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Abstract: The flue gas from fossil fuel power plants is a long-term stable and concentrated emission
source of CO2, and it is imperative to reduce its emission. Adsorbents have played a pivotal role in
reducing CO2 emissions in recent years, but the presence of water vapor in flue gas poses a challenge
to the stability of adsorbents. In this study, ZIF-94, one of the ZIF adsorbents, showed good CO2

uptake (53.30 cm3/g), and the calculated CO2/N2 (15:85, v/v) selectivity was 54.12 at 298 K. Because
of its excellent structural and performance stability under humid conditions, the CO2/N2 mixture
was still well-separated on ZIF-94 with a separation time of 30.4 min when the relative humidity was
as high as 99.2%, which was similar to the separation time of the dry gas experiments (33.2 min).
These results pointed to the enormous potential applications of ZIF-94 for CO2/N2 separation under
high humidity conditions in industrial settings.

Keywords: CO2 capture; ZIF; high humidity; stable structure

1. Introduction

With the rapid growth of economic development needs and the world population,
the world’s energy demand is growing by leaps and bounds. Fossil energy will still
account for more than 75% of total global energy consumption by 2040 [1]. The massive
consumption of fossil energy leads to a continuous increase in the concentration of CO2
and other greenhouse gases in the atmosphere, and its excessive emission contributes to
the continuous increase in the greenhouse effect [2], which has negative impacts on the
global climate. Because CO2 is the most important of the greenhouse gases, reducing its
emissions is regarded as the most important way to solve the climate problem. Therefore,
doing so will also be an unavoidable responsibility and obligation in the next few years.

Among the various sources of CO2, emissions of CO2 in flue gas from coal-fired
power plants account for 30–40% of the total [3]. The main components of flue gas tend
to be around 12–15% CO2, 85% N2, and water vapor [4]. It is most effective and cru-
cial to capture CO2 from flue gas for storage due to its large and relatively concentrated
CO2 emissions. Carbon capture and storage (CCS) is one of the channels to achieving
a reduction in CO2 emissions. The key factor for significant progress lies in the choice
of materials used to perform the separation. In this regard, the main methods for CO2
separation are cryogenic fractionation [5], solvent absorption [6], sorbent adsorption [7],
bioimmobilization [8], membrane permeation separation [9], and so on. The method of
sorbent adsorption has received extensive attention due to its advantages of simple equip-
ment, convenient operation, low energy consumption, and low corrosion and pollution.
Zeolite, silica, BPL carbon, and metal–organic framework (MOF) are the most widely used
adsorbents by far. In particular, zeolitic imidazolate frameworks [10,11] (ZIF as a subfamily
of MOF) have many attractive properties such as high specific surface area, good struc-
tural stability, and flexibility that can be modified with functional groups by postsynthetic
methods [12–15]. The framework structure can be rationally designed to achieve a large
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range of pore sizes and three-dimensional (3-D) pore structures [16,17]. These are also the
reasons why ZIF materials can be widely used for sensors [18,19], catalysts [20,21], catalyst
supports, selective layers on catalysts via encapsulation [22,23], adsorbents [24–26], matrix
fillers [27–29], membranes [30–37], and drug delivery systems [38–40]. ZIF materials play a
pivotal role in the adsorption and separation of CO2 under dry conditions based on these
merits, such as ZIF-68–82 with the gmelinite (zeolite code GME) topology reported by
Yaghi et al. [41]. The CO2 adsorption capacity of ZIF-78 reached 49.03 cm3/g at 760 Torr
and 298 K; they also reported two kinds of porous materials [42], ZIF-95 and ZIF-100, for
which the adsorption capacities for CO2 were 19.26 cm3/g and 21.28 cm3/g, respectively,
under the conditions of 298 K and 1 bar.

