕ

(↑)
k

+
m+1
∑

k=1
cos ϕ

(↑)
m cos ϕ

(↑)
k

)
+

2
M

2 sin2 θ
(↑)
m
2

2(
cos2 θ

(↑)
m
2
− cos2 ϕ

(↑)
m

)
− cos ϕ

(↑)
m cos ϕ

(↑)
m+1

.
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As M→ ∞ , the second term in the above expression vanishes, and, according to the definition of
the Riemann integral, we have:

lim
L→ ∞
M→ ∞

W(↑)
m = 2

∫ 1
x dy(sin θ(πx) sin θ(πy) sin(πx) sin(πy)− cos θ(πx) cos θ(πy) cos(πx) cos(πy))

+2
∫ x

0 dy cos(πx) cos(πy) ,

where the function θ(πx) is introduced by (32), x =
m + 1

M
. Further,

lim
L→ ∞
M→ ∞

M
∑

m=1

W(↑)
m

M
= 2
∫ 1

0 dx
∫ 1

x dy sin θ(πx) sin θ(πy) sin(πx) sin(πy)

−2
∫ 1

0 dx
∫ 1

x dy cos θ(πx) cos θ(πy) cos(πx) cos(πy) + 2
∫ 1

0 dx
∫ x

0 dy cos(πx) cos(πy) .

(34)

Generally speaking, for the function f (u, v) and the domain D of the integration shown in Figure 1,
we have: x

D

dudv f (u, v) =
∫ b

a
du
∫ u

a
dv f (u, v) =

∫ b

a
dv
∫ b

v
du f (u, v) . (35)

Figure 1. The domain of the integration in (35).

Using (35), for the first term in (34) we obtain:

2
∫ 1

0 dx
∫ 1

x dy sin θ(πx) sin θ(πy) sin(πx) sin(πy) = 2
∫ 1

0 dx sin θ(πx) sin(πx)
∫ 1

x dy sin θ(πy) sin(πy)
=
∫ 1

0 dx sin θ(πx) sin(πx)
∫ 1

x dy sin θ(πy) sin(πy) +
∫ 1

0 dy sin θ(πy) sin(πy)
∫ y

0 dx sin θ(πx) sin(πx)
=
∫ 1

0 dx sin θ(πx) sin(πx)
∫ 1

0 dy sin θ(πy) sin(πy) .

Likewise, the second term in (34) becomes:

−2
∫ 1

0 dx
∫ 1

x dy cos θ(πx) cos θ(πy) cos(πx) cos(πy) = −
∫ 1

0 dx cos θ(πx) cos(πx)
∫ 1

0 dy cos θ(πy) cos(πy) .

Further, the third term in (34) vanishes due to:∫ 1

0
dx
∫ x

0
dy cos(πx) cos(πy) =

1
π

∫ 1

0
dx cos(πx) sin(πx) = 0
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Therefore, (34) becomes:

lim
L→ ∞
M→ ∞

M
∑

m=1

W(↑)
m

M
=
∫ 1

0 dx sin θ(πx) sin(πx)
∫ 1

0 dy sin θ(πy) sin(πy)

−
∫ 1

0 dx cos θ(πx) cos(πx)
∫ 1

0 dy cos θ(πy) cos(πy)
= −

∫ 1
0 dx cos(θ(πx)− πx)

∫ 1
0 dy cos(θ(πy) + πy) .

(36)

Substituting (31) and (36) into (33), we obtain the form of 〈σ1, 1σ1, 3〉 in the thermodynamic limit:

lim
L→ ∞
N → ∞

〈σ1, 1σ1, 3〉 = −
∫ 1

0
dx cos(θ(πx)−πx)

∫ 1

0
dy cos(θ(πy)+πy)+

(∫ 1

0
dx cos θ(πx)

)2

. (37)

On the other hand, the expressions of
〈
σ1, 1σ1, 1+Q

〉
in the thermodynamic limit have been

obtained [3,5,9]. Thus, we here cite the formulas (B6) and (B7) in Reference [9] for comparison.
According to those two formulas:

lim
L→ ∞
N → ∞

〈σ1 , 1σ1 , 2〉 = a0, lim
L→ ∞
N → ∞

〈σ1 , 1σ1 , 3〉 =
∣∣∣∣ a0 a1

a−1 a0

∣∣∣∣ = a2
0 − a1a−1; ar =

1
π

∫ π
0 dω cos(θ(ω)− rω). (38)

where θ(ω) is the function δ ∗ (ω) in Reference [9]. We see that (31) and (37) obtained here are exactly
the same as (38).