Although many materials have impressive CO2 capture capabilities in dry environ-
ments, it is worth mentioning that the presence of water in flue gas during practical
applications, in addition to higher CO2 capture capacity, makes it necessary to find novel
adsorbents that have higher tolerance for humid environments. A few studies have been
conducted on the hydrolytic stability of MOFs in humid environments. MIL-110/-101,
CPO-27, and ZIF-8 are stable materials when exposed to water vapor for 2 h [43]. UiO-66-
NH2 [44] can maintain its original crystallinity and porous structure before and after water
adsorption (relative humidity of 80%). MIL-100 [45] is completely water-stable owing to
its trinuclear chromium clusters. The surface of MIL-53 is transformed, yielding H2BDC
and γ-AlO(OH) in boiling water [46]. ZIF-8 and ZIF-94 (also known as SIM-1) are stable
after treatment in boiling water for at least 24 h [47–49]. Among them, the CO2 adsorption
capacity under dry conditions of ZIF-8 is 15.64 cm3/g at 298 K and 1 bar [50]; ZIF-94 also
has the same SOD topology as ZIF-8. The former has a smaller pore size of the sodalite
cavity due to the existence of the aldehyde group in the ligand, which may have a stronger
force on CO2 and further increase its CO2 adsorption. However, there have been few
reports on ZIF materials for CO2/N2 separation in humid environments.

Therefore, ZIF-94 was synthesized at room temperature using methanol and tetrahy-
drofuran as solvents in this paper. First, its stability was explored in humid and harsh
chemical environments; the gas adsorption performance was then studied, and finally, the
adsorption/separation performance of the material for CO2/N2 mixtures in dry and high
humidity environments was studied in detail, confirming that the presence of water vapor
has negligible influence on the CO2 enrichment process. The above conclusions confirmed
that ZIF-94 was a promising candidate for capturing CO2 from high-humidity flue gas by
virtue of its satisfactory structural stability and reusability.

2. Results and Discussion
2.1. Synthesis, Structure, and Characterization

ZIF-94 consisted of Zn tetrahedra linked by carboxylimidazolates forming a 3-D ze-
olitic imidazolate framework crystallizing in a sodalite topology [51,52]—see Figure 1a.
ZIF-94 was built by combining experimental and computational methods, and it is isostruc-
tural to ZIF-8 (SOD), which is commercialized under the name Basolite Z-1200™ [12]. ZIF-8
has a methyl group at position 2, whereas ZIF-94 contains a methyl and an aldehyde in
positions 4 and 5, respectively. The simulation indicated a pore size of the sodalite cavity
of 8.0 Å for ZIF-94 against 11.3 Å for ZIF-8, and the difference in the imidazole group
resulted in a smaller cavity for the former [53,54]. As shown in Figure S1, the ZIF-94
was synthesized at room temperature using methanol and tetrahydrofuran, and 3.67 g of
product could be synthesized at one time; it has the potential for large-scale synthesis. The
freshly synthesized sample appeared as a white crystalline powder, and its powder X-ray
diffraction (PXRD) is shown in Figure 1b. The diffraction peaks of the synthesized and
activated samples were consistent with the simulation peak of ZIF-94, and the peak shape
was relatively sharp, indicating that the sample under this condition had high crystallinity
and purity. Scanning electron microscopy (SEM) revealed the morphology and size of
ZIF-94. Figure S2 shows that the ZIF-94 crystal had a 3-D structure of a dodecahedron with
a smooth surface and a particle size of about 4 nm. The N2 adsorption isotherm at 77 K
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showed the microporous structure of the material (Figure 1c) with a BET surface area of
588 m2/g, which was comparable to the reported value [55]. The thermogravimetric (TG)
curve of the material in Figure 1d showed the two weight loss steps in the decomposition
process. The first may be attributed to the loss of the solvents CH3OH and H2O in the
pores of ZIF-94, and the second may be due to the disintegration of the structure. However,
the sample was thermally stable below 400 ◦C. ZIF-94 synthesized at room temperature
with a stable structure offers the possibility for the adsorption and separation of CO2 under
actual industrial conditions.
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Figure 1. (a) The structure of ZIF-94. (b) The PXRD of freshly synthesized samples and activated
samples. (c) The N2 adsorption isotherm of ZIF-94 at 77 K. (d) TGA data obtained for ZIF-94.