3. Long Range-Order in the Model with Periodic-Free Boundary Conditions

For the model with L rows and N columns and periodic boundary condition in the horizontal
direction and free boundary condition in the vertical direction, we consider

〈
σl , nσl , n′

〉
, i.e., correlation

functions of pairwise spins in one column, periodic boundary condition in the horizontal direction
leads to:

〈
σl , nσl , n′

〉
=
〈
σ1 , nσ1 , n′

〉
=

1
Z0

∑
{σh , v=±1}

σ1 , 1σ1 , n′ exp
(

J′

kT

L
∑

l=1

N
∑

m=1
σl , mσl+1 , m

)
exp

(
J

kT

L
∑

l=1

N−1
∑

m=1
σl , mσl , m+1

)
, (39)

where

Z0 = ∑
{σh , v=±1}

exp

(
J′

kT

L

∑
l=1

N

∑
m=1

σl , mσl+1 , m

)
exp

(
J

kT

L

∑
l=1

N−1

∑
m=1

σl , mσl , m+1

)
(40)

is the partition function of the system in absence of a magnetic field, where σL+1 , m = σ1 , m, J′(> 0)
and J(> 0) are the interaction constants for the horizontal and vertical directions, respectively.

3.1. Some Results Concerning the Partition Function Z0

We summarize some results concerning Z0 given by (40), some of which are obtained in
Reference [12]. However, the approximate values of some quantities presented here show improvement
over those given by Reference [12].

By using the spinor analysis method, Z0 is obtained in Reference [12]:

Z0 =

(
2sinh

2J′

kT

) LN
2 N

∏
n=1

(
2 cosh

Lγn−1

2

)
, (41)
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where γn−1 (n = 1, 2, · · · , N) are determined by:

cosh γn−1 = cosh 2K′ cosh 2K− xn−1sinh2K′sinh2K,e−2K′ = tanh
J′

kT
, K =

J
kT

, (42)

where (n = 2, 3, · · · , N) (n = 1, 2, · · · , N) are N roots of the N-th order algebraic equation in x:

gN(x)− 2gN−1(x)coth2K′tanhK + gN−2(x)tanh2K = 0, (43)

where

gn(x) =
[n/2]

∑
k=0

(n + 1)!
(2k + 1)!(n− 2k)!

xn−2k(x2 − 1)
k

(44)

is an n-th degree polynomial in x. If by x ≡ d + d−1

2
we introduce the quantity d, then gn(x) can be

written in the form:

gn(x) =
dn+1 − d−(n+1)

d− d−1 . (45)

The expression in (45) is not only simple but also convenient for investigating the properties of

gn(x), especially if we assume x = cos ϕ, then gn(x) =
sin(n + 1)ϕ

sin ϕ
. Substituting these forms of gn(x)

into (43), for the N − 1 roots of the N-th order algebraic Equation (43) we obtain:

xn−1 = cos ϕn−1,ϕn−1 =
(n− 1)π+ θn−1

N
, 0 < θn−1 < π(n = 2, 3, · · · , N), (46)

Further, θn−1 can be determined by solving a transcendental equation about θ; if N is finite, then the
evaluation of θn−1 is complex because of the so-called “finite size effect”; for the limit case

〈
σl, 1σl, N

〉
, we can

assume θn−1 =
∞
∑

k=0

θ
(k)
n−1

Nk and obtain θn−1 by the iterative method. Further, we obtain γ1 , γ2 , · · · , γN−1

in terms of (42). Concretely, correcting to
1
N

order, we have:

xn−1 = cos
(n− 1)π+ θ

(0)
n−1

N
, γn−1 ≈ γ

(0)
n−1 + 2 sin

(n− 1)π+ θ
(0)
n−1

N
sin

θ
(0)
n−1
2N

sinh2K′sinh2K

sinhγ
(0)
n−1

,

(n = 2, 3, · · · , N)

(47)

where γ
(0)
n−1 and θ

(0)
n−1 (n = 2, 3, · · · , N) are introduced by:

cosh γ
(0)
n−1 = cosh 2K′ cosh 2K− cos

(n− 1)π
N

sinh2K′sinh2K , γ
(0)
n−1 > 0;

cosh 2K′sinh2K− cos
(n− 1)π

N
sinh2K′ cosh 2K = sinhγ

(0)
n−1 cos θ

(0)
n−1 ,

sin
(n− 1)π

N
sinh2K′ = sinhγ

(0)
n−1 sin θ

(0)
k , 0 < θ

(0)
n−1 < π .

(48)

More important are the values of x0 and γ0; to present x0 and γ0, we first introduce a temperature
Tc in terms of:

N =
sinh2K′c

sinh2(Kc − K′c)
, tanhK′c = e

−
2J′

kTc , Kc =
J

kTc
. (49)
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When T ≥ Tc, 0 < x0 ≤ 1; however, when T < Tc, K′ < K and 1 < x0 <
tanh2K
tanh2K′

. For the limit case
N → ∞ , we can obtain the approximate values of x0 and γ0, whose low-order approximations are:

x0 ≈


cos

π

N
, T ≥ Tc, K′ > K ;

cos
π

2N
, T ≥ Tc, K′ = K ;

1
2

(
tanhK
tanhK′

+
tanhK′

tanhK

)
− 2
(

tanhK′

tanhK

)2N (cosh 2K− cosh 2K′)2

sin h2K′sinh32K
, T < Tc,

(50)

γ0 ≈



2(K′ − K) + 2 sin2 π

2N
sinh2K′sinh2K
sinh2(K′ − K)

, T ≥ Tc, K′ > K ;

2 sin
π

4N
sinh2K, T ≥ Tc, K′ = K ;

2
(

tanhK′

tanhK

)N cosh 2K− cosh 2K′

sinh2K
, T < Tc .

(51)

We can thus make a comparison between Onsager’s lattice and the model with periodic-free
boundary conditions. For Onsager’s lattice, when the system crosses its critical temperature,
γ
(−)
N = γ

(−)
2M = 2(K− K′) given by (7) changes sign; however, from (51) we see that, for the model with

periodic-free boundary conditions, when T ≥ Tc, γ0 ≈ 2(K′ − K). Once the system crosses its critical
temperature Tc, γ0 becomes exponentially smaller and then vanishes rapidly as N → ∞ . This property
of γ0 plays a key role for the correlation function 〈σ1, 1σ1, N〉.

3.2. The Matrix Forms of
〈
σ1, 1σ1, N−Q

〉
and Some Results Concerning 〈σ1, 1σ1, N〉 Obtained in Reference [12]

If we write (39) in forms similar to (8), then by employing the method presented in Section 2,
the exact expressions we can obtain are still 〈σ1, 1σ1, 2〉 , 〈σ1, 1σ1, 3〉 , · · · , which belong to the short-range
order. We still cannot obtain the exact expressions of

〈
σl, 1σl, N

〉
,
〈
σl, 1σl, N−1

〉
, · · · .