2.2. Gas Adsorption Performance

Based on the pore structure and configuration of ZIF-94, the adsorption isotherms
of CO2/N2 were studied at different temperatures (273 and 298 K) and 1 bar. Figure 2a
shows the adsorption isotherms of CO2 and N2 at 298 K and 1 bar. ZIF-94 showed high
CO2 uptake (53.30 cm3/g) and low N2 uptake (6.39 cm3/g), giving an excellent uptake
ratio of CO2 over N2 (8.34), indicating that the structure had a unique adsorption affinity
for CO2. An adsorption test was performed at 273 K under the same conditions to study
the adsorption performance of the material further, as presented in Figure 2b. Notably,
lower temperatures led to higher adsorption capacity for the same component, and for
N2 under the same conditions, the adsorption capacity of CO2 was still higher than that
of the former. In addition, the adsorption and desorption isotherms of CO2 and N2
at the two temperatures overlapped completely, and it could be clearly seen that the
adsorption–desorption process of the material could be accomplished perfectly, which could
reduce energy consumption and provide the possibility of implementing the adsorption–
desorption cycle of the adsorbent in industry. Subsequently, ideal adsorbed solution theory
(IAST) calculations were performed using the fitted parameters of the two-site Langmuir–
Freundlich isotherm model (Tables S1 and S2) to predict the selectivity of the CO2/N2
mixture at different temperatures (273 and 298 K) and 1 bar. As shown in Figure 2c,
the calculated CO2/N2 (15:85, v/v) selectivities were 67.11 and 54.12 at 273 and 298 K,
and the calculated CO2/N2 (50:50, v/v) selectivities were 87.44 and 95.29 at 273 and
298 K, respectively. The Langmuir–Freundlich parameters are shown in Figure S3 and gave
satisfactory agreement (R2 > 0.999). Therefore, the CO2-selective adsorbents were compared
in terms of CO2 adsorption capacity and selectivity, as shown in Table S3, outperforming
previously reported benchmark materials with GME topology (such as ZIF-78 and ZIF-
82), which showed the great potential of ZIF-94 in CO2/N2 separation. In addition, the
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heats of adsorption of CO2 and N2 of ZIF-94 as shown in Figure 2d were calculated using
the Clausius–Clapeyron equation. In the near-zero adsorption region, the adsorption
heats of ZIF-94 for CO2 and N2 were 28.23 kJ/mol and 15.71 kJ/mol, respectively. On
the one hand, this showed that ZIF-94 was a CO2-selective adsorbent, and on the other
hand, the relatively low adsorption heat was beneficial to the desorption regeneration of
the adsorbent during the separation process, and the view was also confirmed that the
above adsorption–desorption isotherms were completely coincident (Figure 2a,b), further
reducing the energy consumption. In addition, ZIF-94 showed high adsorption capacity
and high IAST selectivity for CO2/N2 mixtures, making it an excellent potential adsorbent
for high-humidity applications.
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2.3. Dynamic Breakthrough Experiments for CO2/N2 Mixtures

The previous experiments demonstrated that ZIF-94 has high CO2 adsorption capac-
ity and satisfactory CO2/N2 selectivity; the phenomena prompted us to investigate the
feasibility of using ZIF-94 in the separation process under humid conditions. Two types
of wet breakthrough experiments for CO2/N2 (15/85; v/v) were conducted in this section
(Figure S4), dry gas and wet gas (99.2%), to evaluate the gas-separation performance under
ambient conditions. The feed gas of CO2/N2 was passed through the adsorption column
loaded with activated ZIF powder at a total flow rate of 5 mL/min at 298 K and 1 bar.
For the dry gas experiments, as shown in Figure 3a, N2 was initially eluted through the
adsorption column at 1.4 min and then reached saturation, whereas CO2 was selectively
adsorbed on the column at both compositions until 33.2 min. At the same time, the CO2/N2
mixture could be efficiently separated to obtain high-purity CO2 within these time intervals.
In addition, the gas adsorption capacity of CO2 on ZIF-94 reached 32.76 cm3/g in dynamic
breakthrough experiment. This indicated that during the dynamic adsorption process
of the mixed gas, ZIF-94 displayed a stronger adsorption affinity for CO2 than for N2.
Afterward, desorption experiments on CO2/N2 mixtures purging the column with Ar at a
flow rate of 10 mL/min were conducted under ambient conditions. As shown in Figure 3c,
the concentration of N2 dropped sharply to achieve N2 desorption in preference to CO2
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during the purging time of 9.7 min. Similarly, we could obtain purified CO2 at the outlet of
the adsorption column until purging for 34.0 min. ZIF-94 achieved desorption of CO2 by
room-temperature purging in a short time, which provides the possibility of its repeated
use in industry.
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two humidity conditions: (a,c) dry gas and (b,d) wet gas (99.2% RH).