To obtain the exact expressions of
〈
σl, 1σl, N

〉
,
〈
σl, 1σl, N−1

〉
, · · · , we consider the forms:

〈σ1, 1σ1, N−n〉 =
1

Z0
∑

{σh , v=±1}
σ1, 1σ1, N−n exp

(
J′

kT

L
∑

l=1

N
∑

m=1
σl , mσl+1 , m

)
exp

(
J

kT

L
∑

l=1

N−1
∑

m=1
σl , mσl , m+1

)
. (52)

Taking advantage of σ2
l , m = 1 and σ1 , lσ1 , m = lim

α→0

∂eασ1 , lσ1 , m

∂α
, we have:

σ1, 1σ1, N−n = σ1, 1σ1, Nσ1, Nσ1, N−1 · · · σ1, N−(n−2)σ1, N−(n−1)σ1, N−(n−1)σ1, N−n

=

(
n
∏

k=1
lim

βk→0

∂

∂βk

)
lim

βN→0

∂

∂βN

(
eβN σ1 , 1σ1 , N

n−1
∏

k=0
eβk+1σ1 , N−kσ1 , N−(k+1)

)
,

Further, (52) can be written in the form:

〈σ1, 1σ1, N−n〉 =
1

Z0

(
2sinh

2J′

kT

) LN
2
(

n

∏
k=1

lim
βk→0

∂

∂βk

)
lim

βN→0

∂

∂βN
Tr(W), (53)

where the matrix W belongs to the spin representative, and, by employing the method presented in
Section 2, we can obtain the exact expressions of

〈
σl, 1σl, N

〉
,
〈
σl, 1σl, N−1

〉
,
〈
σl, 1σl, N−2

〉
, · · · .

However, to save space, here we no longer discuss
〈
σl, 1σl, N−1

〉
,
〈
σl, 1σl, N−2

〉
, · · · , but only

consider
〈
σl, 1σl, N

〉
, for which a closed formula was given by Reference [12]:

〈σ1, 1σ1, N〉 =
1

Z0

(
2sinh

2J′

kT

) LN
2 lim

φ→0

∂Y
∂φ

, (54)
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Y =
1
2

[(N+1)/2]
∏
l=1

2 cosh
χ
(+)
2(l−1)

2

[N/2]
∏

m=1
2 cosh

−χ
(+)
2m−1
2

+
1
2

[(N+1)/2]
∏
l=1

2sinh
χ
(+)
2(l−1)

2

[N/2]
∏

m=1
2sinh

−χ
(+)
2m−1
2


+

1
2

[(N+1)/2]
∏
l=1

2 cosh
χ
(−)
2(l−1)

2

[N/2]
∏

m=1
2 cosh

−χ
(−)
2m−1
2

− 1
2

[(N+1)/2]
∏
l=1

2sinh
χ
(−)
2(l−1)

2

[N/2]
∏

m=1
2sinh

−χ
(−)
2m−1
2

 ,

(55)

where χ
(±)
2(l−1) and χ

(±)
2m−1 are determined by:

eχ
(±)
2(l−1) = τ

(±)
2(l−1)

(
l = 1, 2, · · · ,

[
N + 1

2

])
; eχ

(±)
2m−1 = τ

(±)
2m−1

(
m = 1, 2, · · · ,

[
N
2

])
, (56)

τ
(±)
n (n = 1, 2, · · · , N) are N roots of the N-th order algebraic equation F±(τ) = 0, where

F±(τ) =

(
[(N+1)/2]

∏
l=1

(
τ e−Lγ2(l−1) − 1

))([N/2]
∏

m=1

(
τ eLγ2m−1 − 1

))

∓tanhφ

(
[(N+1)/2]

∏
l=1

(
τ e−Lγ2(l−1) − 1

))([N/2]
∏

m=1

(
τ eLγ2m−1 − 1

))

∓4tanhφ
[(N+1)/2]

∑
n=1

Ω2
2(n−1)


[(N+1)/2]

∏
l = 1
l 6= n

(
τ e−Lγ2(l−1) − 1

)

(

[N/2]
∏

m=1

(
τ eLγ2m−1 − 1

))


∓4tanhφ
[N/2]

∑
n=1

Ω2
2n−1

(
[(N+1)/2]

∏
l=1

(
τ e−Lγ2(l−1) − 1

))


[N/2]
∏

m = 1
m 6= n

(
τ eLγ2m−1 − 1

)

 ,

(57)

where

Ωn−1 = sinh2K′ cosh K

√
1− x2

n−1

Nsinh2γn−1 + cosh γr−1 cosh 2K′ − cosh 2K
(n = 1, 2, · · · , N) (58)

are the normalization constants of the eigenvectors of a rotation matrix [12], as N → ∞ . Thus,
according to (47)~(51), we obtain:

lim
N→∞

Ωn−1 ≈
1√
N

sin
(n− 1)π

N
sinh2K′ cosh K

sinhγn−1
(n = 2, 3, · · · , N) ,

lim
N→∞

Ω2
0 ≈



1
N

sin2 π

N
sinh22K′ cosh2 K
sinh22(K′ − K)

, T ≥ Tc , K′ > K ;

1
N

sinh22K′ cosh2 K
sinh22K

, T ≥ Tc , K′ = K ;

cosh 2K− cosh 2K′

4sinh2K
.T < Tc .

(59)

3.3. An Exact Expression of 〈σ1, 1σ1, N〉 on a Finite Lattice

In Reference [12], all roots of the equation F±(τ) = 0 are obtained by correcting to the e−LC0 order
of magnitude (C0 is a positive constant). These approximate roots can lead to the exact expression of〈

σl, 1σl, N
〉

in the thermodynamic limit, since lim
L→∞

e−LC0 = 0, but cannot lead to the exact expression of〈
σl, 1σl, N

〉
on a finite lattice. Hence, the expression of

〈
σl, 1σl, N

〉
presented in Reference [12] is only an

approximate result.

On the other hand, similar to the analysis in Section 2.5, the operator lim
φ→0

∂

∂φ
in (54) allows us to ignore

all terms whose order is higher than φ1(= φ) in all roots of the equation F±(τ) = 0. Hence, to obtain
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the exact expression of lim
φ→0

∂Y
∂φ

, we need only to find all roots of the equation F±(τ) = 0 corrected to the

φ1(= φ) order, The corresponding calculations are in fact simpler than those required of find the roots
corrected to the e−LC0 order of magnitude in Reference [12]; concretely, we obtain:

χ
(±)
2(l−1) ≈ Lγ2(l−1) ± 4Ω2

2(l−1)tanhφ, χ
(±)
2m−1 ≈ −Lγ2m−1 ± 4Ω2

2m−1tanhφ.

Substituting the above results into (55), we obtain Y correcting to tanhφ(≈ φ1) order:

Y ≈ 1
2

(
[(N+1)/2]

∏
l=1

2 cosh
Lγ2(l−1) + 4Ω2

2(l−1)tanhφ

2

)(
[N/2]

∏
m=1

2 cosh
Lγ2m−1 − 4Ω2

2m−1tanhφ

2

)

+
1
2

(
[(N+1)/2]

∏
l=1

2sinh
Lγ2(l−1) + 4Ω2

2(l−1)tanhφ

2

)(
[N/2]

∏
m=1

2sinh
Lγ2m−1 − 4Ω2

2m−1tanhφ

2

)

+
1
2

(
[(N+1)/2]

∏
l=1

2 cosh
Lγ2(l−1) − 4Ω2

2(l−1)tanhφ

2

)(
[N/2]

∏
m=1

2 cosh
Lγ2m−1 + 4Ω2

2m−1tanhφ

2

)

−1
2

(
[(N+1)/2]

∏
l=1

2sinh
Lγ2(l−1) − 4Ω2

2(l−1)tanhφ

2

)(
[N/2]

∏
m=1

2sinh
Lγ2m−1 + 4Ω2

2m−1tanhφ

2

)
.

Substituting the above result and (41) into (54), we obtain the exact expression of 〈σ1, 1σ1, N〉 of
the model on a finite lattice:

〈σ1, 1σ1, N〉 = 2

(
[(N+1)/2]

∑
l=1

Ω2
2(l−1)coth

Lγ2(l−1)

2
−

[N/2]

∑
m=1

Ω2
2m−1coth

Lγ2m−1

2

)(
N

∏
n=1

tanh
Lγn−1

2

)
(60)

Although the whole calculation process is complex, the final result (60) is simple.