As a major source of CO2, flue gas is particularly important with regard to CO2 capture.
However, the presence of water in flue gas imposes higher requirements for the CO2
adsorbent; it is still necessary to maintain its CO2 capture capacity under wet conditions.
To make the ZIF-94 more suitable for practical application, a mixture of CO2/N2/H2O(v)
under aqueous conditions (RH = 99.2%) was studied, and the rest of the conditions were
consistent with the above dry experiments. For the wet gas (99.2%) experiments, as shown
in Figure 3b, N2 and CO2 were first detected through the adsorption column at 1.4 min
and 30.4 min, respectively. The dynamic saturated adsorption amounts of CO2 and N2 are
30.94 and 5.74 cm3/g, respectively, and the dynamic selectivity is 30.54. We were delighted
to discover that the CO2/N2 mixture was still well-separated on ZIF-94 when the relative
humidity was 99.2%, and the separation time (30.4 min) was similar to the separation time
of the dry gas experiments (33.2 min). A possible cause of this phenomenon was that the
presence of –CH3, a hydrophobic group, makes ZIF-94 insensitive to water molecules. At
the same time, it showed its poor adsorption capacity for water vapor at room temperature
and pressure (Figure S5). It is worth mentioning that the breakthrough curve in a humid
environment showed a longer tail, revealing that the adsorption dynamics were also
impacted by water, which was attributed to the increased dependence on molecular mass
transfer caused by saturation of the outer adsorbent layer [56]. Figure 3d shows CO2 at the
outlet of the adsorption column until purging at 29.4 min in the desorption experiments, a
slightly shorter time than in the dry gas experiments (Figure 3c). In summary, the two types
of wet breakthrough experiments showed similar characteristics regardless of the humidity,
and it was inferred that water vapor adsorption had no effect on the separation of CO2/N2;
ZIF-94 had excellent water resistance while maintaining its gas separation performance
capture capability in wet conditions.
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2.4. Structural and Performance Stability Investigations

In addition to the potential for large-scale synthesis of ZIF-94 at room temperature, we
also needed to evaluate it in terms of structural stability and performance stability, so that it
can be better used in the separation of CO2 in flue gas. In the structural stability assessment,
as shown in Figure 4a, the PXRD pattern obtained after being exposed to air for half a year
(Figure S6) was still in good agreement with the freshly synthesized sample and had no
impurity peaks, indicating that the sample has excellent stability in air. Destruction of the
sample structure is often caused by the presence of water molecules, so the stability test of
ZIF-94 was conducted in a humid environment. The samples were immersed in water for
1 day, 3 days, 7 days, 1 month, and 2 months (Figure S7); the test results showed that the
crystallinity of the sample basically did not change with the prolongation of soaking time.
The PXRD patterns of the sample were analyzed after activation at different temperatures
(Figure S8), and the PXRD patterns under these conditions are still consistent with the
simulated peaks. Moreover, the chemical stability of ZIF-94 was evaluated by treating
the samples under harsh conditions. Their PXRD patterns also remained intact after
soaking in different pH solutions for 2 days (Figures S9 and S10), and there was no phase
transition or structural collapse, demonstrating the material’s resistance to harsh chemical
environments. The PXRD patterns of the samples after multiple adsorptions and dynamic
breakthrough experiments were compared with those of the freshly synthesized samples,
and the intensity of the diffraction peaks was still well-maintained, it can be seen that the
above two processes could not destroy the crystal structure. In short, ZIF-94 exhibited
satisfactory structural stability, excellent thermal stability, and exceptional recoverability in
water and aqueous alkaline solutions. At the same time, ZIF-94 also preliminarily showed
that it was a promising candidate for adsorption and separation under high humidity
conditions by virtue of its water resistance.
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In the performance stability assessment, first, we performed single-component adsorp-
tion cycle experiments of CO2 at 298 K and 1 bar. As shown in Figure 4b, the adsorption
capacity of CO2 hardly decreased in adsorption cycling experiments, indicating its good
structural stability and reusability. Furthermore, component adsorption of CO2 was per-
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formed on ZIF-94 under different conditions, as shown in Figure S11. It was found that the
CO2 adsorption amount of the sample exposed to the air for 4 months was 49.59 cm3/g,
and the sample soaked in water for 2 months at room temperature (56.33 cm3/g) was close
to that of the freshly made sample (53.30 cm3/g), which further confirms that ZIF-94 main-
tains its original adsorption capacity in a high-humidity environment. Finally, Figure 4c,d
displays cyclic breakthrough experiments using a CO2/N2 mixture (15/85, v/v) under
the two humidity conditions three times, and the breakthrough time was almost constant,
which confirms that the presence of water vapor has negligible influence on the CO2 enrich-
ment process. The performed N2 adsorption–desorption experiments proved that the N2
adsorption amount of the material remained unchanged (Figure S12), and it maintained its
initial porous structure. Moreover, ZIF-94 could repeatedly achieve separation of CO2/N2
without loss of performance in both dry and humid environments. The above test results
indicated the excellent cycle performance of ZIF-94, coupled with its robust structural
stability. The excellent cycle performance for CO2 adsorption and separation points to the
enormous potential applications of ZIF-94 for CO2/N2 separation under humid conditions
in industrial settings.

3. Materials and Methods
3.1. Preparation of ZIF-94

The synthetic methods described in the literature [55,57–60] were modified as follows:
ZIF-94: 2.64 g of Zn(CH3COO)2·2H2O (12 mmol) was dissolved in 20 mL methanol,

and 2.64 g of 4-methyl-5-imidazolecarboxaldehyde (48 mmol) was dissolved in 50 mL
tetrahydrofuran. The methanol solution was added to the tetrahydrofuran solution under
vigorous stirring. Afterward, the mixture was continuously stirred at room temperature for
16 h. The pale yellow precipitate was filtered and washed with methanol three times. The
resulting sample was dried at room temperature in air for 48 h.

3.2. Characterization

The crystal structure and crystallinity of the sample were measured using PXRD on a
Bruker D8 ADVANCE X-ray diffractometer with a Cu Kα radiation source
(λ = 1.5418 Å). Scanning was performed over a 2θ range of 5–40◦ at a scanning rate
of 4◦/min. Thermogravimetric analysis (TGA) of the sample was carried out on a thermal
analyzer (NETZSCH STA 449F5). The sample was heated at a rate of 10 ◦C/min in an N2
atmosphere. The morphology of the as-synthesized sample was observed and confirmed
using SEM on a Hitachi SU8010 instrument. N2 adsorption–desorption isotherms were
recorded at 77 K on Micromeritics ASAP 2460 and 3020 instruments. Water-adsorption
isotherms at 298 K were measured using an automated volumetric adsorption apparatus
(Quantachrome). Before measurement, the sample was degassed at 200 ◦C for 12 h until
the residual pressure was below 1 × 10−6 Torr and all gases were of 99.999% purity.

3.3. Adsorption and Breakthrough Experiments

Single-component gas adsorption isotherms for CO2 and N2 were recorded on a
Micromeritics ASAP 2020 instrument at 273 K and 298 K. The sample was activated at
200 ◦C under a high vacuum (10−6 Torr) for 12 h until no weight loss was observed. High
purity CO2 (99.999%) and N2 (99.999%) were used in the gas adsorption experiments.
Before the breakthrough experiments, the sample was degassed and activated at 200 ◦C
for 12 h, and then cooled to room temperature. Approximately 0.7147 g of each sample
was loaded into a stainless-steel adsorption column with an inner diameter of 4.57 mm
and a length of 120 mm. High purity Ar was used to purge the column at a flow rate of
10 mL/min to remove any residual gas in the pipeline. The adsorption columns loaded
with each sample were fixed in an in-house-built device. The flow rate of CO2 and N2 was
adjusted using a pressure valve and flowmeter located at the inlet of the adsorption column.
The concentration of CO2 and N2 was monitored in real time using gas chromatography
(490 Micro GC, Palo Alto, CA, USA) at the outlet of the adsorption column. Each experiment
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was carried out at 298 K, and the flow rate of the CO2/N2 mixture (15:85, v/v) was
5 mL/min until saturation was reached (Figure S4). Subsequently, the adsorption bed was
regenerated using Ar (10 mL/min). In addition, after the adsorption and breakthrough
experiments, the sample was removed, weighed, and analyzed using PXRD.