3.4. The Expression of 〈σ1, 1σ1, N〉 in the Thermodynamic Limit

To derive the expression of 〈σ1, 1σ1, N〉 in the thermodynamic limit, we first discuss some
properties of γn−1 (n = 1, 2, · · · , N).

For γn−1 (n = 2, 3, · · · , N) given by (47), we have:

lim
L→∞

Lγn−1 = ∞, lim
L→∞

tanh
Lγn−1

2
= lim

L→∞
coth

Lγn−1

2
= 1(n = 2, 3, · · · , N). (61)

As for γ0, when T ≥ Tc, from (51) we see that (61) still holds for γ0; however, when T < Tc,
from the last expression in (51) we see that maybe lim

L→∞
Lγ0 = ∞ does not hold. For example, if L = Na,

where a is a positive integer, then:

lim
L→∞

Lγ0 = lim
N→∞

Na · 2
(

tanhK′

tanhK

)N

csc h2K(cosh 2K− cosh 2K′) = 0,

since now 0 <
tanhK′

tanhK
< 1, for 0 < b < 1, lim

N→∞
NabN = 0. Hence, for γ0 we have:

lim
L→∞ , N→∞

Lγ0 =

{
∞ , T ≥ Tc ;
0 , T < Tc ,

lim
L→∞ , N→∞

tanh
Lγ0

2
=

{
1 , T ≥ Tc ;
0 , T < Tc ,

(L = Na) (62)
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According to the above discussions, to obtain the expression of 〈σ1, 1σ1, N〉 in the thermodynamic
limit, we first write (60) in the form:

〈σ1 , 1σ1 , N〉 = 2Ω2
0

(
N
∏

n=2
tanh

Lγn−1

2

)
+2tanh

Lγ0

2

(
[(N+1)/2]

∑
l=2

Ω2
2(l−1)coth

Lγ2(l−1)

2
−

[N/2]
∑

m=1
Ω2

2m−1coth
Lγ2m−1

2

)(
N
∏

n=2
tanh

Lγn−1

2

)
,

as L→ ∞ , according to (61), the above expression becomes:

lim
L→∞
〈σ1, 1σ1, N〉 ≈ 2Ω2

0 + 2tanh
Lγ0

2

(
[(N+1)/2]

∑
l=2

Ω2
2(l−1) −

[N/2]

∑
m=1

Ω2
2m−1

)
. (63)

When T ≥ Tc, according to (59) and (62), Equation (63) becomes:

lim
L→∞
〈σ1, 1σ1, N〉 ≈ 2

(
[(N+1)/2]

∑
l=1

Ω2
2(l−1) −

[N/2]

∑
m=1

Ω2
2m−1

)
,

Further, as N → ∞ ,

[(N+1)/2]

∑
l=1

Ω2
2(l−1) ≈

[N/2]

∑
m=1

Ω2
2m−1 ≈

1
2

N

∑
n=1

Ω2
n−1, (64)

hence, for this case lim
L→∞ , N→∞

〈σ1, 1σ1, N〉 = 0.

When T < Tc, according to (62) and (64), the second term in (63) vanishes, and (63) thus becomes
lim

L→∞
〈σ1, 1σ1, N〉 ≈ 2Ω2

0, where Ω2
0 is given by the last expression in (59) as N → ∞ .

Summarizing the above results, in the thermodynamic limit, if L = Na, then (60) becomes:

lim
L→∞ , N→∞

〈σ1, 1σ1, N〉 =

 0, T ≥ Tc ;
cosh 2K− cosh 2K′

2sinh2K
, T < Tc .

The above result was obtained in Reference [12] in terms of an approximate result of 〈σ1, 1σ1, N〉.
Some further discussions about the above result can be found in Reference [12].

From the above discussions, it is revealed how the changes of the values of γn−1 (n = 1, 2, · · · , N),
especially the change of the value of γ0, lead to the change of lim

L→∞ , N→∞
〈σ1, 1σ1, N〉when the system crosses

its critical temperature Tc, as well as how the long-range order emerges as the temperature decreases.
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