3.4. Ideal Adsorbed Solution Theory Calculations

The single-component adsorption isotherms of CO2 and N2 on ZIF-94 obtained at
273 K and 298 K were fitted using the dual site Langmuir–Freundlich model proposed by
Myers [61] et al.:

q = qA,sat
bA pνA

1 + bA pνA + qB,sat
bB pνB

1 + bB pνB

where q represents the adsorbed capacity per mass of adsorbent (mol/kg), qA,sat and qB,sat
are the saturation uptake capacities at sites A and B, respectively, bA and bB represent the
constant at adsorption sites A and B, respectively (Figure S3), P represents the total pressure
of the gas at equilibrium (kPa), and ν represents the Freundlich exponent.

The adsorption selectivity is defined as follows:

Sads =
qA/qB
yA/yB

where qA and qB represent the component molar loadings within the MOF, and yA and yB
are the corresponding mole fractions used in the feed gas mixture.

The parameters are provided in Tables S1 and S2.

4. Conclusions

In this work, ZIF-94 was synthesized at room temperature using methanol and tetrahy-
drofuran as solvents. ZIF-94 exhibited satisfactory structural stability, excellent thermal
stability, and exceptional recoverability in water and aqueous alkaline solutions. The CO2
uptake and low N2 uptake at 298 K and 1 bar were 53.30 cm3/g and 6.39 cm3/g, respectively.
The calculated CO2/N2 (15:85, v/v) selectivities were 67.11 and 54.12 at 273 and 298 K,
respectively. The separation time (30.4 min) for the wet gas (99.2%) experiments was similar
to the separation time for the dry gas experiments (33.2 min) in dynamic breakthrough
experiments for CO2/N2 mixtures. The CO2 adsorption amount of the sample soaked in
water for 2 months at room temperature (56.33 cm3/g) was close to that of the freshly made
sample (53.30 cm3/g). The presence of water molecules did not affect the adsorption and
separation processes of CO2 on ZIF-94. ZIF-94 has been shown to be a kind of adsorbent
that has the requisite hydrolytic stability for applications in high-humidity environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27175608/s1, Figure S1: Schematic representation
of synthesis of ZIF-94 at room temperature; Figure S2: SEM of as-synthesized ZIF-94; Figure S3:
CO2 (a, 298 K, and b, 273 K) and N2 (c, 298 K, and d, 273 K) adsorption isotherms in ZIF-94 with
dual-site Langmuir–Freundlich model fits; Figure S4: Diagram of breakthrough experimental ap-
paratus; Figure S5: H2O adsorption of ZIF-94 at 298 K; Figure S6: PXRD of ZIF-94 exposed to
air for 4 months and 6 months; Figure S7: PXRD of ZIF-94 soaked in water for 1, 3, 7, 30, and
60 days; Figure S8: PXRD of ZIF-94 activated at different temperatures; Figure S9: Images of ZIF-94
before and after soaking in different pH solutions. (a) before soaking, (b) after soaking for 2 days;
Figure S10: PXRD of ZIF-94 soaked in solutions with different PH values; Figure S11: The ad-
sorption isotherms of CO2 under different conditions; Figure S12: The N2 adsorption isotherm at
77 K of the samples. (a) Freshly made, (b) Multiple adsorption experiments, (c) Dynamic break-
through experiments; Table S1: Dual-Langmuir–Freundlich fitting parameters for CO2 and N2
in ZIF-94 at 298 K; Table S2: Dual-Langmuir–Freundlich fitting parameters for CO2 and N2 in
ZIF-94 at 273 K; Table S3: Comparation of CO2 adsorption uptakes and selectivity for CO2/N2
around the top-performing ZIF; Table S4: Some typical materials with high CO2 adsorption capacity.
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